Real Analysis

Exercises and Solutions

Toshinari Morimoto
http://books. juncheng.org




ST (I 2

Toshinari Morimoto
http://books. juncheng.org




Preface

I wrote this book to review Real Analysis for myself. I picked up important points in a
textbook of Real Analysis and rewrote it into an exercise book. There are some mistakes
and leaps of logic in the original textbook. I modified them based on my understanding.
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CHAPTER 1

Set Theory and Point Set

§ 1.1

(Definition 1.17, 1.18, 1.19, 1.20, 1.21) Answer the following questions.
(1) Let E C R Define diam(E).
(2) Explain what is a bounded set.

(3) Let xp € R Let 6 > 0. Define an open ball and a closed ball. We denote
them B(xg,0) and C(x,d) respectively.

(4)  An open rectangle. A closed rectangle. A half-open rectangle.

(5) Let {zx}r=>1 be a sequende of points on RY. Define limy_,o, 71 = .

(Definition 1.21, 1.22, 1.23, 1.24, 1.25) Let £ C R% Answer the following
questions.

at is an accumulation point or a limit point of E?7 We denote a set of limi
1) What i lati int limit point of E7 We denot t of limit
points of £/ as E'. What is a closure of E?

(2)  What is an isolated point of E. Explain that the set of isolated points of E is
expressed as F \ F'.

(3) What is a closed set? What is a closure of E. (We denote it as E.)

(4) What is an open set? (State the definition of an open set based on the definition
of a closed set.)

(5) What is an interior point of E? (We denote a set of interior points of E as E)

(6) What is a boundary of E? We denote a boundary of E as 9E. Define OF
based on E and E. Also show that

OE =AY {2 e R | V5 > 0,B(z,0) N E # 0, B(x,5) N E° # 0}.



1.2.

(Theorem 1.13) Suppose that £ C RY. Show that z € E' if and only if
V6 > 0,B(z,0) N E\{z} #0.
(Theorem 1.14) Let E;, B, C RY. Show that
(E1 U E,) = E] U E}.

(Theorem 1.15 Bolzano-Weierstrass Theorem on R?) Show that any
bounded infinite set £ C R? has at least one limit point. (or if {z,},>1 C R?
is bounded, we can find a subsequence ny, s.t z,,, converges to some x € R?.) You
may directly use Bolzano-Weierstrass Theorem on R!.

[ 6 | (Theorem 1.15 Supplement) Show Bolzano-Weierstrass Theorem on R™.
(Exercise 1.4.1) Let £ C R be an uncountable set. Show that E’ # ().

(Exercise 1.4.2) Let E C R and suppose that E’ is a countable set. Show
that E is also a countable set.

[ 9 | (Exercise 1.4.5) Let E C R? and suppose Vi, 2y € E,|2; — 25| > 1. Show
that E is a countable set.

§ 1.2

(I) Closed Set

(Example 2 and 6) Let f(z) be a function defined on R?. Show that f(z) €
C(RY) if and only if Fy, Fy are closed for all t+ € R where

ByE {r eRY| fl@) 2}, By {o e RYf(x) S 1)
(How about open sets?)

(Example 3) Let B(z,r) C R% Show that the closure of B(zg,7) is a closed
ball C(z, ).

If AC Eand A= AUA = E, then we say that A is dense in E. In the following
examples, we prove that a set is dense. It is enough for us to prove that Ve > 0 and

Vx € E, there exists a € A s.t v —a| < €. (Then we can find {a,},>1 C A st a, — =.
Sozx e A)

(Example 4) Let a ¢ Q,E, = {p + aq|p,q € Z}. Show that E, = R.

(Example 5) Let E = {cosn}. Show that £ = [—1,1]. Hint. Use the conclusion
of Example 4. cos(n + 2mm) = cosn

(Theorem 1.16 Some Properties of a Closed Set)



1.2.

(1) If Fy, F; C R™ are closed sets. Then Fy U Fy is a closed set.
(2) If {F.|a € I} is a family of closed sets, then F' = (1 ., I\, is a closed set.

(Theorem 1.17 Cantor’ Intersection Theorem) Let {Fj}r>1 be a sequence
of nonempty and bounded closed sets on R¢. Suppose F} D Fy---F}, D ---. Show
that

() Fe #0.
k=1

(Exercise 1.5.1.4) Let £ C R?. Show that

E= () F

FDE;F: closed

(Exercise 1.5.1.5) Let F' C R be a bounded closed set. Let f(x) be a real-
valued function defined on F'. For each z € F', we have lim,_,, .er f(x) = +00.
Show that F' is a countable set. Hint. Consider the contraposition. Suppose that
F' is uncountable and derive a contradiction.

(Exercise 1.5.1.6) Let f € C(R). Show that F' = {(z,y)|f(z) = y} is a closed
set on R?.

(II) Open Set

(Theorem 1.18 Some Properties of an Open Set)

(1) Let {Gq}aer be a family of open sets. Show that G = |J,.; G is also an open
set.

(2) Let Gi,Gs--- G,y be open sets. Show that (,_; 5., Gk is an open set.

(3) Let G be a non-empty set no R%. G is open if and only if Vo € G,3d, s.t
B(z,d) C G.

(Example 7) Suppose that f(x) is defined on B(xg,dy). Let

wy(zo) =lim — sup  {[f(z1) — f(x2)[}.

6—0 z1,22€B(x0,0)
Show that if G is an openset and f is defined on G, then
H={zeG|wsz) <t}

is an open set.

(Theorem 1.19)

(1) Let G be a non-empty open set on R. It can be expressed as a union of disjoint
open intervals.

10



1.2.

(2) Let G be a non-empty open set on R%. It can be expressed as a union of disjoint
half open rectangles.

C

(Exercise 1.5.2.1) Let E C R%. Show that £ = <(EC)>

(Exercise 1.5.2.3)

(1) Show that G is open < G NIG = 0.
(2) Also show that F is closed < OF C F.

(Exercise 1.5.2.4) Let G C R? be a non-empty open set. Let ry > 0. Show
that A = J,.o B(x,70) is an open set.

(Exercise 1.5.2.5) Let F' C R be an infinite closed set. Show that we can find
a countable subset F C F s.t £ =F.

(Definition 1.26, Lemma 1.20 Lindelof’s Covering Lemma)

(1) Explain open cover and sub cover.

(2) Let E C RY be an openset. Suppose & = {A;, Ay - } is a family of open balls
with B(y, q) where y € Q%,q € Q. (Hence & is countable.) Let x € E. Show that
we may find A € & stx € ACE.

(3) Suppose E C |J,c; Go- We can always find a countable subset of I' C I s.t
Ec |G
acl’

This is called Lindelof’s coverling lemma.

(Theorem 1.21 Heine-Borel’s Finite Covering Theorem) State and Prove
Heine-Borel’s Covering Theorem.

(Example 8) Let F' C R? be a bounded closed set. And let G C R? be an open
set. Suppose F' C G. Show that 30 > 0 such that F' +{z} ={y+zlye F} CG
for all x € (=46, 0).

(Theorem 1.22) Let £ C R% Suppose all open cover of E has finite cover.
Show that £ is a bounded closed set.

(Exercise 1.5.2.9) Let ' C R be a nonempty countable closed set. Show that
F' contains at least one isolated point.

(Exercise 1.5.2.10) Let f,(x) be a nonnegative decreasing sequence of con-
tinuous functions. Suppose there is a closed and bounded set F© C R on which
fn(x) = 0(n — 00). Show that f,(z) uniformly converges on F.

*

11
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We have already considered continuity of a function defined on whole R?. Now we
consider continuity of a function defined on a subset of R

(Definition 1.27) Let f(z) be a real-valued function defined on E C RY. Let
zro € E. What does it mean if we say that f(x) is continuous at z¢, and f(z) is
continuous on F.

(Example 9) Let FF C R be a bounded and closed set. Let f(x) : FF — F.
Suppose |f(z) — f(y)| < |r — y|,x,y € F. Show that there exists a fixed point,
that is xg € F' s.t f(zg) = xo.

(Exercise 1.5.2.11) Let F' C R be a closed set and f(z) € C(F'). Show that
{zeF|[f(z)=0}
is a closed set.

(Exercise 1.5.2.12) Let f(z) : R - R and £, C R, E, € 0" (open set),
f(z) € C(E,). Show that f(z) € C(U,_, En).

(Exercise 1.5.2.13) Let E C R.
(1) Suppose Vf(z) € C(FE) is bounded. Show that E is bounded and closed.

(2) Suppose that every f(z) € C(F) takes a maximum value on E. Show that E
is bounded and closed.

(Exercise 1.5.3.14) Let £ C R? and let f : E — R. Suppose VK C E (K is
bounded and closed), we have f(z) € C(K). Show that f(x) € C(F).

(III) Borel Sets

(Definition 1.28) Explain Fj-sets and Gy sets.

(Example 11) Suppose f(x) is a real-valued function defined on an openset
G C RY. Show that continuous points of f(zr) is a Gs set.

(Example 12) Let {fx(z)} C C(R?) and suppose that limy_., fx(z) = f(z),Vz €
R?. Express the set of continuous points of f and show that it is a G set.

(Definition 1.29 1.30, 1.31)
(1) What is a o-algebra?
(2) What is a o-algebra generated from X7
(3) What is a Borel set?

(Exercise 1) Let {f,(z)},>1 C C([a,b]) (a sequence of continuous functions on

12



1.2.

[a,b]) and suppose that lim,, . f,, = f(Vz € [a,b]). Show that V¢t € R,

{z €la,0] | f(x) <t}
is a F, set (a countable union of closed sets).

(Exercise 2) Let {f.(z)},>1 C C(F) and let F' C R be a closed set. Show that
{z € F| f.(x) converges}
is a F,; set.

(Exercise 3) Let f(z):R! — R'. Show that

{:p € R! | lim f(y) exists} :

Yy—x
is a Gj set (a countable intersection of open sets).

(Theorem 1.23 Baire) Let £ C R? be a F, set. Hence E = |J;—, F}.. Show
that if every {Fj}r>; has no interior point, then E also has no interior point.

(Example 13) Show that Q is not a Gy set.

(Definition 1.32)

(1) What is a dense set 7
(2) What is a nowhere dense?
)

(3) What is a meagre set? (This is also called a set of first category. And what is
a set of second category?)

(Example 14) Let {G}} be a sequence of open and dense sets on R%. Show
that (-, G is dense on R%.

(Example 15) Let fi € C(RY). Suppose that limy_,o fr(z) = f(z)(Vo € R?).
Show that the set of discontinuous points of f(z) is a meagre set.

(IV) Cantor Set

(Cantor Set: Definition and Properties) Let C be a Cantor-Set.
(1) Show that C'is a non-empty bounded and closed set.
(2) Show that C'= C". (This is called a perfect set.)

(3) Show that C has no interior point.

*

13



1.3.

Let us consider the Cantor function ®(z). The Cantor function is defined on [0, 1]
and it has an interesting property. In the next chapter, we will introduce a concept of
measure. A Cantor set C' defined on [0, 1] has a zero measure. The Cantor function is
constant on [0, 1] \ C, however the Cantor function is continuous on [0, 1].

(Example 17 Cantor function)
(1) Define the Cantor function (or Cantor-Lebesgue function) ®(z).

(2) Show that the Cantor function is continuous.

(Example 18) Let £ C R. Show that E is a perfect set if and only if
E = <U(akabk)> )
k=1
where (a;,b;), (a;,b;) (i # j) has no common edge point.

(Example 19) Let E C R? be a non-empty perfect set. Show that E is an
uncountable set.

(Exercise 1) Let E' C R be a non-empty perfect set. Show that Vo € E, Jy € E
stx—y¢ Q.

(Exercise 4) Construct a set of isolated points E such that E’ is a perfect set.

§ 1.3

(Definition 1.33 and Theorem 1.24)
(1) Define dist(E4, E»).

(2) Suppose F' C R"™ is a non-empty closed set and zy € R™. Show that Jy, € F
such that |zg — yo| = dist(zo, F).

(Theorem 1.25) Suppose that E C R? is a non-empty. Let d(z,E) : R* —
[0,00) be a function of x. Show that d(z, E) is uniformly continuous on R™.

(Corollary 1.26) Let F, I, C R? be non-empty closed sets and at least one of
them is bounded. Show that there exists x; € F},x9 € F5 s.t

|z1 — xa| = dist(Fy, Fy).

(Example 2) Let Fy, F, C R? be disjoint non-empty closed sets. Show that
there exists a continuous function f(z) defined on R? with

e 0= f(a) < 1 € RY)

o Fi={zeR!| f(x)=1} and Fy, = {x € R?| f(z) = 0}.

14



1.3.

(Theorem 1.27 Continuous Topology Theorem) Suppose that ¥ C R be a
closed set and f(x) is a continuous function defined on F and |f(z)| < M(z € F).
Show that there exists a function g(z) defined on R? with

e g(z) € C(RY), (g9(x) is continuous on R?)
o lg(z)] = M, (Vz €RY)
e g(x) = f(x), Nz eF).

(Extension of Theorem 1.27) Suppose that F' C R? be a closed set and f(z)
is a continuous function defined on F. (f(z) is not necessarily bouded on F.)
Show that there exists a continuous function g(z) € C(R?) with f(z) = g(z) for
all z € F.

(Exercise 1) Let E C R? be a nonempty set. Suppose Vo ¢ E,Jy € E s.t
|z — y| = dist(x, E'). Show that F is a closed set.

(Exercise 2) Let G C R be an open set. Let F be a bounded closed set with
F C G. Show that there exists r > 0 such that

{z | dist(z, F) < r} C G.
§Exercise

(Exercise 8) Let f(z) : R — R. Suppose Vzy € R, 3§ > 0 such that = €
B(z0,0) = f(z) 2 f(x0). Show that

def
E={y=f(r)|zeR}
is a countable set.

(Exercise 9) Let F C R?. Suppose Vz,y € E, |vr —y| € Q. Show that E is
countable.

(Exercise 11) Let {f.(x)}aer be a family of real-valued functions defined on
[a,b]. Suppose M > 0 s.t |fo(z)| = M(Vx € [a,b],Va € I). Show that VE C
[a,b] (E : countable), there exists a sequence of functions {f,, ()} such that
lim,, o fa, () exists for all x € E.

(Exercise 13) Let f(x) be a monotone increasing function defined on R. Show
that E' is a closed set.

E={x:Ve>0, f(x+¢€)— f(x —e€) >0}

(Exercise 14-1) Let F C R? be bounded and closed. Let E C F be an infinite
subset of F. Show that £/ N F # ().

(Exercise 14-2) Let F C R%. Suppose VE C F (E : infinite), E'NF # (. Show
that F'is bounded and closed.

15



1.3.

(Exercise 15) Let I' C R? be a closed set and let r > 0. Show that E is a
closed set.
E={tcRYIrc Fst|t—a=r}

(Exercise 17) Let E C R% Let E, = {z € R|(z,y) € E}. (This is called a
projection set.) Show that E C R? is closed = E, is also closed.

(Exercise 18) Let f € C(R) and let {Fj}r>1 be a decreasing sequence of
compact sets. Show that

/ (ﬁ Fk> = ﬁf(Fk)

(Exercise 19) Suppose that f(x) has intermediate value property on R. If
f(z1) < f(z2) then there exists ¢ € (f(xy), f(z2)) and zg € (21, 22) or (x2,21) s.t
¢ = f(zo). We also suppose Vr € Q, {z € R||f(xz) = r} is a closed set. Show that

f(z) € C(R).
(Exercise 20) Let FEj, E> be non-empty sets on R. Suppose Ej # (). Show that
Ei+E,C (Ey+E,).
(Notice: A+ B={x+vylr € A,y € B})
(Exercise 21) Let E € R™. Suppose F, E¢ # (). Show that OF # ().

(Exercise 22) Let G}, Gy C R? be disjoint open sets. Show that G N Gy = 0.

(Exercise 23) Let G C RY. For any E C RY, we have GNE C GNE. Show
that G is an open set.

(Exercise 25) Let f: R — R. Let G; = {(z,y) € R¥y < f(z)} and Gy =
{(z,y) € R*ly > f(x)}. Show that

f([E) S C(R) & Gh,Gy € ﬁl,
where € is a collection of all open sets on R!.

(Exercise 27) Let {F,}acs be a family of bounded closed sets on RY. For any
finite number of closed sets {Fl,,, Fuy, * , Fan.} C {Futacr hey Fap # 0. Show

that
() Fu #0.

ael

(Exercise 28) Let {F,}acs be a family of bounded closed sets on RY, and let G
be an open set on R? with (,.; Fo C G. Show that we can find a finite number
of closed sets {F,, -+, F,, } st

i=1

16



1.3.

(Exercise 29) Let K C R? be a bounded and closed set. Let {Gj}r>1 be an
open cover of K. Show that 3¢y > 0 s.t Vg € K, Jkg € N s.t B(xg, €9) C G-

(Exercise 30) Let f(z) be differentiable on R. Moreover suppose that V¢ € R,
{z € R|f'(z) =t} is closed. Show that f'(z) € C(R).

(Exercise 31) Let f(z) € C(R) be a continuous function on R with

|f(z) = f(y)] 2 alz —y|, (Vo,y €R),

for some a > 0. Show that R(f) % {f(z) | + € R} = R. Hint. Show that R(f) is

open and closed.

(Exercise 32) Let £ C R be a countable dense set. Show that F is not a G
set.

(Exercise 34) Let f(z): R — R. Suppose that f(x) is continuous at z € Q
and discontinuous at # € R \ Q. Show that there does not exist such a function.

(Exercise 37) Show that every closed set on R? is a Gy set, and also show that
every open set on R? is a F), set.

(Exercise 38) Let f(z):[0,1] — R'. Suppose G; = {(z, f(z)) | = € [0,1]}

is a
bounded and closed set on R?. Show that f(z) € C([0,1]) (continuous on [0, 1]).

(Exercise 39) Let F' C R. Suppose that Vf(z) € C(F), there exists a continuous
extension to R. (i.e There exists g(z) € C(R?) s.t f(z) = g(x) for z € F.) Show
that F'is a closed set.

17



CHAPTER 2

Lebesgue Measure

§ 2.1 Lebesgue outer measure

When [ is an open rectangle on R, that is & T (s, b)) = {(z1, 29, - - wq) | 2 €

(a5, b;)}, we define || < T2, (b — ay).

(Definition 2.1) Let E C R%. If {I;};>1 be a collection of a countable number
of (or a finite number of) open rectangles. Define Lebesgue outer measure m*(E).

(Example 1) Let 7y € R% Show that
m*({zo}) = 0.

(Example 2) Let [ = Hle(ai,bi) be an open rectangle on R?. Then [ =
Hle[ai, b;| is a closed rectangle. In this question, we may use the fact that if
IcC Ule I; then |I]| < Zle |I;], where {I;}}F_, U {I} are open rectangles and k is
finite.

(1) Show that )
m*(I) = |1

(2) Show that
m*(I) = |I].

(Theorem 2.1 Properties of Lebesgue outer measure on RY)
(1) Show that m* is nonnegative, that is m*(E) = 0 and m*(0) = 0.
(2) Show that m* is monotone, that is A C B = m*(A) £ m*(B).
(3) Show that m* has subadditivity, that is m* (>, Ak) = D _psy m* (As).

(Corollary 2.2) Show that £ C R? and E is a countable set = m*(E) = 0.
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2.1. LEBESGUE OUTER MEASURE

[ 6 | (Lemma 2.3) Let E C R%and let § > 0. We define m%(E) in the following way.

mi(E) Y inf {Z Ie| | E C | I, edge length of I, < 5}
k=1

ninzt k=1

In the definition above, we take infimum with respect to {I; }x>1 where {I; }x>1 is a
collection of a countable number of open rectangles covering E whose edge length
is less than 6. Show that

my(E) =m"(E).

This means that in the definition of outer measure, even if we add a constraint
about the edge length of each open rectangle which covers F, the value of outer
measure does not change. We use this fact to prove the following theorem.

(Theorem 2.4)
(1) Let Ey, Ey be point sets on R? and suppose that dist(E;, Ey) > 0. Show that

(2) Let {E,},>1 be point sets on R? and suppose that dist(E;, F;) > 0 for all
i,7 € N (i # 7). Show that

m* (U En> = Zm*(En)

n=1 n=1

(Theorem 2.5 (a) Translation Invariance) Let F C RY and zp € R". We
define E,,, = {x + x¢ : © € E}. Show that

m*(Ey,) = m*(F).
Hint. Obviously |I| = |[I.].

[ 9 | (Theorem 2.5 (b) Scaling) Let £ C R? and A € R% We define AE = {\z|z €
E}. Show that
m*(AE) = |\*m*(E).

(Generalized definition of an outer measure) Let X be a nonempty set
and let p* : 2% — [0, 00]. Explain p* is an outer measure on X.

(Exercise 1) Let A C R? and suppose that m*(A) = 0. Let B C R? be an
arbitrary point set. Show that

m*(AUB) =m*(B) =m*(B\ A).
(Exercise 2) Let A, B C R? and suppose that m*(A), m*(B) < co. Show that
|m*(A) — m*(B)| £ m"(AAB).

(Exercise 3) Let E C R% Suppose that Vz € E, 35, s.t m*(E N B(z,d,)) = 0.
Show that m*(E) = 0.
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2.2. LEBESGUE MEASURABLE SETS AND LEBESGUE MEASURE

(Exercise 4) Let E C [a,b],0 < ¢ < m*(E). Show that there exists a subset
ACEstm*(A) =c

(Exercise 5) Let C' C [0, 1] be a Cantor set. Show that m*(C) = 0.

§ 2.2 Lebesgue measurable sets and Lebesgue measure

We have already defined Lebesgue outer measure of £ C R? m*(E). In this section,
we define Lebesgue measurability based on Lebesgue outer measure m*(-). If E C R¢
is Lebesgue measurable (or simply measurable), its outer measure is often denoted as

m(E) o m*(E). (Basically m,m* have the same meaning. When F is measurable we
just prefer to using m(F) than m*(FE).)

(Definition 2.2) Let E C R%. What does it mean if we say that E is Lebesgue
measurable. (or simply measurable.) We denote the family of all Lebesgue mea-

surable sets by #. (i.e A o {E C R?| E is Lebesgue measurable.}.) When we

need to emphasize it is on R¢, we sometimes denote it by .#;, .#¢ and so on.

(Example 1) Show that a measure zero set is Lebesgue measurable. (i.e if
m*(N) = 0, then N € .#.) This is one of the most important properties of
Lebesgue measure.

(Theorem 2.6 Properties of Measurable Sets) Let .# be a family of
Lebesgue measurable sets. Show that following properies.

(1) De..

(2) Eed =L c.

(3) El,EQ6%:>E1UE2,E1QE2,E1\EQE%.
(

4) {Ep}nz1 C A = \J,_ | E, € A, Moreover, if they are disjoint sets we have
m(>_ > E,) =Y 2, m(E,). Notice. When E,, are disjoint, we sometimes denote

Uzt Bn as 3207, B

(Theorem 2.7: continuity of measure) Let {Ej},>; is an increasing sequence
of Lebesgue measurable sets. Show that

k=1

(Corollary 2.8: continuity of measure) Let {Ej}>; is a decreasing sequence
of Lebesgue measurable sets with m(E;) < co. Show that

k=1
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2.2. LEBESGUE MEASURABLE SETS AND LEBESGUE MEASURE

(Example 2: Borel-Cantell’s Lemma (I)) Let {Ej},>1 be a sequence of
Lebesgue measurable sets. Suppose that Y .-, m(E;) < co. Show that

m <lim sup Ek) = 0.

k—o00

(Corollary 2.9: Fatou’s lemma - measure version) Let {Ep}2, C 4.

(1) Show that
m (lim inf Ek) < liminf m (Ey) .

k—o0 k—o0

(2) Suppose that m (U,—, Ex) < co. Show that

limsupm (Ey) £ m (lim sup Ek)

k—o00 k—o00

(Exercise 1) Let A € .#,B C R% B is not necessarily Lebesgue measurable.
Show that
m* (AU B) +m* (AN B) =m*(A) + m*(B).

(Exercise 2) Let {A,},>1 C #,B, C A, and suppose that A,, are disjoint.

Show that . o
m* (U Bn> = Zm*(Bn)
n=1 n=1

(Exercise 3) Let Ey, E5 be point sets and let Ey € 4. Suppose that m(E1AE,) =
0. Show that Ey € .# and m(E,) = m(Es).

(Exercise 4) Let {f,},>1 be a sequence of functions defined on R and let {\,}

be a sequence of positive numbers. Let E, < {z € R | |fu(z)| > An}. Suppose

that Y~ m*(E,) < co. Show that there exists a measure zero set Z s.t

hmsup{w} S1VeeR\Z

n—00 n

(Exercise 5) Let T : R? — R? be a one to one and onto transformation. Suppose
that m*(B) = m*(T(B)) for all B C R Show that

T(E) € MNE € M.

(Exercise 6) Let X ={E,} C # (E, C R) and suppose that {E, } are disjoint
and none of them is a measure zero set. Show that X is countable.

(Exercise 7) Let {Ex}r>1 C 4 and Ey C R. Suppose that Ey C [a,b] for
k = ko and limy_,o E), = E. Show that

m(E) = lim m(Ey).

k—o00

21



2.3. LEBESGUE MEASURABLE SETS VS BOREL SETS

(Exercise 8) Let E,, C [0,1], E, € .#,m(E,) = €, and suppose that
ZXEn(x) < oo, Vz € [0,1]\ N, m(N) = 0.
n=1
Show that ¢, — O.

§ 2.3 Lebesgue measurable sets vs Borel sets

(Lemma 2.10: Caratheodory’s Lemma) Let G C R% (but G # R?) be
an open set and let £ C G. Let By, = {z € E : dist(z,G°) = 1/k}. Show that
limg oo m*(Ey) = m*(E).

(Theorem 2.11) Let F' be a nonempty closed set. Show that F' € .Z.
(Corollary 2.12) Show that Borel sets are Lebesgue measurable.

(Theorem 2.13) Let E € .# and let € > 0 be an arbitrary positive number.
Show the following statements.

(1) 3G D E (G: open) s.t m(G\ E) < e.
(2) IF C F (F: closed) st m(E\ F) < e.

(Converse of Theorem 2.13) Let 07 be a collection of all open sets on R?.
Suppose E C R? satisfies the following condition.

Ve >0,3G € 0% E C Gst m*(G\E) <e.

Show that F € .#. From these results, we find out that the condition above holds
if and only if £ € .. In some textbooks, Lebesgue measurability is defined by
the condition above.

(Theorem 2.14) Let E € .#. Show the following statements.
(1) 3H,Z, st E=H\ Z; where H: G set and m(Z;) = 0.
(2) 3K, Zyst. E=HUZy where K : F, set and m(Z;) = 0.

(Theorem 2.15: Regularity of Outer Measure) Let £ C R% Show that
there exists a Gy set Hs.t H D E and m(H) = m*(F).

(Corollary 2.16 and 2.17) Let {E;}2, be a sequence of point sets on R?,

(1) Show that
o (1 < T .
m <llgr_l>g)lf Ek> < hgr_l)glfm (Ey) .

(2) Suppose that {Ej}72, is an increasing sequence. Show that
m* (lim Ek> = lim m” (Ej).
k—ro0 k—ro0
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2.4. SETS OF POSITIVE MEASURE AND RECTANGLES

(Theorem 2.18 (a) measurability is translation invariant) Suppose that
E € # and zy € R%. Show that E,, = {z + 29 : * € E} € A4 and m(E,,) =
m(FE). We have already proven that m*(E) = m*(E,,,). This theorem states that
Lebesgue measurability is preserved after translation.s

(Theorem 2.18 (b) measurability is scale invariant) Let £ C R and let
A # 0. Show that if £ € .# then AE € .# where AE < {\z | z € E}.

(Exercise 1) Let E C RY, m*(E) < oo. Suppose that m*(E) = sup{m(F)|F C
E; Fis bounded and closed}. Show that E € .Z.
(Exercise 2) Let E C [0,1],F € ..
(1) Suppose that m(E) = 1. Show that E = [0, 1].
(2) Suppose that m(E) = 0. Show that £ = 0.
(Exercise 3) Let f(z),g(x) be strictly decreasing continuous functions on [a, b].
For any t € R, we have m({z € [a,b] | f(x) > t}) = m({z € [a,b] | g(z) > t}).

Show that
f(z) = g(x) for all € (a,b).

In this question, you may suppose that {z € [a,b] | f(x) > t} and {z € [a,b] |
g(x) > t} are Lebesgue measurable. Actually proof is easy. Since f(z),g(x) are
monotone decreasing, {z € [a,b] | f(z) > t},{z € [a,b] | g(x) > t} are intervals,
thus they are Lebesgue measurable.

(Exercise 4) Let E' C R and suppose that 0 < o < m(FE). Show that 3F C F
(F : bounded and closed) s.t m(F') = a.

(Exercise 5) Let G C R! be an open set. Does the equality m(G) = m(G)
always hold?

(Exercise 6) Let F), By C R? and suppose that FyUE, € .# with m(E,UE,) <
00. Show that if
m(Ey U Ey) = m*(Ey) +m*(Ey),

then El,Eg c M.
(Exercise 7) Construct a set of second category E C [0, 1] with measure zero.

(Exercise 8) Let A C R and for every x € A there exists infinitely many
(p,q) €Z x Ns.t |z —p/q] < 1/¢*. Show that m(A) = 0.

§ 2.4 Sets of positive measure and Rectangles

(Theorem 2.19) Let E C RY be a Lebesgue measurable set and suppose that
m(E) > 0. Let 0 < A < 1. Show that there exists a rectangle I such that
Al <m(INE).
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2.5. LEBESGUE NON-MEASURABLE SETS

(Theorem 2.20 Steinhaus Theorem) Let £ C R? be a Lebesgue measurable

set. We suppose that m(E) > 0. We define £ — E oo {zr —y:x,y € E}. Show

that there exists §p > 0 s.t. E—FE D B(0,d).

(Exercise 1) Let £ C R be a Lebesgue measurable set with m(E) > 0. Show

that there exists & > 0 such that E,,NE # (). (|z| < a) where E, o {z+ylye
E}

(Exercise 2) Let E C R be a Lebesgue measurable set, let @ € R and let 6 > 0.
Suppose that Vz : |z| < §, we have a+ 2 € E or a —x € E. Show that

m(E) 2 0.

(Exercise 3) Let f(z) be a function defined on R. Suppose that f(z +y) =
f(z) + f(y),Vo,y € R and f(z) is bounded on x € E C R;E € .#;m(E) > 0.
Show that

f(z) = cx, where ¢ = f(1).

§ 2.5 Lebesgue non-measurable sets

(Example: non Lebesgue measurable set) Construct a non Lebesgue mea-
surable set.

(Extra Theorem) Show that if A C R? with m*(A4) > 0 (A is not necessarily
measureble) then 3W C Ast W ¢ A .

(Exercise 1) Discuss if there exists a point set £ C [0,1] s.t Vo € R,Jy € E s.t
x—y € Q.

(Exercise 2) Construct a family of disjoint point sets {Fj}72, s.t

(Exercise 3) Construct an uncountable point set W C [0, 1] s.t W — W has no
interior point.

(Exercise 4) Show that W ¢ . #,FE € .M = EAW ¢ /.

(Exercise 5) Let E be a point set. Suppose that
sup  {m(F)} < inf {m(G)}.

F: closed;FCE G: open; ECG

Show that E is not Lebesgue measurable.

(Exercise 6) Let {E,}acr C .#. Prove or disprove (\,; Eo € . Of course

when [ is countable, the statements holds. However when I is not countable does
the statement still hold?
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2.6. CONTINUOUS TRANSFORMATION AND LEBESGUE MEASURABLE SETS

(Extra Exercise 1) Let I' be a family of half open intervals on R, that is
VIeTl,I=(a,b]orl=][a,b). Show that |J, ./ is Lebesgue measurable.

(Extra Exercise 2) Let f : [a,b] — R! be a one-to-one and onto transformation.
For all E € #,F C [a,b], f(F) € 4. Show that

m(f(Z)) =0, YZ c R',m(Z) = 0.

§ 2.6 Continuous transformation and Lebesgue measurable sets

(Definition 2.3) Let 7' : R? — R? be a transformation from R¢ to R?. What
does it mean if we say that 7" is a continuous transformation? State the definition
of continuity based on an inverse image of an open set.

(Theorem 2.21) Show that a transformation 7" : R? — R is continuous if and
only if Vo € RY, Ve > 0,35(x, ) s.t.

(Example 1) Let T : RY — R?Y. Show that if T is linear, then 7' is continous.

(Theorem 2.22: Compact Set and Continuous Transformation) Let
T : R — R? be a continuous transformation. Suppose that K is a compact set on
R?. Show that T(K) is a compact set on R%.

(Corollary 2.23, 2.24) Let T': R? — R? be a continuous transformation.
(1) Let E be a F, set. Show that T'(E) is also a F, set.

(2) Suppose that T'(Z) is a measure zero set for all Z with measure zero. Now let
E be a Lebesgue measurable set. Show that T'(E) is also a Lebesgue measurable
set.

(3) Do all continuous transformations R? — R? satisfy m(T'(Z)) =0, VZ : m(Z) =
0?7

(Extra Theorem: Lipschitz Continuous) Let T : R? — RY.
(1) Explain what is Lipschitz continuity.

(2) Suppose T is Lipschitz continuous. Show that T'(Z) = 0 for all Z with m(Z) =
0. If necessary, you may use the fact that an open ball B on R? with radius r has

a Imeasure
x4

m(B) = ———r
(B) I(¢+1)
This result can be derived by Tonelli’s theorem in Chapter 4.

(Theorem 2.25, 2.26) Suppose that 7 : R? — R? be a nonsingular linear
transformation. Let £ C R%. Show that m*(T(E)) = |detT|m*(E). Especially, if
E € #, we have m(T(F)) = |detT|m(FE).
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2.7. CONSTRUCTION OF NON-BOREL MEASURABLE SET

(Extra Exercise 1) Let f(x) be a function defined on R. Suppose we have

Show that
m(E) =0= m(f(E)) =0.

(Extra Exercise 2) Explain that rotation does not change the value of Lebesgue
measure on R?

§ 2.7 Construction of non-Borel measurable set

(Lemma) Let f(x) be a real-valued function defined on £ C R™. Let I' be a
o—algebra that consists of point sets on R™. Suppose E € I'. Show that

o ={ACR| f1(A) eT}
is a o—algebra.

(Corollary) Let f(z) be a continuous function on R. Let A C R be a Borel set.
Show that f~!(A) is also a Borel set.

(Example: non-Borel set) Construct a non-Borel (or non-Borel measurable)
set.

§ 2.8 Exercise

(Exercise 1) Let £ C R and let ¢ € (0,1). For any open interal (a,b), we have
{In}nzl S.t

En(a,b) C |JL.> m(I) < (b-a)q
n=1 n=1
Show that m(E) = 0.

(Exercise 2) Let A; € .#,RY > Ay D Ay. Suppose that m(A4;) = m*(Ay) < oo.
Show that Ay € .

(Exercise 4) Let I’ C [a,b] a closed set and F' # [a, b]. Prove or disprove there
exists F' s.t m(F) =b — a.

(Exercise 5) Construct a closed set ' C R where Vz € F is a irrational number
and m(F) > 0.

(Exercise 7) Let {Ej};>1 C 4. Suppose that m (|J;—, Ex) < co. Show that

m <lim sup Ek) 2 lim sup m(FEy).

k—o00 k—o00
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2.8. EXERCISE

(Exercise 8) Let {Eyx}p>1 C A, Er C [0,1],m(Ey) = 1. Show that

mQj@>:L

(Exercise 9) Let Fy, Es--- Ej, be Lebesgue measurable sets on [0, 1]. Suppose
that 32  m(E;) > k — 1. Show that

m<ég>>0

(Exercise 11) Let {B,}aer be a family of open balls on R%. Let G = |J,,.; Ba.
Suppose 0 < A < m(G). Show there exists finite number of disjoint open balls
{By,By--- By} C {Ba}aer such that

4

E:m&ﬁﬁ>%.

k=1

(Exercise 12) Let {By} C .# be a decreasing sequence of measurable sets. Let
ACRY:m*(A) <oo. Let By, = AN By, and let F = (,—, E;. Show that

lim m*(Ey) = m*(E).

k—o0

(Exercise 13) Let F C R? (m*(F) < o), H D E,H € .#. Suppose that
VN C H\E,if N € # = N is a measure zero set. Discuss if H is a measurable
cover of E. (i.e. m(H) = m*(F))

(Exercise 14) Show that £ € . if and only if Ve > 0 there exists Gy, G :
G1 D) E,Gg D E¢st m(G1 N GQ) < €.

(Exercise 15) Let E C [0,1] be a Lebesgue measurable set and let {x;}, C
[0,1]. Suppose that m(FE) =2 € > 0 and n > % Show that Jy;,yo € E and
3i,je{l,2-- ,n}st

lth — o] = | _$j|-

(Exercise 16) Let W C [0, 1] be a non measurable set. Show that there exists
e > 0 such that for all £ C [0,1], E € .# with m(F) = €, we have

WNE¢ ..
(Extra Exercise 1) Let {r,} Q. Let

cyg(j

1 1
Tn — —n2,rn + _n2 .
n=1

[N

Show that

for all closed set F C R!.
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2.8. EXERCISE

(Extra Exercise 2) Let {E,},>1 be a sequence of Lebesgue measurable sets
and suppose that limsup,,_,.. m(E,) = 1. Show that for all @ € (0,1) we have a

subsequence {ng} s.t
m (ﬂ Enk> > a.
k=1

(Extra Exercise 3) Let £ C [0, 1] be a Lebesgue measurable set with m(E) > 0.
Show that there exist n disjoint Lebesgue measurable sets {E;}; s.t

E = UE cm(E;) = lm(E).

n

(Extra Exercise 4) Let £ C R! be a Lebesgue measurable set with m(E) < oo.
Show that
lim m (Ey, NE)=0.

T—00

28



CHAPTER 3

Lebesgue measurable functions

§ 3.1 Lebesgue measurable functions and their properties

(Definition 3.1: Lebesgue measurable function) Let f(z): E — R where
E C R, E € .. State the definition for f(x) to be a measurable function
(a Lebesgue measurable function) defined on E. (When we discuss a Lebesgue
measurable function defined on £ C R? FE is implicitly a Lebesgue measurable
set.)

(Theorem 3.1) Let f(z) be a function defined on £ € .#. Let D C R
be a dense set. Suppose Vr € D, {z | f(x) > r} € .#. Show that Vt € R,
{z| flx) >t} e .

(Example 1) Let f(z) be a monotone increasing (or decreasing) function defined
on [a,b]. Show that f(z) is Lebesgue measurable function defined on |a, b].

(Theorem 3.2) If f(x) is a Lebesgue measurable function defined on F € .Z .
Show the following sets are all Lebesgue measurable.

(1) {zeE|[f(x) =t}
2) {reE|f(z)2t}
3) {reE|f(x) <t}
4) {zeE|[f(x)=t}
) {reE|f(z)<oo}
6) {zeE|f(z)=+oc}
(7) {reFE]f(x)> —oc}
8) {zeE|flz)=—oc}
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3.1. LEBESGUE MEASURABLE FUNCTIONS AND THEIR PROPERTIES

(Theorem 3.3)

(1) Let f(z) : EyUEy, — R and let Fy, B, C RY€ .#). Suppose that f(x) is
measurable on F; and E,. Show that f(z) is measurable on E; U Es.

(2) Let f(z) be a Lebesgue measurable function on £ € .#. Let AC E,A € /.
Show that f(x) is a Lebesgue measurable function on A.

| 6 | (Example 2) Let E C R%: E € .#. Show that yp(z) is a Lebesgue measurable
function on R

(Theorem 3.4: Properties of Measurable Functions I) Let f(x),g(z) be
real-valued Lebesgue measurable functions on £ € .#. (A real-valued function
does not take oo, —00, so f(x),g(z) : E — R. ) Show that the followings are
Lebesgue measurable functions.

(1) cf(x)(c eR).
(2) f(z)+g(2).
3) flx)g(x).

(Corollary 3.5) Theorem 3.4 holds for f(z),g(z) : E — R. You may assume
that (f(z),g(z)) # (400, —00), (—00, +00) on E because f(x)+g(zx) is not defined
in such cases.

@ (Theorem 3.6, Corollary 3.7: Properties of Measurable Functions IT)
Let {fx(z)}r>1 be a sequence of measurable functions. Show that the following
items are also measurable functions.

1) supp1{/fe(z)}
2) infp{fr(z)}.
3)  limsupgq fi(@).
4) liminfy o fr(z).

Especially, when fy(z) — f(x) exists, f(z) is also measurable.

(
(
(
(

(Example 3) Let f(z) be a Lebesgue measurable function defined on E € .Z.

Show that f*(x) o max{f(x),0} and f~(z) o max{—f(x),0} are Lebesgue

measurable functions.

(Example 4) Let f(x,y) : R? - R. For each x € R, y — f(z,y) : R - R
is a continuous function. For each y € R, z — f(x,y) : R — R is a Lebesgue

measurable function on R. Show that f(z,y) is a measurable function on R?. If

necessary, you may suppose that if A € .#,, B € .#; then A x B o {(z,y) |z €

A,y € B} € M. My, My are the collections of all Lebesgue measurable sets on
R! and R? respectively.
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3.1. LEBESGUE MEASURABLE FUNCTIONS AND THEIR PROPERTIES

(Example 5) Let ECR,E € .4 and let f: E+— R € C(F). Show that f(z)
is a Lebesgue measurable function defined on E.

(Exercise 1) Let f(x) be a function defined on £ € .#,FE C R% Suppose
that f(x)? is measurable on E and {z € E : f(z) > 0} € .#. Show that f(z) is
measurable on .

(Exercise 2) Let .# be a family of continuous functions defined on (0, 1). Show
that

g(z) sup{f | f € F}, h(z) E mt{f | f € F}

are measurable functions on defined (0, 1).

(Exercise 3) Let {fx(z)}r>1 be a sequence of measurable functions defined on
Ee#. Let A={x € E: fr(x) converges}. Show that A € ..

(Exercise 4) Let f(x) be a Lebesgue measurable function defined on E. Let
G, F' be an open set and a closed set respectively. Show that

EY{zeE|f2)eG), B, Y {x e E| f(z) € F}

are measurable sets.

(Definition 3.2) Let £ C RY E € .#. Consider a proposition P(x) related to
x € E. What does it mean to say that P(z) is true almost everywhere on E (or
P(x) is true for almost every x € E.)

*

In Definition 3.2, let { fx(z) }x>1U{f(x)} be a sequence of functions defined on F € .# .
(not necessarily measurable functions) Let the proposition P(z) : fy(x) — f(x) as k — oc.
If P(z) is true for almost every = € F, then we say that fi(z) converges to f(z) almost
everywhere on E. And we denote it as fi(z) == f(z) on E or fi(z) — f(z) a.e v € E.
(a.e is an abbreviation for almost everywhere.)

(Theorem 3.8) Let f(r),g(z) : E — R be measurable functions defined on
E € #. Suppose that f(z) = g(z) a.e € E. Show that g(x) is measurable on
E.

(Extra Example) Let {fx(2)}r>1 be a sequence of Lebesgue measurable func-
tions on E. Let f(x) be a function (not necessarily Lebesgue measurable) defined
on E. Suppose that fi(z) = f(x) on E. Show that f(z) is a measurable func-
tion defined on E. In Theorem 3.6, we have shown that if fi(z) is measurable
and fi(x) — f(x) (converges at every x € E) then f(z) is also measurable. This
example claims that — can be replaced with =5,

(Example 6) Let 0 < m(A) < o0, A € # and let f(z) be measurable on
A C RY. Suppose that 0 < f < oo a.e x € A. Show that V§ € (0,m(A)), IB C
A, B € A and Jko € N such that m(A\ B) < d and 1/ky < f(z) < ko(Vx € B).
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

(Exercise 6) Let f(z) € C([a,b]) and let g(z) : [a,b] — R. Suppose that
g(x) = f(z) a.e © € [a,b] Discuss if g(x) is continuous a.e = € [a, b].

(Exercise 7) Let f(z) be a function continuous a.e x € R. Discuss if there
exists g(z) € C(R) s.t f =g a.ex €R.
(Definition 3.3: Simple Function) Explain the following terms.
(1) a simple function
(2) a measurable simple function

(3) a step function

(Theorem 3.9 Approximation Theorem by Simple Functions) Prove the
following statements.

(1) Suppose that f(x) : E — [0, 00| is a non-negative Lebesgue measurable function
defined on £ € .#; E C R% Show that there exists an increasing sequence of non-
negative Lebesgue-measurable simple functions {fx(z)}r>1;0 = fi(z) = f(z) s.t
limy o0 fr(x) = f(z) on E.

(2) Suppose that f(z) is a measurable function defined on E € .#; E C R%. Show
that there exists a sequence of Lebesgue-measurable simple functions{ f(z)}x>1 :

|fe(z)] = [f(2)] st limyg o0 fi(7) = f(x) on E.
(3) Show that if f(z) is bounded, fi(z) = f(z) on E.

(Definition 3.4) Let f(z) be a function defined on E. State the definition of
supp(f).

(Corollary 3.10) Show that in Theorem 3.9, it is possible for us to suppose
that each fi(x) has a compact support.

§ 3.2 Convergence of Lebesgue measurable functions

(Definition 3.5) Let f(z), fu(z) : E — R and let E C R%. What does it mean
to say that {fi(x)}x>1 converges to f(x) almost everywhere on E?

(Lemma 3.11) Let {f(z)}U{fx(x)}r>1 be Lebesgue measurable functions finite
almost everywhereon £ € .Z. (i.e |fi(x)] < oo a.ex € E for each k € N.) Suppose
that m(E) < oo and fi(r) % f(x) on E. Show that Ve > 0, we have

jli_)rglom (G Ek(e)) =0

where

Ep(e) = {z € B | |fulx) — f(2)| Z ¢} .

*
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

Before Theorem 3.12, let us introduce a new concept of convergence defined for a
sequence of Lebesgue measurable functions. Let {fi(x)}r>1 be a sequence of measurable
functions defined on E € .#. (In this definition, both m(E) < oo and m(F) = oo are
allowed.) If Vd > 0, there exists Es : m(Es) < 8, such that fi(z) = f(z) (i.e converges
uniformly) on E \ Ej, then we say that fi(x) converges to f(x) almost uniformly on E.
We denote it as

fo(z) == f(z) on E

(Theorem 3.12 Egorov) Let f(z), fi(x), fa(x)--- be Lebesgue measurable

a.e

functions finite almost everywhere on E. Suppose that m(E) < oo and fi(z) —
f(z)xz € E. Show that
fe(z) 2% f(z) on E.

*

Theorem 3.12 Egorov’s theorem states that if m(FE) < oo, fy(z) == f(x) on E implies
that fy(z) =5 f(x). However, fi(z) =5 f(x) on E always implies that fi(z) =5 f(x)
on F without the assumption m(E) < co. We will prove Egorov’s theorem again using
another extra theorem, which helps you to clarify the relationship between several different
convergence concepts.

(Example 1) Suppose that f,(z) =2"(0Z 2 1), f(x) =002z < 1), f(1) =
1. Verify that f,(z) — f(z) but not f,(z) = f(z). (- means uniform conver-
gence.)

—~

(Definition 3.6) Again we introduce another concept of convergence. Let
{fx(z)}k=1 U{f(x)} be measurable functions defined on E € .# and all of them
are finite almost everywhere on £. What does it mean to say that fi(z) converges
to f(x) in measure on E7 We denote it as

fe(x) & f(z) on E.

*

Let f(z), g(x) be measurable functions definedon £ € .#Z. It m ({x € E'| f(z) # g(2)}) =
0, then we say that f(x) and g(x) are equivalent on F.

(Theorem 3.13) Let {fi(x)}r>1 be a sequence of measurable functions de-
fined on £ € #. Let f(z),g(z) be measurable functions defined on E with
|f(z)], |g(x)| < oo a.e x € E. Suppose that fi(z) = f(z) and fp(z) = g(x) on
E. Show that f(z),g(x) are equivalent.

*

The following theorem states that in a finite measure space (i.e if m(E) < o0),
fe(z) 25 f(x) on E implies that fi(z) = f(z) on E. We can also prove this state-
ment using the extra theorem below, but we first prove the statement using the theorems
and the lemma we have introduced.
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

(Theorem 3.14) Let {fi(z)}r>1 be a sequence of measurable functions on
E € #,m(F) < oo and suppose that |fi(z)] < oo a.e x € E. And suppose that
fe(z) 25 f(z)(x € E) where |f(z)] < co a.e # € E. Show that fi(z) = f(z).
(However its converse does not hold.)

*
Until now, we have already introduced three new concepts of convergence related to
measurable functions. The following extra theorem will be of great help for you to clarify

the relationship between fi(z) 25 f(z), fi(z) 25 f(z) and fi(z) = f(x). By using the
extra theorem we can easily find out the following facts.

o if f(z) X% f(2), then fi(x) =5 f(z) and also fi(x) = f(x) without any assmption
about m(E). (But fi(z) 2% f(x) does not imply fi(z) = f(z) if m(E) = 0.)

e cspecially, when m(FE) < oo, fu(z) =% f(z) if and only if fy(z) 2%, (= is called
Egorov’s theorem.)

From these facts, if m(E) < oo,

i) = f(x) & filz) = f(2) = fulz) = f(a).

(Extra Theorem: equivalent statements to ~% and %) Let {fi()}r>1
be a sequence of Lebesgue measurable functions defined on E € .# and suppose
that | fx(2)|, |f(z)| < 00 a.e x € E.

(1) frl@) 2> f(z) on E if and only if
m (Mot Uisn{z € E| [fi = fl 2 €}) =0,Ve >0
(2)  filz) 25 f(2) on E if and only if

lim m (U2, {o € E||fi—f] 2 e}) =0,Ve >0

m— 00

(Theorem 3.15) Let {fi(x)}r>1 U{f(z)} be measurable functions defined on

E € . (Suppose that |f(z)|,|fr(7)| < 0o a.e € E.) Suppose that fi,(z) ==
f(z). Prove the following statements.

(1) Show that fi.(v) = f(x).
(2) Show that fi(x) =% f(x).

(Alternative Proof: Theorem 3.12 Egorov) Show Theorem 3.12 (Egorov’s
Theorem) again using Extra Theorem above.

(Definition 3.7) Let {fi(z)}x>1 be measurable functions on F € .# and sup-
pose that |fx(z)] < oo a.e © € E. Explain {fi(x)}r>; is a Cauchy sequence in
measure.

(Theorem 3.16) Let {fi(z)}r>1 be a Cauchy sequence in measure defined on
E € .. Show that 3f(z) : |f(z)] < cc ae x € E st fu(z) = f(z).
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(Theorem 3.17 Riesz Theorem) Let {fi(z)}r>1 U {f(x)} be a sequence of
Lebesgue measurable functions defined on E € .#. Suppose that |fx(z)|,|f(z)] <
o0 a.e # € E. Show that fiy(z) = f(z) if and only if V{k;};>; (a subsequence),

El{k:lm}mgl s.t fk’lm ﬂ) f

(Exercise 1) Let E C RY E € .4 and let {f,(x)}n>1 U {f(z)} be measurable

functions. Suppose that f,(v) = f(z) , fu(z) = g(x). Prove of disprove g(x) =
f(z)aex € E.

(Exercise 2) Let f(z), fr(x)(k € N) be a real-valued function defined on F €
M;m(E) < oo. Suppose fi(r) > 0 and fy(z) = f(z). Show that f(r) =
fP(z), (p > 0). Hint. Use Theorem 3.17.

(Exercise 3) Let {fi(z)}r>1 be a sequence of measurable functions defined on

E € .# and suppose that fi(z) = 0 on E. Let g(z) be a real-valued measurable
function defined on E. Suppose that m(E) = +occ. Show that f,(z) - g(x) = 0 is
not necessarily true by giving a counter example.

(Exercise 4) Let f,(x) = cos"(z). Prove or disprove f,(z) converges to 0 in
measure on [0, 7]. Hint. m([0,7]) < oo so “S&5="% on [0, 7].

(Exercise 5) Let {f.(z)},>1 be a sequence of measurable function defined on
ECR;E € .#;m(E) > 0. Suppose that f,(z) =+ 0. Prove of disprove

lim m({z € E | |fu(x)|>0})=0.
n—oo
(Exercise 6) Let £ C R,E € .#. A sequence of measurable functions

{fx(z)}x>1 satisfies fr = fr+1. Suppose that fi(z) 2 0 on E. Prove of disprove
fk(ili) 2) 0.

(Exercise 7) Let {Ej};>1 be a sequence of Lebesgue measurable sets on RY.
Let fr(x) = XE, (7).
(1) Show that fi(x) = 0 on R? if and only if m(E)) — 0 as k — oo.
(2) Show that f.(x) == 0 on R? if and only if m (limsup,_, ., Ey) = 0.

(Exercise 8) Let {Ej},>1 be a sequence of Lebesgue measurable sets on RY.

Let fi(z) o X, (z). Show that {fi(x)}r>1 is a Cauchy sequence in measure if and
only if limy, ;.o m(ERAE;) = 0.

(Exercise 9) Let F(x), f,(z)(n € N) be measurable functions defined on R*.
Suppose that |f,(z)| £ F(x) a.e x € R, Suppose that Ve > 0, we have

m({r € R' | F(z) > €}) < co.

Show that if f,(z) =% 0 on R* then f,(z) = 0 on R!. Hint. =% if and only if ~=
on a finite measure space.
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(Exercise 10) Let {f.(z)},>1 be a sequence of measurable functions on E €
M, E C R'. Suppose that f,(x) < f,i1(z) for all n € N. Show that if f,(z) >
f(z) on E then f,(z) =% f(x) on E.

§ 3.3 Lebesgue measurable functions vs Continuous functions
(T) Lusin’s Theorem

Lusin’s Theorem states a relationship between a measurable function and a continuous
function.

(Theorem 3.18 Lusin) Let f(z) be a Lebesgue measurable function on £ €
A, E C R™. Suppose that |f(z)| < oo a.e x € E. Show that Vo > 0, there exists
a closed set Fs : m(E \ Fs) < ¢ such that f(x) is continuous on Fj.

(Corollary 3.19) Let f(z) be a measurable function defined on £ € .#, E C R
Suppose that |f(z)| < 0o a.e x € E.

(1) Show that Jg(z) € C(R?) (a continuous function on R?) s.t

m({x € E: f(z) # g(x)}) <.
Explain that if f(z) is bounded then g(z) is also bounded.

(2) Suppose that E is bounded, Show that there exists g(x) € C(R?Y) (a continuous
function on R?) with a compact support s.t

m({z € E: f(x) # g(x)}) <.

(Corollary 3.20) Let f(z) be a Lebesgue measurable function defined on E €
A, FE C R%. Suppose that |f(z)| < oo a.e z € E. Show that I{gr(z) }r>1 C C(RY)
(a sequence of continuous functions defined on R?) s.t

lim gx(z) = f(z) aex € E.

k—o00

(Example 1) Let f(z) be a real-valued Lebesgue measurable function on R.
For all z,y € R, f(z +y) = f(z) + f(y). Show that f(z) € C(R).

(Exercise 1) Let f(x) be a real-valued Lebesgue measurable function on R.
Prove or disprove Jg(x) € C(R) (a continuous function on R) s.t

m({z e R[|f(z) —g(z)| > 0}) = 0.

(Exercise 2) Let f(x) be a Lebesgue measurable function defined on [a, b]. Show
that there exists {P,(z)},>1: a sequence of polynominal s.t

lim P,(z) = f(z) a.e x € [a,b].

n—o0
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(II) measurability of composite functions

(Lemma 3.21) Let f(z) be a real valued function defined on R!. Show that
f(z) is Lebesgue measurable if and only if VG € &' (an open set on R), we have
UG e #.

(Supplement to Lemma 3.21) Let f(z) be a real valued function defined on
R? Show that f(z) is Lebesgue measurable if and only if VB € Z(R!) (a Borel
set on R), we have f~1(B) € ..

(Theorem 3.22) Let f(z) € C(R) and let g(x) be a real valued Lebesgue
measurable function. Show that h(z) = fog(x) is a Lebesgue measurable function

defined on R.

(Lemma 3.23, Corollary 3.24) Let T': R? — R? be a continuous transfor-
mation. Suppose Z C RY m(Z) = 0 = T71(Z) is a measure zero set. Show
that foT(x) is a Lebesgue measurable funcntion if f(x) is a real valued Lebesgue
measurable function on R?. (Note. if T is a non-singular linear transformation,
then T is continuous by Example 1 in §2.6, and T~'(Z) is a measure zero set for
an arbitrary measure zero set Z by Theorem 2.25, 2.26.)

(Exercise 1) Let f(z),g(z) be Lebesgue measurable on R and let f(z) > 0.
Show that f(z)9) is Lebesgue measurable.

(Exercise 2) Let f(x) be a Lebesgue measurable function on [a, b] and suppose
that m < f(z) £ M and g(x) is monotone increasing on [m, M|. Show that go f(x)
is measurable on [a, b].

(Exercise 3) Let f(x) be a Lebesgue measurable function on R%. Show that
f(x —y) is Lebesgue measurable on R? x R?. (= R*)

(Exercise 4) Let f(z,y) be a function on R?. Suppose that Vo € R, y
f(z,y) is Lebesgue measurable and suppose that Vy € R, z — f(z,y) is a
continuous function. Show that f(g(y),y) is a measurable function on R where
g(y) is a Lebesuge measurable function on R.

(Exercise 5) In theorem 3.22, we show that if g(z) is a real valued Lebesgue
measurable function and f(z) is continuous on R, f o g(z) is also Lebesgue mea-
surable. However if f(z) is Lebesgue measurable, g(z) € C(R) where f o g(z) is
not always Lebesgue measurable. Give an example.

§ 3.4 Exercise

(Exercise 1) Let I be an index set. Let {f,(z) : a € I} be a family of Lebesgue

measurable function. Prove or disprove S(x) o sup{ f.(z) : a € I} is Lebesgue

measurable.
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(Exercise 2) Let z = f(z,y) be a continuous function on R? and let g,(z), go(z)

be real-valued measurable functions on [a, b] C R. Show that F'(z) oy (91(), g2())
be a measurable function on [a, b].

(Exercise 3) Let f(x) be right-differentiable on [a,b). Show that f’(z) is
measurable on [a, b).

(Exercise 4) Let f(x) be a measurable function defined on £ € #;FE C
R% m(E) < oo and suppose that |f(z)| < co a.e € E. Show that Ve > 0, 3g.(x) :
a bounded measurable function defined on FE s.t m({z € E : |f(z) —g.(z)| > 0}) <
€.

(Exercise 5) Let f(x) and f,(z) be measurable functions defined on A C
R, A € A and suppose that |f(x)|,|fn(z)| < 00 a.e x € A. Suppose that Ve > 0,
dB.C A, B e ./ :m(A\ B) <est f.(xr) = f(x)(z € B). Show that

fu(z) =5 f(z) on A.

(Exercise 6) Let {fi(x)}r>1 be a sequence of real valued measurable functions
on £ € M,E C R. Suppose that m(E) < co. Show that f,(z) =% 0 on E if and

only if V > 0
lim m ({JJ € E|sup{|fi(x)|} 2 e}) = 0.
J]—00 k‘;j

(Exercise 7) Let {f(z)}U{fk(z)}r>1 be Lebesgue measurable functions defined
on [a,b]. Suppose that |f(z)|,|fr(7)] < co a.e x € [a,b] and fi, =5 f on [a,b).
Show that there exists a sequence of Lebesgue measurable sets {E,,},>; C A :

m ([a,b] \ UpZ; En) =0
s.t fr — f on each E,.

(Exercise 8) Let {fi(x)} be a sequence of measurable functions and suppose
fie = fon E. (Similarly suppose that g, —» g.) Show that f +gr — f+g on E.

(Exercise 9) Suppose that m(E) < oo. Let {f(z)} U{fx(2)}r>1 be measurable
functions on E. Suppose |f ()], |fi(7)] < 0o a.e x € E. Show that fi(z) > f()
if and only if limg_,o infoso{a + m({z € E : |fe(z) — f(z)] > a})} = 0.

(Exercise 10) Let f,(x) be a monotone increasing function defined on [0, 1].
(Sox < ' = f,(x) £ f.(') holds for all n € N.) Suppose f,(z) = f(z) on [0, 1].
Show that Vzy € C(f) a continuous point of f, f,(xo) — f(x¢)(n — o0) holds.

(Exercise 11) Let f : R? — R and suppose that Ve > 0, 3G. C R% G, €
0t m(G,) < est f(z) € C(RY\ G). Show that f(r) is a Lebesgue measurable

function on R,
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(Exercise 12) Suppose that fi.(7),gx(z) = 0 on E € .#. Show that fi(z) -
ge(z) 250 on E.

(Exercise 13) Let fi(z) = f(z) on [a,b]. Let g(x) € C(R). Show that
go fu(z) & go f(z) on [a,b]. If we change [a,b] to [0,00), does the statement
above still hold?

(Exercise 14) Let F € .#,F C R? and let f(z) be a function defined on E (f is
not necessarily a measurable function). Suppose that V§ > 0, 3F5 C E,m(E\F) <
d : a closed set s.t f(x) is continuous on F'. Show that f(z) is measurable on E.

(Exercise 15) Let {f,} be a sequene of measurable functions on [a, b]. Let f(x)
be a real valued function on [a, b] (f is not necessarily a measurable function). For

all e > 0, we have

lim m*({z € [a,0] | |fo — f| > €}) = 0.

n—oo

Prove of disprove f(z) is a Lebesgue measurable function on [a, b].

(Exercise 16) Let f(z), fx(x) be real valued measurable functions defined on
E C R. Suppose that Ve > 0, we have

J

lim m <U {o | 1fule) — Fla)] > e}) 0

k=j

Show that V6 > 0, 3e C E:m(e) < st fr — fon E\e.
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CHAPTER 4

Lebesgue Integral

§ 4.1 Lebesgue Integral: non-negative measurable functions

(Definition 4.1) Let f(x) be a non negative measurable simple function on R?.
P
v) =Y cxa(x), {AYL, C 4, UA =RY AN A; =00 # )
i= i=1

Suppose that E € .#. Please define Lebesgue Integral || - f(x)dz.

(Theorem 4.1) Let f(z),g(x) be non-negative measurable simple functions on
R? defined as below.

f(l') = (lz(lfl'€14“l:]_’2p)7

Where{al U}, € [0,00), {AY_, U{B;}I_, C A, and R = | J}_, A; =
]:  Bj. Let E e //[ Show the following properties.

(1) fch:vd:v:cfE
(2)  [L(f( dm—fE z)dz + [, g(x)
(3) Show that if f(x) < g(x), then fE r)dr < fE

(Theorem 4.2) Let {Ej}r>1 C .4 and suppose that Ey C Ei.y. Let f(x) be a
non negative simple measurable function on R?. Show that

/Ef(x)dx = lim /Ek f(x)dx, where E = IQEk

k—o0

(Definition 4.2) Let f(x) be a non-negative integtable function on E C R%
State the definition of | 1 f(z)dz. Also state the meaning of integrable function.
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4.1. LEBESGUE INTEGRAL: NON-NEGATIVE MEASURABLE FUNCTIONS

*

Until now, we have already defined Lesgue integral of non-negative measurable sim-
ple funtions (Definition 4.1) and that of non-negative measurable functions (Definition
4.1). However, non-negative measurable simple functions are also non-negative measur-
able functions, therefore, we can define its integral by Definition 4.2. So let us verify if
the Definition 4.2 does not contradict to Definition 4.1.

(Extra Theorem) Show that Definition 4.1 and Definition 4.2 does not con-
tradict for the integral of non-negative simple measurable function.

[ 6 | (Some Properties derived from Definition 4.2) Let f(z),g(x) be non-
negative measurable functions defined on E € .#. Show the following properties
with regard to integral of non-negative Lebesgue measurable functions. We will
use them in proofs of the later theorems.

(1) Suppose that f(z) < g(z) on E. Show that [, f(x)dz < [, g(x)dx.

(2) Show that if f(z) = g(z), and g(z) is integrable on E, then f(z) is also
integrable on F.

(3) Let AC E and A € .. Show that

[ 1@z = [ p@naas

(4) Show that f(z) =0 a.e x € E if and only if

/ f(z)dx = 0.
E
(5) Suppose that m(F) = 0. Show that

/E f(x)dz = 0.

(Theorem 4.3) Show that if f(x) is a non-negative integrable function defined
on E € ., then f(z) is finite almost everywhere on E. (i.e m({z € E | f(x) =

oo}) =0.)

(Theorem 4.4 Monotone Convergence Theorem : Beppo Levi) Let
{fx(z)}k>1 be an increasing sequence of non-negative measurable functions. (i.e
0 = fi(x) £ frr1(x).) Suppose that limy_,o fr(z) = f(2),z € E. Show that

]}1_{210 Efk(a:)da::/Ef(:B)d:B

[ 9 ] (Theorem 4.5: Linearity of Lebesgue Integral) Let f(z),g(z) be non-
negative measurable functions defined on F. Let «, 8 be non-negative constants.
Show that

[ (@r@)+ otz = [ j@yte+5 [ gaan
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4.1. LEBESGUE INTEGRAL: NON-NEGATIVE MEASURABLE FUNCTIONS

(Example 2) Let {fi(z)}r>1 be a decreasing sequence of non-negative integrable
functions. Suppose that limy_, fr(x) = f(z) for all z € E. Show that

kli_)rgo/Efk(a:)dw:/Ef(x)dx.

(Example 3) Let f(x),g(x) be non-negative measurable functions defined on
E. Suppose f(z) = g(x) a.e z € E. Show that

/Ef(x)da::/Eg(x)dx

(Supplement to Theorem 4.5 and Example 2) Show that the assumption

fe(z) = f(z) for all x € E can be modified to fi(z) =% f(x) on E in Theorem
4.5 (and Example 2).

(Exercise 1) Let fi, f2, -+, fm be a non-negative integrable function on E.
Show the following statements.

(1) F)=(Xr, (fi(m))2)1/2 is integrable on E.

(2) G(2) = X3 1cinem (fil@) fr(x))"? is integrable on E.

(Exercise 2) Let {E}}4>; be an increasing sequence of point sets on R?. Suppose
that By, /' E as k — oco. If f(x) is non-negative measurable on E, show that

/Ef(a:)da:: lim : f(x)dx.

k—o00

(Exercise 3) Let {fi}x>1 be a sequence of non-negative measurable functions
defined on E. Suppose that limy_,. fE fr(x)dx = 0. Show that

lim [ (1—exp(—fr(x)))dx=0.

k—o0 E

Hint. 1 —e* < ¢ when ¢ is non-negative.

(Exercise 4) Let f(z) be a non-negative integrable funtion defined on E. Show
that for any € > 0, there exists N > 0 s.t.

/ f(x)X{er | f(:p)>N}($)d.1' < €.
E

(Exercise 5) Show that

lim (1 + £>n exp (—2x) dx = / exp (—x) dz.
(0,] n [0

n—00 700)
(Exercise 6) Show that

lim z"dx = 0.
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4.1. LEBESGUE INTEGRAL: NON-NEGATIVE MEASURABLE FUNCTIONS

(Theorem 4.6 Swap X and [) Let {fi(z)},=1 be a sequence of non-negative
measurable functions defined on £ € .#. Show that

/Eka e =3 /fk

k=1
-) and suppose that E;NE; = 0(i # 7).
def

(Corollary 4.7) Let Ey € # (k= 1,2,
Let f(x) be a non-negative measurable function defined on £ = (J;; Ej. Show

that
/ f(x)dz = Z

k=1

-E, € #([0,1]) and suppose that Va € [0, 1],
Con)

(Example 4) Suppose that E1FEs - -
) Show that there exists E;,(ip = 1,2

#{i=12--nlzek }2k (E<n
s.t m(E;,) 2 &,

(Theorem 4.8 Fatou’s Lemma) Let {f;};r>1 be non-negative measurable
functions on F € .#. Show that

/hmmffk.( Ydx < liminf/ fr(x)dx
E k—oco Jp

k—o00

(Example 5: equality does not always hold in Fatou’s lemma) Consider
a sequene of non-negative measurable functions on [0, 1]. Does equality hold for
the Fatou’s lemma?

0 z=0
falx)=<¢n 0<z<1/n
0 I/nSzs1

(Theorem 4.9) Let f(z) be a non-negative measurable functionon £ € ., m(E) <
oo and suppose that |f(z)] < oo a.e x € E. In [0, 00), we consider a segmentation

— 0

as below.
<Y < Ygy1 <o

O=yo<wp1 <--
We suppose that yir1 — yp < 0. We define Ej as below

E,C{eeE |y < flo) <y} (k=0,1,2---)

Show that f(x) is integrable on E if and only if

(1)
f: ykm(Ek) < 0

(2) Show that

i > () = | sty

*
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4.1. LEBESGUE INTEGRAL: NON-NEGATIVE MEASURABLE FUNCTIONS

In the question above, you may feel that the limit on the left hand side is somewhat
weird because partition {yx}72, is not unique. Let

PO {3 [ 9o =0<yr <y /003 yp — Yoy < 0,k € N}
And for each partition I € P we define

def - 00
I) = Zykm(Ek),] = {urtizo-
k=0

Note that if § < ¢’, then
sup S(I) £ sup S(I), inf S(I)= inf S(I).

Iep® Tep(©) Iep® T Iep@)

So limg\ o Sup;epw S(I) and limg o inf;c ps) S(I) exist. We need to prove that

Ydx = li S(I) =lim inf S(I).
/f T mélzl;% (1) o ot (1)

(Example 6) Let £ € #,(E C R): m(E) < co. Let f(z) be a non-negative
real-valued measurable function on E. (i.e f(z): E + [0,00)) Show that f(z) is
integrable on [0, co] if and only if

> m({z € B| f(z) 2 k) < oo
k=0

(Example 7) Let f(z) : [a,b] — [0, 00) be a non-negative real-valued measurable
function. Show that f(z)* is integrable on [a, b] if and only if

> nm({z € [a,b]] f(z) Zn}) < o

(Exercise 7) Let f(x)? be anon-negative integrable functionon E € .#, m(E) <
co. Show that f(z)” is also integrable on E.

(Exercise 8) Let f(z) : [a,b] — [0.00) be a non-negative real-valued measurable
function on [a,b]. Show that f(x)” is integrable on [a, b] if and only if

S wPm (€ [a,b)] flx) 2 n)

(Exercise 9) Let {fi}x>1 be a sequence of non-negative measurable functions
on E € .. Suppose that limy_, fx(z) = f(x), fu(x) £ f(x). Show that for any

e C F,e e #, we have
lim /fk(x)dx:/f(x)dx
k—oo [, e

(Exercise 10) Let {E,} C [0, 1] be a sequence of Lebesgue measurable sets. Sup-
pose that m (limsup E,,) = 0. Show that Ve > 0,34 C [0,1]; A€ .#; m([0,1]\ A) <

€s.t -
Zm(AﬂEn) < 00
n=1
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4.2. LEBESGUE INTEGRAL: GENERAL MEASURABLE FUNCTIONS

§ 4.2 Lebesgue Integral: general measurable functions

(I) Definition of Integral and Basic Properties

In the last section, we defined integral of non-negative measurable functions. From
now on, we study integral of general (not necessarily non-negative) measurable functions.

(Definition: integral of general measurable functions) Let f(z) be a
measurable function on £ € R4 E € /.

(1) Define [, f(x)dz. Explain the meaning of [, f(z)dz exists.

@)

(3) Explain that f(x) is integrable if and only if |f(z)| is integrable.
(4) Explain that | [, f(z)dz| < [, |f(z)] dz

Explain the meaning of f(z) is integrable.

4

*

From now on, let L(F) be a set of all integrable functions defined on F € .Z.
L(E) % { f(z) : measurable | / F(2)] < oo}
E

(Example 1) Let f(x) be a bounded function on F € .# and suppose that
m(F) < co. Is f(z) integrable on E?

(Some Properties) Show the following properties.
(1) Suppose that f(x) € L(F). Show that |f(z)] < 0o a.e z € F.
(2) Let E € .#. Suppose that f(x) =0 a.e x € E. Show that [, f(z)dz = 0.

)
(3) Let f(x) be a measurable function on E. Let g € L(F). Suppose that |f(z)| <
g(x). Show that f(x) € L(E).

)

(4) Let f(x) € L(RY). Show that

lim |f(x)|dx =0

N=oo JizeRrd| |o|2N}

(Theorem 4.10 Linearity of Lebesgue Integral) Let £ € .#. Suppose
that f(x) € L(E) and [, g(x)dx exists (g(z) is not necessarily integrable), and let
CeR.

(1) Show that
/EC’f(x)dx = C’/Ef(x)dx

[ @)+ gnis = [ s+ [ gaaa

(2) Show that
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4.2. LEBESGUE INTEGRAL: GENERAL MEASURABLE FUNCTIONS

(Example 2) Let f(z) be a measurable function on [0, 1]. Show that f € L([0, 1])
if the following statement holds.

AHW”WO+VWWM<m

(Example 3) Let {f.(x)} C L(FE) and suppose that lim,,, fn(z) = f(z)(Vz €
E) and f,(z) £ foy(x)(¥n € N,Vo € E). Show that

lim fn )dﬂvz/f(x)dx

n—oo

(Example 4) Let g(z) € L(E) and let {f.(z)},>1 C L(E). Suppose that
fn(x) = g(z) a.e x € E. Show that

/liminffn( Ydx < hmmf/ folz
E

n—o0 n—o0

(Example 5 Jenesen’s inequality) Let w(z) be a positive-valued measurable
function on £ C R; E' € .# and suppose that [, w(x)dz = 1. Let ¢(z) be a convex

function on I = [a,b]. Let f(x) be a measurable function on E and suppose that
R(f) C I. Show that if f(z)-w(x) € L(E) then we have

([ vio) < s

(Exercise 1) Let f(z),g(x) € L(R?). Show that min{ f(x), g(x)}, max{ f(x),g(z)}

are integrable.

(Exercise 2) Let f(z,y):[0,1* = R

)1 2y ¢Q
f(x)_{Q xy € Q

[ rewisay =1
[0,1]x[0,1]

(Exercise 3) Let f(x) € L(F). Show that

Show that

mife € B:1i@| > 1 =o (1 ).

(-++) = o(3) means that the left hand side converges to 0 faster than ¢ as k — oco.

(Exercise 4) Let f(x) € L((0,00)). Let f,(x) o f(@)X(on (). Show that
fulx) 5 f(x) on (0,00).
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4.2. LEBESGUE INTEGRAL: GENERAL MEASURABLE FUNCTIONS

(Exercise 5) Let f(z) € L([0,1]) and suppose that exp ( 01 )
f[o 1] €XP (f(z)) dxz. Show that there exists C' : a constant s.t f(z) = C a.ex € [0,1
Hint. e“(z — C) + e < e®. Equality holds if z = C.

(Exercise 6) Let f( ) € L(R'). For VI : a bounded interval, we define f; o
i1 J; f(z)dz and E; ¥ {xel: fz)> fi}. Show that

J1t@) - o =2 [ (1)~ i) da

(Therorem 4.11: countable additivity about range) Let E, € .# and

suppose that E; N E; = 0 if i # j. Let f(z) be a measurable function on F o

Upe, Ey,. Suppose [, f(z)dx exists. Show that

[ s =3 [ s
B 1 JE
(Example 6: test condition to be 0 almost everywhere) Let f(z) €
L ([a,b]). Show that if for Ve € [a, 0], [, ; f(z)dz = 0 then,
f(z)=0a.ex € |a,b

(Example 7) Let g(z) : E — R be areal-valued measurable function on F € .Z .
Suppose that Vf(z) € L(E), f(z)g(z) € L(E). Show that 37 € .4 withm(Z) =0
s.t g(z) is bounded on E'\ Z.

(Therorem 4.12: absolute continuity of integral) Let f(x) € L(E). Show
that Ve > 0,30 > 0 s.t Ve € # (e C E) with m(e) < ¢, the following inequality

holds.
< /|f(x)|dx <e

(Example 8) Let f: E— [0,00], f(x) € L(E), E CR;E € .#. Suppose that
0< A= fE x)dr < 0o. Show that there exists e € #;e C E s.t

f(z)dz

(Therorem 4.13: translation of variables in Lebesgue Integral) Suppose
that [,. f(z)dz exists and let yo € R%. Show that f(z + yo) € L(E) and

fz +yo)dx = » f(x)dx

Rd

(Example 9) Let f(z) € L(E), E o [0, 00]. Show that
lim f(z+n)=0aexz € FE.

n—oo

Hint. It is enough to show that lim, , f(x +n) = 0 a.e € [0,1). You may
consider Y >° f[o,l) |f(z + n)|dz.
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4.2. LEBESGUE INTEGRAL: GENERAL MEASURABLE FUNCTIONS

(Example 10) Let J C R be an interval and let [, f(z)dx exists. For a # 0, we
define J & {Z:2 eI} and g(2) o f(az),z € J. Show that [, g(z)dz exists and

[ﬂ@m:qqlgwm.

(Exercise 7) Let f(z),g(z) € L(R) and [, , f(t)dt = [, ; g(t)dt for all z € R.
Show that f(x) = g(x) a.e x € [a, 00).

(Exercise 8) Let f(z) € L(R). Let ¢ be an arbitrary bounded Lebesgue
measurable function. Suppose that [ f(z)¢(z)dr = 0. Show that f(x) = 0 a.e
z € R.

(IT) Lebesgue Dominated Convergence Theorem

(Therorem 4.14: Lebesgue Dominated Convergence Theorem (L.D.C.T))
Let {fx(x)}r=1 be a sequence of measurable functions on E' € .#. Suppose that
limy o0 fr(x) = f(z) a.e x € E and suppose that for every k € N, |fx(z)| < g(x)
a.e x € E where g € L(E). Show that

i [ fitade = [ fayis

Hint. You can try to show that limsup,, .. [ |fu(z) — f(2)|dz = 0.

(Therorem 4.15 L.D.C.T convergence in measure version) Let {f(z)}r>1
be a sequence of measurable functions defined on £ C R% E € .# and suppose
that fi.(r) = f(z) on E. We also suppose that Jg(z) € L(E) s.t |fi(x)] < g(z)
a.e ¢ € E. Show that f(z) € L(FE) and

(E
£$Aﬁ@m:éﬂmm

(Example 12) Show that

I 1
/ xs1—n(a:)dx:0<_) (n — 00, > 1).
[0,1] 1+ (n:r:)o‘ n
(Example 13) Show that
2.2 1
/ MZO(_> (n — 00,0 > 0)
[av;00)

1+ 22 n?

(Exercise 1) Let f(z), F(z), ¢(x), ¢,(x) be Lebesgue measurable functions de-
fined on [a,b]. Suppose that ¢,(x) — ¢(z) for all z € [a,b] and |f(z)p,(z)] <
F(x) € L([a,b]). We also suppose that

F@)on(t)dt = on(x) — dn(a) Va € [a, 0],

[a,x]
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4.2. LEBESGUE INTEGRAL: GENERAL MEASURABLE FUNCTIONS

Show that
f)o(t)dt = ¢(x) — ¢(a) Vz € [a,b].

[a,7]
(Exercise 2) Show that
cos(nz) -5 0 on [—m, 7).

Hint. You may use the fact that f[fﬂ - cos(2nx)dr = 0 without proof. We will
study the relationship between Lebesgue integral and Riemann integral in the
following section.

(Exercise 3) Let f € L((0,00)). Show that g(z) is continuous on (0, 00).

def f(t)

(Exercise 4) Let f € L(E) and let Fy o {r € E:|f(x)] <1/k}. Show that

lim/ |f(z)|dz = 0.
k—ro0 B,

(Exercise 5) Let {fi} U{gx} U{f,g9} C L(E). Suppose that |fx(z)] = M < o0
and [, |fu(2) — f(z)|dz — 0, [, |gr(x) — g(z)|dz — 0 as k — co. Show that

/E|fk(l‘)gk(x) — f(z)g(z)|dx — 0 as k — oo.

(Exercise 6) Let {f.(z)} C L(FE) and suppose that f, — fon E € .#4;m(E) <
00. Show that
lim / fr(x)de = / f(z)dz.
k—oo J @ E

(Corollary 4.16) Let fi(z) € L(E),k =1,2---. Suppose that 3_° | [ |fu(2)] <
0.

(1) Show that

Z fr(x) converges a.e z € E.
k=1

(i.e D oo, fr(x) exists and is finite a.e x € E.)
(2) Show that N
;/Efk(x)dz = /ES(x)da?
where S(x) = Y2, fr(x). S(z) is a measurable function defined a.e x € E, but

is not defined at every € E. However, we can still regard S(z) as a measurable
function defined on E because it does not have influence on its integral. If you feel
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weird, you can also define S(x) in the following way instead. Then S(z) is defined
at every x € E and is a measurable function on E.

S( )def > ey fe(z) if converges
€T =
0 otherwise

This operation is called a measurable modification.

(Therorem 4.17 integral and differentiation) Let f(x,y) be a function
defined on F x (a,b). Suppose that f(x,y) as a function of = under fixed y
f\y B f(J?,y)

is integrable on E for all y € (a,b), and also suppose that f(x,y) as a function of
y under fixed z

f|:ry'_>.f<x>y)
is differentiable respect to y for all x € E. Suppose that IF(z) € L(E) s.t
2 (x,y)‘ < F(z) for all (z,y) € E x (a,b). Show that

0 0
o /E f(a y)d = /E 5o d )

(Example 14) Let f(z), f.(z) be integrable and real-valued on R. Suppose
VE € M;E CR,lim,_, [, fu(z)de = [, f(x)dz. Show that

liminf f,(2) £ f(z) < limsup f,(x)

n—0o0

(Exercise 7) Let f(x) be non-negative and integrable on [0,00) and let £ C
(0,00). Suppose that [, f(z)dz = 1. Show that

/ f(z)cos(z)dx # 1.
E
(Exercise 8) Let f(z), f,(x) € L(R) and suppose that [, | fu(z) — f(z)|dz £ 5.
Show that
fo(z) = f(x) ae z € R,
(Exercise 9) Let {a,} be a sequence of real numbers and suppose that |a,| <

In(n). Show that
> a
ann “dr = " n2
L. >

oo
n=2 n=2

We still do not know the relationship between Lebesgue integral and Rieman improper
integral. In this question, you may suppose that -[[2,00) n"tdxr = m.

(Exercise 10) Let f(x,y) be a function defined on E x RY. Suppose that
Vy € RY, f(x,y) is a Lebesgue measurable function on E and suppose that Vo € E,
f(x,y) is a continuous function on R?. Moreover suppose that g € L(E) s.t
|f(z,y)| £ g(x) a.e z € E. Show that F is continuous on R¢.

Fly) = /Ef(af, y)dz.
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§ 4.3 Integrable functions vs Continuous functions

(Theorem 4.18) Let f € L(E); E C R*. Show that Ve > 0, Jg(z) € C(R")
with a compact support s.t
/ |f(z x)|dr <e.

(Corollary 4.19; 4.20) Let f € L(E). Show that there exists {gx(x)} C C(R")

with a compact support s.t

(1) hm/|f x)| dz = 0;

k—o0

(74) h_)mg/y€ z) = f(x) aex e k.

(Example 1) Let f € L(R™). Suppose that Vo(z) € C(R") with a compact
support we have

[ S@otayr =0

Show that
f(z)=0aexeR"

(Theorem 4.21 Mean Continuity) Let f € L(R"). Show that

lim |f(z+z0) — f(x)|dx = 0.

xro—0 R

(Example 3) Let E € .#;E C R". Show that
lim m(EN(E+{h}))

|[h|—0

(Corollary 4.22) Let f € L(E). Show that we may find a sequence of step
functions {¢x(z)} s.t

(7)  lim ¢p(z) = f(x) aex € E,

k—o00

(17) hm/|f x)|dx = 0.

(Example 4: Extension of Riemann Lebesgue’s Lemma) Suppose that
{gn(x)} is a sequence of Lebesgue measurable functions defined on [a,b] which
satisfies the following two conditions.

(1) lgn(x)] = M (2 € [a,b])
(17) Ve € la,b], lim gn(z)dz = 0.

n—oo [(LC]

Show that Vf € L([a,b]), we have

lim f(@)gn(z)dx = 0.

n—oo [a,b}
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4.4. LEBESGUE INTEGRAL VS RIEMANN INTEGRAL

(Example 5) Let {\,} be a sequence of real numbers. Suppose A, — oo as
n — oo. Show that A is a measure zero set.

AY {x € R | lim sin(\,z) exists.} :

n—oo

You may use the fact that f; sin A, zdr = —(cos(b- \,) —cos(a- \,)) without proof.

(Example 6) Let f(z) be a bounded measurable function defined one [0, 1].
Suppose that

I, :/ 2" f(r)dr =0 (n=1,2--+).
[0,1]
Show that f(x) =0 a.e x € [0, 1].

(Example 7) Let f(z) be a non-negative measurable function on R. Show that
there exists an increasing sequence of closed sets {F, }n>1 s.t

m(R\ugga):o,f@)ecua)

§ 4.4 Lebesgue Integral vs Riemann Integral

(Darboux Theorem) Let f(x) be a bounded function defined on I = [a,b]. We

consider Riemann Integral of f(x) on I = [a,b]. We denote it as (R) ff f(z)dx to
distinguish from Lebesgue integral (L) f[a . f(x)dx.

(1) Let A o {zo, 1 -+ -z, } be a partition of the interval [a,b]. (a = zg < 71 <
o< a =b) Let S(A) et Zle supme[xi_hxi]{f(x)}(xi — x;—1) and let S(A) def
S infoepz, 1 wq{f(®)}(z; — x;-1). Define TZf(x)dx and fbf(x)dx using S(A)
and S(A).

(2) VAL, Ay, S(A1) £ 5(Ag) (7 5(A1) £ 5(A1UAy) £ 5(A1UA,) £ 5(Ay)), so
we have fbf(x)dx < TZf(x)dm Let |A] o max{x; — z;_1}%_,. Let us consider a
sequence of partition {A,},>1 s.t |A,| N\ 0. Show that

Em@%/ﬂmmgm@a/ﬂmm

A sequence of partition {A,},>; with |A,| \, 0 is not unique. However this

_ —b b
theorem assures that S(A,) = [ f(x)dz and S(A,) = [ f(x)dx for any sequence
with |A,| \( 0. Therefore it is enough for us to give an arbitrary {A,},>1 with
|A,] \( 0 in proofs of later lemmas and theorems.

(3) Explain the meaning of Riemann Integrable.
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4.4. LEBESGUE INTEGRAL VS RIEMANN INTEGRAL

(Lemma 4.23) Let f(z) be a bounded function defined on [a, b] and let S(f; [a, b]).

Let wy(zo) o lims 0 SUD,/ e p(ag.s) 11 (2') — f(2")[}. (We have defined this func-
tion in Chapterl.) Show that

(L) /[ el = ff(x)da: - L f()da

(L) means that the integral is Lebesgue integral. (R) means that the integral is
Riemann integral. We sometimes add (L) or (R) before [ to clarify whether the
integral is Lebesgue integral or Riemann integral.

(Theorem 4.24) Let f(z) be a bounded function on [a,b]. Show that f(z) is
Riemann-integrable if and only if

m ({z € [a,b] | f is discontinuous at x}) = 0.

(Theorem 4.25) Let f(x) be a bounded function on [a, b]. Show that if f(z) is
Riemann integrable on I = [a, b], f(z) is Lebesgue measurable, Lebesgue integrable

and
) [ wie=w) [ sy

We may say that Lebesgue integral is an extension of Riemann integral. (1. How-
ever Lebesgue integrability does not imply Riemann integrability. 2. Riemann
improper integral exists does not imply Lebesgue integrable. We consider an inte-
gral of a bounded function defined on a bounded interval now.)

(Exercise 1) Let F' C [0, 1] be a closed set and suppose that m(F) = 0. Show
that xp(z) is Riemann integrable on [0, 1].

(Exercise 2) Let f :[0,1] — [a,b] is a Riemann integrable function and let
g € C([a,b]). Show that g o f is Riemann integrable on [0, 1].

(Exercise 3) Let f,g be Riemann integrable functions on [a,b] and let E C
la,b], E' = [a,b]. Suppose that f(z) = g(z),Ve € E. Show that

/abf(x)dx = /abg(x)da:.

(Theorem 4.26) Let {Ey} C .# be an increasing sequence of Lebesgue mea-

surable sets. Let -, L. duppose that j € k = -+ and suppose
bl Let = |y, Ey. Suppose that f € L(Ey),k=1,2- d supp

that limy_, fEk |f(x)| dx exists and is finite (converges). Show that f(z) € L(E)
and

/f o= Jim [ f@r

Hint. We can easily prove this theorem by using monotone convergence the-
orem and Lebesgue Dominated Convergence Theorem. However, this theorem
teaches us a relationship between Riemann improper integral and Lebesgue in-
tegral. Suppose that f(x) is Riemann integrable on [0, k| for each k& € N and
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4.5. DOUBLE INTEGRAL AND ITERATED INTEGRAL

limy 00 (R) f[o H |f(z)|dr < oo. (In otherwords the Riemann improper integral
converges absolutely.) Then we have the following conclusion. First, since Rie-
mann integrability implies Lebesgue integrability, we have

(fi)jgiﬂ|f(x)|dx== G!)/L$ﬂ|f(w)ldx-

Second, by monotone convergence theorem we have

i ) [ (@)= Jim @) [ 1@l =) [ (f@lar <o

Therefore f(z) € L([0,00)). Finally, by the conclusion of Theorem 4.26 (let E), =
[0,k], E = [0,00)), we have

(L) f(x)dex = lim (L) f(x)dx

[0,00) k=00 [0,k]

= lim (R) f(z)dx.

(Example 1) Give an example of f(x) defined on (0,00) which is Riemann

improper integralable but is not Lebesgue integrable.
(Example 3) Find
1= /0 1 %dm.
(Notice)

(1) Let f be Riemann integrable on [a, b] and let g(x) be bounded on [a, b]. More-
over f(z) = g(z) a.e © € [a,b]. Prove or disprove ¢g(z) is Riemann integrable on
a, b].

(2) Let f(x) € L(]0,1]) and suppose that f(z) is bounded. Prove or disprove there
exists g(x) : Riemann integrable on [0, 1] s.t f(x) = g(x) a.e x € [0, 1].

(3) Show that there exists E C [a,b];m(E) = 0 s.t Vf(z) € R(|a,b]) (a Riemann
integrable function on [a, b]), E contains at least one point of continuity of f.

(Exercise 4) Let f(z) = sin(2?). Show that f is not Lebesgue integrable on

[0, 00). Hint.
n-Dr 2 Jn-1e V1 = Jnr

§ 4.5 Double Integral and Iterated Integral

(I) Fubini’s Theorem

Let .Z be a family of non-negative Lebesgue measurable functions on R? x R?(= R9)
which satisfy the following conditions.
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4.5. DOUBLE INTEGRAL AND ITERATED INTEGRAL

e (a) y— f(z,y) is a non-negtive measurable function on R? for a.e z € R?.

e (b) F(x) o Jzo f(x,y)dy is a non-negative measurable function on R
(C) fRP F(ZL‘)d{E = fRd f(a:,y)dxdy

(Lemma 4.28) Before we prove the Tonelli’s theore, we prove the following
lemma.

(1) Let f(z,y) € . and a = 0. Show that a - f(x,y) € F
(2) Let fi(z,y), fa(z,y) € F. Show that fi(z,y) + fo(z,y) € F.

(3) Let fi(z,y), fo(z,y) € ZF. Suppose that f(z,y) — g(z,y) = 0 and g(x,y) €
L(RY). Show that f(z,y) — g(z,y) €

(4) Let fr(x,y) € F and suppose that fx(z,y) * f(z,y) as k — oo. Show that
flz,y) e 7.

(5) Let fr(z,y) € .7 and suppose that fi(z,y) € L(R?) and fi(z,y) \ f(z,y) as
k — oo. Show that f(x,y) € F

(Theorem 4.27 Tonell’s theorem) Let f(z,y) be a non-negative Lebesgue
measurable function defined on R? x R? = R". Show that f(x,y) € .7

(Theorem 4.28 Fubini’s theorem) Let f(z,y) € L(R"). (f(x) is not neces-
sarily a non-negative measurable function.) Show the following properties.

e (ax) y— f(z,y) is a measurable function on R? for a.e x € RP.
o (bx) F(x) déf Jzo f(x,y)dy is a measurable function on RP.
(cx) fgo Flx)de = [ga f(x,y)dzdy.

(Example 1) Let f € L([0,00)) and let a > 0. Show that

lim //B /OO sin ax - f(y) . 6—Iydy dr = a/oo f(y) dy
a—+0,8—00 J, 0 0 a? + y2

It is enough for you to prove that we can swap the order of the iterated integrals.

(Example 2) Show that

/000 exp(—2?)dz = vr

(Exercise 1) Let f(z,y) € L([0,1] x [0,1]). Show that

[ ([reomo [ ([ )

(Exercise 2) Let A, B € .. Show that
/ m (A_gzy N B) dov = m(A)m(B).
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4.5. DOUBLE INTEGRAL AND ITERATED INTEGRAL

(II) Characterization of Lebesgue Integral from a Geometric Viewpoint

(Theorem 4.30) Let £ C R" = RP x R?. For each x € RP, we define E, o
ly e R | (a,y) € B}

(1) Let E € .#,. Show that E|, € .#, for a.e v € RP. Notice. ., : a family of
Lebesgue measurable sets on R™.

(2) Show that

m(n)(E) = . m(q)(E‘x)dx.

(Theorem 4.31) Let E; € 4, and let E, € #,. (R =RP x R?)
(1) Show that E1 X EQ € %n
(2) Show that m(n)(El X E2> = m(p)(El)m(q)(Ez)

(Corollary 4.32) Let f(x) be a non-negative and real-valued Lebesuge measur-
able function on R™ and let £ € .#; E C R". We define G(E; f) as below. Show
that m(n41) (G(E, f)) =0.

def

G(E; )= {(z,y) eR"™ |z e E,y= f(x)}.

(Theorem 4.33 - 1) Let f(z): £+ [0,00) be a non-negative and real-valued
Lebesgue measurable function on F € .#Z; E C R"™ Let

G(E; f) = {(w,y) R [z € B0y £ f(a)}.

Show that G(F; f) € M(n+1) and
mmn@@#ﬂzéﬂmm.

(Theorem 4.33 - 2) Let f(z): E +— [0,00) be a non-negative and real-valued
function on E € .#; E C R". Suppose G(E; f) is Lebesgue measurable on R
Show that f is Lebesgue measurable on F.

(III) Convolution and Distribution Function

(Definition of Convolution) Let f(x), g(z) be Lebesgue measurable functions
on R™. State the definition of f * ¢ : convolution of f and g.

(Theorem 4.34) Let f,g € L(R").
(1) Show that (f * g)(z) is defined and finite a.e z € R

(2) Show that (f * g)(z) is a Lebesuge measurable function.
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4.6. EXERCISE

(3) Show that

* dx < d d
[ a@lies [ if@lds [ loa)da
(Example 5) Show that there never exists u(z) € L(R) s.t Vf € L(R)

(ux f)(x) = f(x),aex € R

(Definition 4.4) Let f(z) be measurable on E € .#. State the definition of
the distribution function of f.

(Theorem 4.35) Let f.(\), A > 0 be the distribution function of f. Show that
p € [1,00),

téﬁwwﬂw—plwvlﬂme

§ 4.6 Exercise

(Exercise 1) Let f(z) be a measurable function on E € .#. Suppose f > 0 a.e
v € Eand [, f(x)dz = 0. Show that m(E) = 0.

(Exercise 2) Let f(x) be non-negative and integrable on [0, 00) and suppose
f(0) =0 and f(0) exists. Show that the following integral is finite.

/ Mdm.
0,00) %

(Exercise 3) Let f(z) be non-negative and measurable functionon £ € .#; E C
R". There exists a sequence of point sets {Ej}i>1, Ex C E;m(E\ Ei) < 1/k s.t
the following limit converges.

lim / f(x)dx
k—o0 By
Show that f(x) € L(E).
(Exercise 4) Let f(x) be non-negative and integrable on R. We define
F@ﬂg/ ft)dt,z € R
(700"%]
Suppose that F(x) € L(R). Show that [, f(z)dz = 0.

(Exercise 5) Let fy(z) be a sequence of non-negative and integrable functions
on R™. Suppose VE € .4, we have

/Efk(m)dfé/Efk-H(I)dI.

o7

Show that



4.6. EXERCISE

(Exercise 6) Let f(z),g(x) be non-negative Lebesgue measurable functions on
E e #;E CR;m(F)=1. Suppose that f(z)g(z) = 1 for all x € E. Show that

/f dx/ x)dr 2 1

7| (Exercise 7) Let f(z) be a function defined on R™. Suppose that Ve > 0,
Hg,heL(R") s.t g(x) = f(z) < h(z), € R" and

/n(h(x) —g(z))dz < e.
Show that f € L(R™).

(Exercise 8) Let {Ej}r>1 be a sequence of Lebesgue measurable sets with finite
measure. Suppose that

tim [ s () — f(a)lde = 0

k—o0

Show that there exists a Lebesgue measurable set F € # s.t f(x) = xp(z) a.e
x € R".

(Exercise 9) Let f(x) be a bounded monotone increasing function on [0, 1].
Show that VE C [0,1]; E € .4 ;m(FE) = t,

x)dx < x)dx
mﬂﬂ)d_iéf(ﬂ

(Exercise 10) Let f € L(R"™) and let E : be a compact set on R™. Show that

lim |f(z)|dx = 0.

Wimee B,
. def
Notice. Eipy = {x+ylz € £}

(Exercise 11) Show the following equalities.
(1)

1 —a
—F(a) /(0 . - 1dx = E n~ .
(2)

oo

sin ax
/(0 o0) €XD(T Z 24 a2

=1

(Exercise 12) Let f(z) € L(R') and let a > 0. Let

S(x) o i f<§+n>.



4.6. EXERCISE

(1) Show that S(z) absolutely converges a.e z € R

(2) S(x) is periodic with period a.
(3) S e L([0,a])

(Exercise 13) Let f € L(R) and let p > 0. Show that

lim n™?f(nx) =0, a.e x € R.

n—o0

(Exercise 14) Suppose that 25 f(z), 2" f(z),s < t be integrable on (0, 00). Show
that

/ 2 f(x)dz, u € (s,t)
[0,00)

exists and is a continuous function with respect to w.

(Exercise 15) Let f(x) be a positive valued Lebesgue measurable function on
(0,1). Suppose that Je s.t

/M(f(x))"dx e (m=1,2--).

First, show that there exists a Lebesgue measurable set £ C (0,1) s.t f(x) = xg(z)
a.e x € (0,1). Second, does the same argument hold for f(z) which is not non-
negative?

(Exercise 16) Let f(z) € L([0,1]). Show that

2
lim nln| 1+ |f(a;)| =0.
n—oo [071] n

Hint. In(1 +2?) S z,2 2 0.

(Exercise 17) Let £y D E; D --- D Ep D, let E & N2, Ex and let f € L(Ey).

Show that

(Exercise 18) Let f € L(F) and suppose that f(xz) > 0 for all x € E. Show

that
lim [ (f(x))* de=m(FE)

k—o00 E

(Exercise 19) Let {f,}.>1 C L([0,1]) be a sequence of non-negative and inte-
grable functions on [0, 1]. Suppose that f,, > f(x) and

lim fu(x)dr = f(z)dx.

n=0 J10,1] [0,1]

Show that VE € .#,E C [0, 1],

lim Efn(x)dx:/Ef(x)d:p

n—o0
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4.6. EXERCISE

(Exercise 20) Let {fx}r>1 C L(E) be a sequene of non-negative and integrable
functions on E € .#. Suppose that fi(z) =% f(z) 10 and

/Emax{fl(x),--~ Jfr(z)}de £ M < 0.

Show that
lim / fr(z)dz = 0.
E

k—o0

(Exercise 21 Fatou’s lemma with convergence in measure) Let fi.(z) be
a sequence of non-negative measurable functions defined on E € .# and suppose
that f, — f. Show that

/f(:c)d:z: §liminf/ fr(z)dz.
E k—oo g
(Exercise 22) Show that

/ e~ cos 2xtdr = ﬁe_t2,Vt e R.
0,00) 2

(Exercise 23) Let f € L(R") and let {fi}x>1 C L(R™). Suppose that VE €
A E C R", we have

téh@ﬂ$§[ﬁﬂdww,%=L2~ﬂ
and

i [ fitade = [ sy

lim fiy(z) = f(z), a.e z € R".

k—o00

Show that

(Exercise 24) Let {fr}U{gx} be two sequences of measurable functions defined
on £ C R;E € #. Suppose |fr(x)] £ gr(x) for all x € E, limg o fr(z) =
f(x), limyoo gr(z) = g(z) and limg_,oo [ gr(@)dz = [, g(x)dx < co. Show that

lim [E Fo(2)da = /E f(x)dz.

(Exercise 25) Let f(z) be a bounded function on [a,b]. Let D o {z €
la,b] | f is discontinuous at z}. Suppose D’ (limit points of D) is countable.
Show that f(x) is Riemann integrable on [a, b].

(Exercise 26) Let f(z) be a bounded function on [a,b]. Suppose that Vo € R,
limy,o f(z+ h) exists. Show that f(x) is Riemann integrable on any interval [a, b].

(Exercise 27) Let E C [0,1]. Show that xg(z) is Riemann integrable on [0, 1]
if and only if m(E \ E) = 0.
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4.6. EXERCISE

xercise et e Riemann integrable on |0, 1]. ow that f(x*) 1s also
138 (E ise 28) L be Ri i bl 0,1]. Sh h 2) is al
Riemann integrable on [0, 1].

(Exercise 29) Let f(x),g(z) be Lebesgue measurable on F C R; E € .# and
suppose that m(F) < co. Suppose f(x)+ g(y) is integrable on E' x E. Show that
f(z),g(x) are integrable on E.

(Exercise 30) Find the following integrals.

@ dxdy
/a:>o /y>0 (1+y*) (1 +2%)

(2)

(Exercise 31) Let £ C R;E € .#;m(E) > 0 and let f(z) be a non-negative
measurable function on R. Let

F) % / o — t)dt.
E
Suppose that F(x) is integrable on R. Show that f € L(R).
(Exercise 32) Let f(z) € L(R) and suppose zf(z) € L(R). We define
F(z) d:ef/ F(t)dt
. Show that if [*° f(z)dx =0 then F € L(R).

(Exercise 33) Find

jus

lim cos x arctan(nz)dx
n—oo 0

(Exercise 34) Let [ o (0,a),let f € L(I) and let g(x) o [ @dt, (0 <z <a).

Show that g € L(I) and
/g(a:)dxz /f(x)dx.
I I
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CHAPTER b

Differentiation

§ 5.1 Differentiability of Monotone Functions

(I) Vitali’s Covering Theorem

(Definition 5.1) Let £ C R. Let T’ o {I,} be a family of intervals (open,
half-open, closed intervals). What does it mean if we say that I" is a Vitali cover
of E?

(Example 1) Give an example of a Vitali cover of F o la, b].

(Theorem 5.1 Vitali’s Covering Theorem) Let £ C R with m*(F) < oc.
E is not necessarily a Lebesgue measurable set. Suppose that ' is a Vitali cover
of E. Show that there exists a finite number of disjoint I7,Ir--- , I, € I" s.t.

n
m* (E\UQ) < €.
j=1
(IT) Differentiability of Monotone Functions

(Definition 5.2) Let f(z) be a real-valued function defined on R. State the
definition of Dini derivatives (D7 f(xq), Dy f(xo), D™ f(x0), D_f(x0)) at = = xo.
State the definition of differentiability based on Dini derivatives.

(Theorem 5.2 Lebesgue’s Theorem) Let f(x) be a real-valued monotone
increasing function defined on |a, b].

(1) Show that f(x) is differentiable a.e x € [a,b]. (Show that the set of non-
differentiable points of f(x) on [a, b] is a Lebesgue measure zero set.)
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5.1. DIFFERENTIABILITY OF MONOTONE FUNCTIONS

(2) Show that
f'(@)de < f(b) — f(a).

[a,b]
[ 6 | (Theorem 5.3 Fubini’s Termwise Differentiation Theorem) Let {f,(z)}

be a sequence of monotone-increasing functions on [a, b]. Suppose that > > | f,.(z)
converges (exists and is finite) on [a,b]. Show that

d [ & = d
- (; fn(x)> - ; ——ful(w) ae w € [a,0].
(Exercise 1) Let f(x) be a non-negative function defined on [a, b]. Suppose that

f ¢ L([a,b]). Does f(x) have a real-valued primitive function? (i.e exists F'(x) s.t

F'(z) = f(x).)

(Exercise 2) Let {f.(z)},>1 be a sequence of monotone increasing functions
defined on (0,1). Suppose that lim, , f.(z) =1 a.e x € (0,1). Show that

liminf f/ (z) =0 a.e z € (0,1).
n—oo

[ 9 | (Exercise 3) Show that we can modify the conclusion of the Vitali’s Covering
Theorem in the following way. Suppose that I' is a Vitali cover of £ C R with
m*(E) < oco. (FE is not necessarily a Lebesgue measurable set.) There exist a
countable number of disjoint intervals {/;}32, C ' s.t

m” (E\D[]) = 0.

(Exercise 4) Let f(z) € C([a,b]) be a continuous function defined on [a, b].
Show that there exists z¢ € (a,b) and a constant k € R s.t

D_f(z9) = k 2 D" f(zo) or D™ f(w0) = k = D4 f(z0).

(Exercise 5) Let F C (a,b) and suppose that m(FE) = 0. Construct a continuous
and monotone-increasing function f(z) which is defined on [a,b] with f'(z) = oo
for all z € E.

(Exercise 6) Construct a strictly monotone increasing function f(x) with
f'(z) =0aexz€[0,1].

(Exercise 7) Let £ C R. Let I5 be an open interval whose length is § > 0 with
xg € Is. If .
lim ™ ((x — h,z+ h)N E°)
h—+0 2h
then we say that xg is a density point of E. Show that if almost every point in
E is a density point, then E is Lebesgue measurable. Hint. We may suppose

that every point in E is a density point because a measure zero set is measurable.

We may also suppose that E C (a,b) because if E, Y EnN (—n,n) € A then

E=U",E, e .

:0’
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5.2. BOUNDED VARIATION FUNCTION

§ 5.2 Bounded Variation Function

(Definition 5.3) Let f(z) be a real-valued function defined on [a,b]. Let us

consider a partition A def {a = xg, 21, -+ ,x, =b}. Let

va D 1f (@) = Fli)]

Explain what is total variation and what is a bounded variation function defined
on [a,b]. We denote variation of f(z) on [a,b] as

\ ()

a

And we also denote the collection of all bounded variation functions defined on
[a,b] as BV([a, b]).

(Example 1) Let f(z) be a monotone function (monotone increasing or mono-
tone decreasing). Find va.

(Example 2) Let f(z) be a differentiable function defined on [a,b]. Suppose
that |f'(x)] = M < oo for all z € [a,b]. Show that f(z) is a bounded variation
function.

(Example 3) Let

0 z=0

Show that f(x) is not a bounded variation function defined on [0, 1].

@) def {xsin% z € (0,1] .

(Theorem 5.4) Let f(x) be a real-valued function defined on [a,b] and let

¢ € (a,b). Show that
b

V=V + V.

a a

(Theorem 5.5 Jordan’s Decomposition Theorem) Let f(x) be a real-valued
function defined on [a,b]. Let f(x) € BV([a,b]) if and only if f(z) = g(z) — h(x)

where g(x), h(x) are real-valued monotone increasing functions on [a, b]

(Example 4) Let f(z) be a real-valued function defined on [a,b]. Suppose that
f(z) € BV([a,b]). Show that f(x) is differentiable a.e x € [a, b] and that

- (\/m) = /') e € o]

a

(Example 5) Let f(z) be a real-valued function defined on [a,b]. Suppose that
f(xz) € BV([a,b]). Let £; be a length of the curve y = f(x) (x € [a,b]). Show that

b
0> / VIT @R
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5.2. BOUNDED VARIATION FUNCTION

(Exercise 1) Find

(Exercise 2) Show that

if and only if f(x) = C where C' is a constant.

(Exercise 3) Let f(z),g(z) € BV([a,b]). Show that M(z) = {f(z),g(x)} is a
bounded variation function defined on [a, b].

(Exercise 4) Show that f(z) € BV([a,b]) implies that |f(x)| € BV([a,b]),
however |f(z)| € BV([a,b]) does not imply that f(z) € BV([a,b]).

(Exercise 5) Let f(x),g(x) € BV([a,b]). Show that

b b b

\/(F9) < sup {£(0)}-\/(9) + sup {g(2)}- /()

z€|a,b| z€[a,b]

a a a

(Exercise 6) Let f(xz) € BV([a,b]) and let ¢(z) be a Lipschitz continuous
function (i.e |p(z1) — ¢(x2)| = L]z — 22| for all x1, 29 € R for some L.) Show that
¢ o f(x) € BV([a,b]).

28 xercise et f(x) be a Lipschitz continuous runction defined on |a, b|. (1.e
E ise 7) Let f be a Lipschi i f ion defined bl. (i
|f(z1) — f(z2)| £ L|zy — 2] for all z1, 25 € [a, b] for some L.) Show that

is also a Lipschitz continuous function defined on [a, b].

(Exercise 8) Show that f(z) € BV([a,b]) if and only if there exists a monotone
increasing function F'(z) define on [a,b] s.t

|F(z1) — F(xg)] = F(x2) — F(z1) (a L2y <29 £D)

(Exercise 9) Let f(x) € BV([a,b]). Suppose that f(z) has a primitive functgion
on [a, b]. Discuss if f(x) is continuous on [a, b].

(Exercise 10) Let f(z) € BV([a,b]). Suppose that

Show that f(x) is monotone-increasing on [a, b].
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5.3. DIFFERENTIATION OF INDEFINITE INTEGRAL

(Exercise 11) Let {f,(z)} € BV([a,b]). Suppose that > 7 f.(z)and Y 7 Vo (fn)
converges for all x € [a,b]. Show that f(z) o >, fa(z) is a bounded variation
function defined on [a, b].

§ 5.3 Differentiation of Indefinite Integral

Let f(z) € L([a,b]) and let F(z) o [ f(t)dt. In this section, we are going to discuss
if LF(z)= f(z) holds.

(Lemma 5.6) Let f(x) € L([a,b]) and let
qof 1 z+h
R@ s [

Suppose that f(x) =0 if x ¢ [a,b]. Show that

b
tim [ (o) = fa)lds = .
(Theorem 5.7) Let f(x) € L([a,b]) and let

F(z) ¥ / ’ F)dt, z € [a,b].

Show that
F'(z) = f(z) a.e x € [a, b].

(Corollary 5.8) Let f(z) € L([a,b]). Show that

h
lim%/0 |f(x+1t)— f(x)|dt =0 a.e x € [a,b].

h—0

When the equality above holds, we say that x is a Lebesgue point.

(Example 1) Let f(x) € L(R). Suppose that

b
[ 1@+ 1) = fa)ids = o hl) as b= o
for € [a,b]. (= o(|h|) means that the left hand side goes to 0 faster than |h|
when h — 0.) Show that
f(z) = C (constant)
(Example 2) Let f(x) € L([a,b]) and let
Flo) % / FO)dt (z € [a,B]).

(1) Show that
F(z) € BV([a,b]).
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5.4. ABSOLUTELY CONTINUOUS FUNCTION AND FUNDAMENTAL THEOREM
OF CALCULUS

(2) Show that
ViF) < [ 1@l

(Exercise 1) Let E C [0, 1] be a Lebesgue measurable set. Suppose that there
exists ¢ € (0,1) s.t for any closed interval [a,b] C [0,1], the following inequality
holds,

m(E Nla,b]) 2 (b —a).

Show that m(F) = 1.

(Exercise 2) Let us consider a Dirichlet function yg(x) defined on = € [0, 1].
Find the Lebesgue points on [0, 1].
§ 5.4 Absolutely Continuous Function and Fundamental Theorem of Calculus

In this section, we are going to discuss if the following equality holds,

ﬂm—ﬂwz/Vﬁermw

(Lemma 5.9) Let f(z) be a function defined on [a, b] and suppose that f(x) is
differentiable a.e x € [a, b] and that f'(z) = 0 a.e x € [a,b]. Show that if f(x) is not
a constant function, then there exists a positive number € > 0 s.t for any positive
number § > 0, we can find a finite number of disjoint open intervals {(z;,v;)}",
satisfying

oy, —r;<dforalli=1,2,--- ,n,
° Z?:I |f(yi) — f(z)] > e

(Definition 5.4) Let f(x) be a real-valued function defined on [a,b]. What
does it mean if we say that f(z) is an absolutely continuous function on [a, b].
We denote the collection of all absolutely continuous functions defined on [a, b] as

AC([a, b]).

(Example 1) Let f(x) be a Lipschitz continuous function defined on [a, b].
Verify that f(z) is absolutely continuous on [a, b].

(Theorem 5.10) Let f(z) € L([a,b]). Show that

Fz) % / F(t)dt
is an absolutely continuous function defined on [a, b].

(Theorem 5.11) Let f(x) be an absolutely continuous function defined on [a, b].
Show that f(x) is a bounded variation function.
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5.4. ABSOLUTELY CONTINUOUS FUNCTION AND FUNDAMENTAL THEOREM
OF CALCULUS

(Corollary 5.12) Let f(x) be an absolutely continuous function defined on
[a,b]. Show that f(x) is differentiable a.e x € [a,b] and also show that f’(z) is an
integrable function on [a, b].

(Theorem 5.13) Let f(x) be an absolutely continuous functions defined on
[a,b] and suppose that f'(z) = 0 a.e z € [a,b]. Show that f(z) = C (a constant)
on [a, b].

(Theorem 5.14 A Fundamental Theorem of Calculus) Let f(x) be an
absolutely continuous function on [a, b]. Show that

_ / Pt € [ab).

(Example 2) Let gx(z) be an absolutely continuous function on [a,b]. We
suppose that

e there exists ¢ € [a,b] s.t >~ gi(c) converges,

02k1f|gk )|dz < 0.
(1) Show that g(x) o > rey ge(x) converges on x € [a, b].
(2) Show that g(z) is absolutely continuous on [a,b] and also show that

ng a.e x € [a,b].

(Example 4) Let f(z) be absolutely continuous on [a, b]. Show that the length

of curve is )
(= / \/ 1+ f(x)*de

(Example 5) Let f(z) € L([c,d]) where [a,b] C [¢,d]. (¢ <a < b < d.) Suppose
that

b
/ |f(x+ h) — f(z)|dz ~ o(|h|), as h — 0.
Show that there exists g(x) € BV([a,b]) s.t f(x) = g(z) a.e x € [a, b].

(Example 8) Let f(x) be differentiable on R and suppose that |f'(z)| =< oc.
Suppose that {x € R | f’(z) > 0} and {z € R| f'(z) < 0} are dense on R. Show
that f’(z) is not Riemann integrable on [a, b] where [a, b] C R is an arbitrary closed
interval.

(Example 9) Let f(z) be absolutely continuous on [a, b]. Show that m(f(Z)) =
0 for all Z C [a,b] with m(Z) = 0.

(Example 10) Let f(z) € C([a,b]) NBV([a,b]). Suppose that m(f(Z)) =0 for
all Z C [a,b] with m(Z) = 0. Shpow that f(x) is absolutely continuous on [a, b].
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5.5. FORMULA OF INTEGRAL BY PARTS AND MEAN VALUE THEOREM OF
INTEGRAL

54 xercise 1 et f(x) be absolutely continuous on |a,b] and suppose that
E i Let f be absolutel b d h
|f'(x)] = M < oo ae x € [a,b]. Show that |f(y) — f(z)| £ M|z — y| for all
z,y € [a,b].

(Exercise 2) Let f(z) be a function defined on [a,b]. Suppose that |f(y) —
f(z)| = M|y — z| for all z,y € [a,b]. Show that |f'(z)] = M a.e x € [a,b)].

(Exercise 3) Let {f.(x)},>1 be a sequence of absolutely continuous and mono-
tone increasing functions. Suppose that > 7 f,(z) converges on [a,b]. Show that
> | falx) is absolutely continuous on [a, b].

(Exercise 4) Let f(z) € BV([0,1]). Suppose that for all € € (0,1), f(z) is
absolutely continuous on [e, 1], and f(z) is continuous at x = 0. Show that f(x)
is absolutely continuous on [0, 1].

(Exercise 5) Show that there exist a strictly monotone increasing absolutely
continuous function f(z) and a Lebesgue measurable set £ € .4, E C [0, 1] with
m(E) > 0s.t f/(x) =0 for all z € E. Hint. Construct a Cantor-Like set C,, with

m(Cq) =1 —a >0 and let f(z) o fox X[o,u\ca(t)dt‘

§ 5.5 Formula of Integral by Parts and Mean Value Theorem of Integral

(Theorem 5.15 Formular of Integral by Parts) Let f(z), g(z) be integral

functions defined on [a,b] and let o, 5 € R. Let F(z) ot [ f(t)dt and let

G(x) gy [ g(t)dt. Show that

b b
/G(a:)f(m)dm—{—/ g(x)F(z)dr = F(b)G()— F(a)G(a).

(Theorem 5.16 The First Intermediate Value Theorem in Integral) Let
f(x) € C([a,b]) and let g(x) be a non-negative integrable function defined on [a, b].
Show that there exists € € [a, ] s.t

[ sy = 1@ [ ot

(Theorem 5.17 The Second Intermediate Value Theorem in Integral)
Let f(z) € L([a,b]) and let g(x) be a monotone increasing (or monotone decreas-
ing) function defined on [a, b]. Show that there exists & € [a,b] s.t

b ¢ b
z)g(z)dz = gla x)dx b x)dx.
| @ = ot0) [ s@dn+50) [ 1o
(Exercise 1) Let f(z) € L([a,b]) and let g(z) = f(x) [ f(t)dt. Show that

/abg(ac)dx _ % (/abf(x)dx>2.
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5.6. CHANGE OF VARIABLE FORMULA ON R

(Exercise 2) Let f(z),g(z) be measurable functions defined on [0, c0). Suppose
that |f(z)] £ M < oo for all z € [1,00), and that |zg(z)] £ M < oo for all
€ [1,00). Show that
1 x
lim — [ f(t)g(t)dt = 0.

rT—o0 U 1

(Exercise 3) Let g(z) € L(R). Let f(x) € C?(R) (twice differentiable and
f"(x) is continuous on R) with f(z) = 0 for all x ¢ (a,b). Show that there exists
C>0st

Awmmﬁm

goéouf+ﬂmﬂw

(Exercise 4) Let f(z) € L([a,]) and let F(z) < [* f(t)- (z —t)"dt (x € [a,b]).
(1) F(x) is differentiable n times.
(2) Show that F™ is absolutely continuous on [a, b].
(3) Show that F™+(z) = n!f(x) a.e x € [a, b).

§ 5.6 Change of Variable Formula on R

Let g : [a,b] — [c, d] be differentiable a.e x € [a,b]. We start to discuss if the following
change of variable formula holds or not.

9(B) B
fmmz/fMWMMummcmw

g(a)

(Theorem 5.18) Let f(x) be an absolutely continuous function defined on [a, b],
and let E C [a,b], E € .#. Show that f(E) < {f(z) |2 € E} € 4

(Lemma 5.19) Let f(z) be a real-valued function on [a,b] and let E C [a, b].
Suppose that f'(x) exists at every z € F and |f'(z)] £ M < co. Show that

m*(f(E)) = Mm*(E).

(Corollary 5.20) Let f(x) be a measurable function on [a,b] and let E C
[a,b], E € 4. Suppose that f(x) is differentiable on E. Show that

m*(f(E)) = /E|f’(x)|dx.

(Example 1) Let f(x) be differentiable a.e « € [a,b] and suppose that f'(x) is
integrable on [a, b]. Show that

b
(/fhww=ﬂ®—ﬂ®-

(Theorem 5.21) Let f(x) be a real-valued function on [a, b] and suppose that
f(z) is integrable on F € .#, FE C |a,b).
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5.7. EXERCISES

(1) Show that if f'(z) =0 a.e z € E, then m(f(F)) = 0.
(2) Show that if m(f(FE)) =0, then f'(x) =0a.ez € E.

(Theorem 5.22 Differentiation of Composite Function) Let g : [a,b] —
[c, d] be differentiable a.e x € [a,b]. Let F(z) be differentiable a.e x € [¢,d] and
suppose that F'(z) = f(z) a.e © € [¢,d]. Suppose that F o g(t) is differentiable a.e
x € [a,b]. Suppose that m(F(Z)) =0 for all Z C [e,d] with m(Z) = 0. Show that

(F(g(1))) = fg(t)d'(t) act € [a,b]

(Corollary 5.23) Let g(t), f o g(t) be differentiable a.e = € [a,b] where f(x) is
absolutely continuous on [¢, d| and suppose that g([a,b]) C [c,d]. Show that

(flg®)) = f'(9(t))g'(t) a-e x € [a, b]

(Theorem 5.24 Change of Variable Formula) Let g(x) be differentiable a.e
x € |a,b] and let f(z) be an integrable function on [¢, d]. Suppose that g([a,b]) C

[c,d]. Let F(x) = [ f(t)dt. Show that the following statements are equivalent.

e F(g(t)) is absolutely continuous on [a, b].
e f(g(t))-g'(t) is integrable on [a,b] and fgg((f)) flx)dx = ff flg(t)) - g (t)dt.

(Corollary 5.25) Let g(z) : [a,b] — [c,d] be an absolutely continuous function
and let f(x) € L([c,d]). Show that each following statement is a sufficient condition
for

9(8) B
[ t@de= [ rta0) - g0
9(@) a
(1) ¢(t) is monotone increasing (or decreasing) on |a, b|
(2) f(z) is bounded on [c, d].
(3) fogl(t)-g(t)is integrable on [a,b].

(Example 2) Let f(z) be a non-negative monotone decreasing function defined
on [0,00). Suppose that for all A > 0, f(z) is absolutely continuous on [0, A].

Show that - - »
p [Ctr i ([Trow) ez

§ 5.7 Exercises

(Exercise 1) Let £ C R be a union of intervals (open, closed or half-open).
Show that E is measurable.

(Exercise 2) Let {z,} C [a,b]. Construct a monotone increasing function whose
points of discontinuity are {z,}.
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5.7. EXERCISES

(Exercise 3) Let f(x) be a monotone increasing function and let E C (a,b).
Suppose that Ve > 0, there exists {(a;, b;) }ieny With (a;, b;) C (a,b) s.t

o o

E i, b), Y (f(0:) = fla)) <e.

= =1

Show that
f(x)=0aeze€E.

(Exercise 4) f(z) is a bounded variation function on [0, . Show that
def 1 [ def
F@) ™ 2 [ sy, PO
0

is a bounded variation function on [0, a].

(Exercise 5) Let {fx(2)}ren is a sequence of bounded variation functions. Sup-

pose that
b

\/(fs) £ M for each k € N,

a

and
lim fi.(z) = f(z), z € [a,b].

k—o00

Show that f(x) is a bounded variation function on [a, b] and also

(Exercise 6) Let f(z) be a bounded variation function defined on [a,b], and
suppose that z € [a,b] is a point of continuity of f(x). Show that g(z) o Vi)
is continuous at x = x.

(Exercise 7) Let f : [a,b] — [c,d] be a continuous function and suppose that
for every y € [c,d], f~*({y}) contains at least 10 points. Show that

b

\V(f) < 10(d — o).

a

(Exercise 8) Let f(z) € L([0,1]) and let g(x) be a monotone increasing function
defined on [0, 1]. Suppose that for every [a,b] C [0, 1],

/a ’ Ha)de

Show that f(z)” is an integrable function on [0, 1].

< (9(b) —g(a)) - (b — a).

(Exercise 9) Let f(x) be a non-negative absolutely continuous function on [a, b].
Show that f(x)” (p > 1) is an absolutely continuous function on [a, b].
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(Exercise 10) Let f(x) be a monotone increasing function on [a, b], and suppose
that

/ f@)de = F(b) - f(a).

Show that f(x) is absolutely continuous on |[a, b].

(Exercise 11) Let f(z) € BV([a,b]). Suppose that

b b
/ P (@)lde = \/(f).

Show that f(x) is absolutely continuous on |[a, b].

(Exercise 12) Let f(z) be a monotone increasing and bounded function on

R. Suppose that f(x) is differentiable on R. Let A C Jim, o f () and let

B % lim, ;o0 f(z). Show that

/Rf’(x)d:c =B - A.

(Exercise 13) Let f(z) be a differentiable function on R and suppose that both
f(x), f(x) are integrable on R. Show that

/R f(2)dz = 0.

(Exercise 14) Let f(x,y) be a function defined on [a, b] X [c, d]. Suppose that
there exists yo € (¢,d) s.t f(z,yo) is integrable on [a, b], and suppose that for every

fixed x € [a,b], f(z,y) as a function of y, (i.e y — f(x,y)) is absolutely continuous,

def g

and also suppose that f; (v,y) = 55 (x,y) is integrable on [a, b] X [c, d].

(1) Show that .
Fly) = / Sz, y)dx
is absolutely continuous on |[c, d]. '
(2) Show that .
F'(y) = /a [z, y)dr aey € [c,d).

(Exercise 15) Let f(z) be absolutely continuous on every [a,b] C R. Show that
for every y € R, we have

o b 2
8_y/a f(a:+y)d:1:—/a 51+ e

(Exercise 16) Explain that we can no longer improve the proposition that an
absolutely continuous function is differentiable almost everywhere by giving an
example.
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(Exercise 17) Let {gi(x)} be a sequence of absolutely continuous functions
on [a,b] with |g.(z)] £ F(z) a.e x € [a,b] where F(z) € L([a,b]). Suppose that
limy 00 gk (z) = g(2) a.e x € [a,b], and limg_, g5.(z) = f(x) a.e © € [a,b]. Show
that

g (x) = f(x) a.e x € [a,b)].

(Exercise 18) Let f(z) be an absolutely continuous and strictly monotone
increasing function. Let g(y) be absolutely continuous on [f(a), f(b)]. Show that
g o f(x) is absolutely continuous on [a, b].

(Exercise 19) Let g(z) be absolutely continuous on [a, b] and suppose that f(x)
is Lipschitz continuous on R. Show that f o g(x) is absolutely continuous on [a, b].

(Exercise 20) Suppose that f(x) is differentiable on [a, b]. Show that if f'(x) =0
a.e T € [a,b], then f(z) is a constant function.
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CHAPTER 6

LP space

§ 6.1 Definition of LP space and some Inequalities

(Definition 6.1) Let f(z) be a Lebesgue measurable function on £ C R4 E €

(1) Define [|f]l, (p € (0,00)).

(2) Explain what is LF(E).

(3) Explain what it means if we say that f(z) is essentially bounded on E.
(4) Explain what is essential supremum of f(x) and define || f||o0, L(E).

(Property) Let f(z) be a Lebesgue measurable function on £ C RY E € 4
and suppose that m(E) > 0. Show that

T 11 = 111

(Theorem 6.1) Let f(z),g(x) € LP(E) where p € (0,00]. Let o, 5 € R. Show
that

af(x) + pg(x) € LP(E).

(Exercise 1) Suppose that £ € .#, 0 < m(E) < co. Let {py} C (1,00) with
l<pr<py<-<pp— 0 ask — co. Suppose that f(z) € LPx(FE) for every
k € N and supgen{ || fllp, } < 0o. Show that f(z) € L>(E).

(Exercise 2) Let 0 < p < ¢. Show that if f(z) € LP(E) N L*(E), then
f(z) € LU(E).

| 6 | (Exercise 3) Let f(z) € L'(E) N L*(E).

in [\l = [ (@)

p,/'Po
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6.1. DEFINITION OF L¥ SPACE AND SOME INEQUALITIES

(Exercise 4) Let E € .4, m(FE) < oo and let f(x) be a measurable function
defined on E. Show that

liy [ 17(@)Pde = [ |f@)ldz

(Definition 6.2 Conjugate index) What is a conjugate index (conjugate
indices)?

@ (Theorem 6.2 Holder’s Inequality) Let p,q be conjugate indices. Suppose
that f(z) € LP(E),g(z) € LY(F). (E € .#) Show that

gl = LA 1lp - llgllg
(Notice) Discuss if Holder’s inequality holds if || f||, = oo or ||g||; = oo holds.

(Example 2) Suppose that m(E) < oo, E € .4 and 0 < p; < py < 0.
(1) Show that LP*(E) C LP'(E).

(2) Show that
1 £llps S (m(E)YP 72 | £l

(Example 3) Let f(z) € L"(E)NL*(E) and let 0 < r < p < s < oo. Let
A € (0,1) be a number to satisfy - = 2 4+ 122 Show that

11l = A1 - I

(Example 4) Let 0 <r < p < s < oo and let f(z) € LP(E). (E € .4 ). Show
that for all ¢ > 0, there exists a decomposition f(z) = g(z) + h(z) s.t

gl =t £1I} and [[R][F = 77(I£I15-
(Example 5 Inverse Holder’s Inequality) Let 0 < p < 1, ¢ < 0 and suppose
that }—17 + % =1. Let f(z) € LP(F) and g(z) € LY(E). (E € .#). Show that

[E F@g@lde = 171, - gl

(Exercise 5) Let f(x),g(z) be measurable functions defined on F € .#. Sup-
pose that ]l) + é =1 (1 <p < o). Show that

1 gllr = [1£1lp - lgllq

(Exercise 6) Let f(z) € L*((0,00)) and f(z) = 0 for all z € (0,00). Let
F(z) % [T f(t)dt. Show that

F(z) ~ o(v/z) (x — 40).
(F(x) goes to 0 faster than y/z.)
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6.1. DEFINITION OF L¥ SPACE AND SOME INEQUALITIES

(Exercise 7) Let f(z) € L*([0,1]). Show that there exists a monotone increasing
function g(z) s.t for every [a,b] C [0, 1],

/abf(x)dx

(Exercise 8) Let f(x) € L?([0,1]) and suppose that || f|l2 # 0. Let F(z) o
Jy f@)dt, (z € [0,1]). Show that

< (9(b) — g(a))(b—a).

712 < [ f1l2

(Theorem 6.3 Minkovski’s Inequality) Let f(x),g(x) € LP(E) where 1 <
p < oo. Show that

1+ glly = [[£1l + llgllp-

(Example 6 Inverse Mikovski’s Inequality) Let0 < p < 1andlet f(x),g(x) €
LP(E). (E € A ). Show that

1+ 1gllls 2 171 + llgll-

(Notice 1) Let f(z) € LP'(E), g(z) € LP*(FE) where 0 < p; < ps < oo. Show

that
1

]-def]-
f(x)g(x) € LP(E) where — = —
(@)of@) € LA(E) where ~ ' — 1

(Notice 2) Let f(z) € L'(R) be a differentiable function and suppose that
f'(z) € LP(R) where p > 1. Show that

lim f(z) =0.

|z|—o00

(Notice 5) Let f(x) € L*([0,1]) where p > 0. Show that

s 11, = oo ([ (o))

(Exercise 9) Let 1 < p £ oo and let {fx(2)}ren C LP(E). Suppose that
> rey fru(z) converges a.e x € E. Show that

SR =D 1l
k=1

k=1
(Exercise 10) Let f(z) € LP(F) where p 2 1 and E € . Let e € ./ with
e C . Show that

(L) (for) "+ ([ )"
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6.2. STRUCTURE OF L?” SPACE

§ 6.2 Structure of LP space

Let us recall the definition of a metric space. Let d : X — [0, 00) and suppose that
e d(xz,y) =0 for all z,y € X,

e d(z,y)=0if and only if z =y € X,
o d(z,y) =d(y,z) for all z,y € X,
o d(z,y)

z,y) S d(z,z) +d(z,x) for all z,y,z € X.

Then (X, d) is called a metric space.

(I) LP(FE) as a complete metric space

We define
def
()2 { o) [ @i <oo}.
E
where E € .# and f(z) is a Lebesgue measurable function defined on F.
(Theorem 6.4) Let f(x),g(x) € X = LP(E) and let d(f,g) o I f — gll, where

p € [1,00]. Show that (X, d) is a metric space. If f(z) = g(x) a.e x € E, we regard
f = g as elements of X.

(Definition 6.3) Let {fi}r>1 U{f} C LP(E), E € .#. What does it mean if we
say that fi converges to f in LP? We denote it as fi(z) N f(z).

(Definition 6.4) Let (X, d) be a metric space where X o LP(E),E € A and

a(f,g) o |f — gll,- What does it mean if we say that {f;}r>1 C X is a Cauchy

sequence on (X, d)?

(Theorem 6.5) Let (X,d) be a metric space where X o LP(E) and d(f, g) o
|f — gll,- Show that (X,d) is a complete metric space.

(Exercise 1) Let {fx(z)} C LP(E) and suppose that p = 1. Suppose

1
I fis = filly < 5.

Show that there exists f(z) € LP(E) s.t
fe(z) 25 f(z) on E.

(Exercise 2) Let {fi(x)}r>1 be a sequence of measurable functions and let
F(z) € L’(E), p 2 1. Suppose that

|fe(z)] = F(x), ]}LIEO fr(x) = f(x) ae x € E.

Show that .
fr(x) = f(x).
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6.2. STRUCTURE OF L?” SPACE

(Exercise 3) Let {f,(7)},>1 C L*(E), E € .4 and suppose that f,(v) == f(z)
on E and || f,]|la £ M < oo. Discuss if f,(z) converges to f(x) in L.

(Exercise 4) Let us consider equivalent classes in LP(EYmE € #. (If f,g €
LP(FE) satisfies f = g a.e x € E, we consider that f ~ g.)

(1) Show that each class contains at most one continuous function defined on E.

(2) Show that there exists a class which does not contain any continuous functions.

(Exercise 5) Let 1 < ¢ < p < ooandlet E € # with m(E) < oo. Suppose
that

lim / | fr(x x)[Pdz = 0.
k—o0

Show that
hm / | fi( x)|?dzx = 0.

(Exercise 6) Let {fi(x)} U {f(z)} C LP([a,b]) where p = 1. Suppose that
Ju(x) =, f(x). Show that

lim /w fr(t)dt = /»’0 f(t)dt for all x € [a, b)].

k—o0 a

(Exercise 7) Let {fi(z)}U{f(x)} € LP(E),FE € A and let {gi(z)} U{g(x)} C

q

LY(E) where p,q > 1,% +% = 1. Suppose that fi(x) LN f(z), gr(z) LGN g(x).
Show that

lim / fo(@)gu(@) — f(x)g(a)|dx = 0.

(IT) LP(E) as a separable metric space

(Definition 6.5) Let (X,d) be a metric space where X = LP(E),E € #,

def
d(f,9) = f = gllp- Let I' C X.

(1) What does it mean if we say that I' is a dense subset of X7

(2) What doest it mean if we say that (X, d) is separable (or a separable metric
space)?

(Lemma 6.6) Let f(x) € LP(E) where ECRY E € . #,1 < p<oo. Let e >0

be an arbitrary positive number.

(1) Show that there exists a continuous function g(x) defined on R with a compact
support s.t

/E (@) — gla)Pdz < c.
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(2) Show that there exists a step function (z) = S°F | ¢;xy, () defined on R? with
a compact support where {I;}¥_, are rectangles s.t

/|f 2)Pdz < e.

(Theorem 6.7) Show that (X,d) is a seperable metric space where X =
def
LNE), E € A, d(f,9) = |f =9l

(Corollary 6.8) Let 1 < p < 00,1 <7 < co. Show that LP(E) N L"(E) is dense
in LP(E).

(Theorem 6.9) Let f(z) € LP(RY) where 1 < p < co. Show that

t—

lim [ |f(zx+1t)— f(z)Pdz = 0.
R4
(Example 1) Let f(z) € LP(R?) where 1 < p < co. Show that
li —t)[Pdx =2 Pdz.
im [ @)+ s =opde =2 [ 7@Pds

(Example 2) Let f(x) be Lebesgue measurable on R%. Show that f(z) is
measurable on any F C R% E € .# with m(FE) < oo if and only if there exists

filz) € LRY), fo(z) € L¥(RY) st f(z) = fil@) + fo(z).
(Exercise 1) Let 1 < p < oo and let {f, ()}, U {f(z)} C LP(R) with
sup,,>q || full, = M < oco. Suppose that

lim fn dt:/ F(B)dt, z € R.
0

n—oo

Show that for all g(z) € LI(R) where  + ¢ = 1,

lim fn dx—/f

n—oo

(Exercise 2) Show that L>((0,00)) is not separable. Hint. Consider f;(x) def
X0 (%) where 0 < ¢ < 1.

§ 6.3 L>(F) as an inner product space

(I) inner product and orthogonal system

First, let us recall the definition of a vector space. Let X L*(E),E € M. Let

fg € X. We defie (f + 9)(t) 0 (1) + 9(8). (@)t) = a- f(t) (@ € R). Then
f+ge X af € X. And if f(t) = g(t) a.e x € E, then we regard f and g are equivalent

as elements of X and denote f X g. Then we can regard X as a vector space because
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6.3. L*(E) AS AN INNER PRODUCT SPACE

e f+gZg+fforall f,ge X.

(F+9)+hZ f+(g+h)foral fgheX.

eXstf+02fforall feX.

VieX,3ge X st f+g20.

1fZ fforall feX.

a(Bf) al (aB)f for all f € X and «, 8 € R.

o (a+B)fZaf+Bfand a(f+g)Z af +agforall f€ X and a, € R.

Next, we define an inner product on X.

< f,g >d§f/ f(z)g(x)dx, where f,g € X.
E

(Basic) Answer the following questions.
(1) Does < -,- >: X x X + R defined above take £00? (or < -,- >: X x X + R?)

(2) Verify that < -,- > defined above is an inner product on X o L*(E).
(Example 1) Let f,g € L?*(E). Show that

1
2| fgll < 1715+ gl ¥ > 0.

(Example 2) Let f(z) be a non-negative measurable function defined on [0, 00).

Show that
00 4 00 0o
dr ) dz < 7 2da - 2f(x) dx.
</0 f(x) x) :L‘_7r/0 f(z) dzx /o 2 f(x) dx

(Example 3) Let R% o (0,00) x (0,00) and let f(z,y) be a non-negative
measurable function defined on R2. Show that

(//R f(l‘,y)dxdy>4 < C/ . flx,y) dedy - //R (22 + y?)*f (z, y) dzdy,

4
s
where C' = 16

(Example 4) Let f(x) € L*([0,1]). Suppose that

! 1
n dr =
/Oxf(a:)x et

Show that f(z) =z a.e z € [0, 1].

VneN.
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6.3. L*(E) AS AN INNER PRODUCT SPACE

(Theorem 6.10 continuity of inner product) Let {f;}i>1 U{f} C L*(E).
Show that for all g € L*(E), we have

lim < fr,g >=< f,g>.
k—o00

(Definition 6.6) Answer the following questions.
(1) Let f,g € L*(E). What does it mean if we say that f, g are orthogonal?

(2) Let {¢atacr C L*(E). What does it mean if we say that {¢, }acs are orthogonal
systems.

(3) Let {pa}acsr C L2(F). What does it mean if we say that {4 }aer are normalized
orthogonal systems.

(Example 5) Verify that

{ 1 cosz sinz cos2x sin2x cos kx sinkx }
/_271'7 ﬁ7 ﬁa \/7_1' ) \/E ) ﬁ ) ﬁ )

are normalized orthogonal systems on L*([—, +7])

(Theorem 6.11) Show that any standard orthogonal systems on L*(E), E € .#
is countable.

(Exercise 1) Let f,g € L*(E),E € .#. Show that

1f +gll2 + 11f = gllz = 201 £ 112 + llgll2)-

(Exercise 2) Suppose that || f, — f|l2 — 0 and ||g, — g||]2 — 0 as n — oo where
{fudnz1 U{gntnz1 U{f, g} € L*(E). Show that

|<fmgn>_<fvg>|_>0'
(Exercise 3) Suppose that || f]|2 = ||g||2 where f,g € L*(E). Show that
<f+g f—-g>=0.

(Exercise 4) Suppose that ||f.|l2 = [|fllz and < fo, f >— ||f]|3 as n — oo
where {f,},>1 U{f} C L*(E). Show that

[fn = fll2 =0

(IT) Generalized Fourier Series

(Definition 6.7) Let {p,},>1 C L*(E),E € .# be normalized orthogonal

systems.
(1) What are generalized Fourier coefficienst? Please explain using {¢, }n>1.

(2) What are generalized Fourier series? Please explain using {p, }n>1.
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6.3. L*(E) AS AN INNER PRODUCT SPACE

(Theorem 6.12) Let {¢,},>1 C L*(E),E € .# be normalized orthogonal
systems, and let f € L?(E). We define

k
filw) = 3 aipi(e),

where a; € R for each ¢ = 1,2,--- ,n. Show that when a; = ¢; e froi >,

|f — fll2 attains the minimum value.

(Theorem 6.13 Bessel’s Inequality) Let {p,},>; C L*(E), E € .# be nor-
malized orthogonal systems, and let f € L?*(E). Show that the generalized Fourier

coeflicients {cg }r>1 (¢ def f, o >) satisty

oo
> asIfls
k=1

(Theorem 6.14 Riesz-Fischer’s Theorem) Let {p,},>; C L*(E),E € A
be normalized orthogonal systems. Suppose that {c;}r>1 C R satisfies

D <.
k=1
Show that there exists g € L*(E) s.t

< g,¢r >= ¢ for each k € N.

(Definition 6.8) Let {¢,},>1 C L*(E), E € .# be orthogonal systems. What
are complete orthogonal systems? Please explain using {¢,, }n>1.

(Theorem 6.15) Let {¢,},>1 C L*(E),E € .# be complete normalized or-
thogonal systems, let f € L*(E), and let ¢ e f,or > for each k € N. Show

that
k
Z cipi — f
i=1

(Example 6 trigonometric functions as perfect orthogonal systems) Let

pY [—7, m]. Show that {¢y} = {1,cosx,sinz, cos2x,sin2z,---} are complete

orthogonal systems of L*(E).

= 0.
2

lim
k—o00

(Definition 6.9) Let ¢(x),---¢x(z) be functions defined on E € .#. What
does it mean if we say that ¥ (x),- - - (z) are linearly independent?

(Example 7) Explain that orthogonal systems {yx}r>; C L*(E) are linearly
independent.
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6.4. NORM OF L¥ SPACE AND ITS FORMULA

(Theorem 6.16) Let {¢x}r>1 C L*(E) be normalized orthogonal systems. Let
f € L*(F) and let € > 0. Show that we can always find a linear combination

k
def
) =Y aipk (x)
i=1

such that
1f—gll2<e

(Exercise 1) Show that {sinnz},>; C L*([0,7]) are complete orthogonal sys-
tems.

(Exercise 2) Let f € L'([—m, 7]) and let {¢,, },>1 be {1, cos z, sin z, cos 2z, sin 2, - - -

Suppose that
/ f(z)pn(z)dz = 0 for each n € N.
[—.7]

Show that
f(z) =0aex€|[—mmn].

(Exercise 3) Let {¢,} be normalized complete orthogonal systems of L?(A), A €
A, and let {¢,} be normalized complete orthogonal systems of L?(B),B € ..

Show that
def

{fii (@, y) bigen = {@i(®) - () b jen

are complete orthogonal systems on L?(A x B).

(Exercise 4) Let {¢} be normalized orthogonal systems of L?*(E) and let
feL*E),E € .#. Show that

lim [ f@)en(e)ds o

(Exercise 5) Let {¢x}r=1 C L*([a,b]) be normalized complete orthogonal sys-
tems and let f € L?([a,b]). Let us consider the generalized Fourier series of f with

respect to {pk rz1,
o0
chwk(m‘) where ¢, €< [ror >

Let E C [a,b] be a Lebesgue measurable set. (i.e E € .#.) Show that

[ sy i [ eyt

§ 6.4 Norm of L? space and Its Formula

(Theorem 6.17) Let (p, ¢) be numbers which satisfy i—l—é = 1 wherel < p < 0.
Let f(z) € LP(E). Show that there exists g(z) € LY(F) with [|g]|, =1 s.t

11l = /E f(2)g(z)de.



6.4. NORM OF L¥ SPACE AND ITS FORMULA

(Theorem 6.18) Let f € L>(FE). Show that

Hmmzam{Lj@mmm

llglli=1

}

(Theorem 6.19) Let g(x) be a Lebesgue measurable function defined on E C
R?. Suppose that there exists M > 0 s.t for any integrable simple function ¢ :
E— R,

< Mlellp,

Amwmm

holds.
(1) Show that g(z) € LY(E) where %+ % = 1.
(2) Show that ||g|, < M.

(Theorem 6.20 Generalized Minkovski’s Inequality) Let f(z,y) be a
Lebesgue measurable function on R? x R4(= R??). Suppose that for all y € R,
z s f(x,y) € LP(RY). (1 £ p < oo and suppose that

1/p
L ([ rwaras) "y = s <.
R4 R4

P 1/p 1/p
( dﬁ géiwy@wwﬂ dy

(Notice 1) Consider the following function on R x [0,2] and derive Theorem
6.3 Minkovski’s Inequality by applying Thorem 6.20 the generalized Minkovski’s
Inequality.

Show that

» [z, y)dy

flz,y) =

(Notice 2) Consider the following function on (0,00) x [0,2] and derive the
discrete version of Minkovski’s Inequality by applying Thorem 6.20 the generalized
Minkovski’s Inequality.

@f la, n<zx<n<l
T,Y) =
f(@y) {bn nsr<n+l
(Example Hardy’s Inequality) Let 1 < p < oo and let f(z) € LP((0,00)).

Let us define the function

Fz) i/zf(t)dt, z> 0.
(1) Show that F(z) € L*(E).

(2) Show that

p
171 < £ 11
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6.5. CONVOLUTION

§ 6.5 Convolution

(Theorem 6.21 Young’s Inequality) Let f(z) € L'(RY) and let g(z) € LP(R?)
where 1 < p < co. Show that

1 * gl = 171 llgllp-

*

Suppose that K () is a function defined on R? and let ¢ > 0 be a given positive
number. Let us define the function K.(z) : R? — R(or R) based on K (z) as below,

KE(ZL‘) d:ef e_dK <£> = E_dK <ﬂ’ g c. 7@) .
€ € € €

(Example 1) Let K(x) o X501 (2), v € R Find K ().

(Theorem 6.22) Let K(z) € L(RY) with |K||; = 1 and let f(z) € LP(R?)
where 1 < p < co. Show that

lim | K * f — fll, = 0.

(Theorem 6.23) Let C°)(R?) be the family of infinitely differentiable functions
defined on R?. Let us define the family of functions

c¥ {f(x) € C™)(RY) | f(x) has a compact support. }
Show that C'is dense in LP(RY).

(Theorem 6.24 Urysohn’s Theorem) Let F' C R? be a compact set and let
G be an open set with I/ C G. Show that there exists f(z) € C()(R?) with

e f(x)=1, z€F
e supp(f) C G

e 0 f(z) £1, z € RY

(Corollary 6.25) Let p > 1,¢ > 0,M > 0,ky € N. Show that there exists
o(x) € O (R?) which satisfies supp(¢) C R?\ B(0, k) and

[ ewhs =1, ol < e 0.5 pla) < M (@ € B
Rd

(Example 2) Let 1 < p < co. Let us define a subset of the family of inifinitely
differentiable functions,

AL {f(z) e COMRY | [ f(x)dz =0}
]Rd
Show that A is dense in LP(R?).
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6.6. WEAK CONVERGENCE

(Example 3) Let f(x) € L*(R) and let f;(x) oo f(z —t). Suppose that

lim ||, = flloc = 0.
—00

Show that exists a uniformly continuous functon g(z) definied on R s.t f(x) = g(x)
a.er € R.

(Example 4) Let E C R be a Lebesgue measurable set with positive measure.

Show that £ — E < {1 — 29 | 1,20 € E} D (=0,6) for some 6 > 0 using

convolution.

(Example 5) Let {¢.} C L?(E) be complete orthogonal systems. Show that
>l =Y [ letelde = oc.
k=1 k=1"F

§ 6.6 Weak Convergence

Now we introduce another concept of convergence related to LP(E).

(Definition 6.11) Let 1 < p,q < oo with %%—% = 1. Suppose that {f,(z)},>1 U
{f(z)} C LP(FE), E € .#. What does it mean if we say that f,(z) converges to
f(z) weakly in LP(FE)? We denote it as

fu(z) = f(z) € LP(E).
(Example) Show that
cosnr — 0 € L*([0, 27])

(Theorem 6.26) Let £ C R? and let E € .# with m(E) < co. Suppose that

fu(z) = f(z) where {f,(2)},=1 U{f(x)} C LP(E). Suppose that lim, o, f,(z) =
g(z) a.e x € E. Show that f(z) = g(z) a.e x € E.

(Theorem 6.27) Let 1 < p < oo and let {f,(x)},>1 C LP(E). Suppose that
fulz) S f(x) € LPart(E).

(1) Show that
timin | ully 2 11/

(2) Let us consider the case of p = co. Moreover we suppose that m(E) < co. Can
we obtain the same inequality?

(Theorem 6.28) Let 1 < p < oo and let {f,(x)},>1 C LP(E). Suppose that
there exists M > 0 s.t || full, £ M < oo for all n € N. Show that there exists a
subsequence ny s.t

f () = f(x) € LP(E).
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6.7. EXERCISES

(Theorem 6.29 Radon’s Theorem) Let 1 < p < oo and let {f,(z)},>1 C
LP(E). Suppose that f,(r) = f(z) € LP(F) and suppose that lim, ,« || full, =
| fllp- Show that

LP

§ 6.7 Exercises

(Exercise 1) Let f(z) € L>°(FE) and let w(z) > 0 and suppose that [, w(z)dz =

1. Show that
1/p
lim ( / If(x)|pw(x)d:v> — 1 fle.

p—o0

(Exercise 2) Let g(x) be a Lebesgue measurable funtion defined on F C R, E €
A . Suppose that Vf(z) € L*(E), we have ||gf|la < M| f]|2- Show that

lg(x)| £ M < o0 aexeFE.

(Exercise 3) Let f(z) > 0 for all x € (0, 00) and suppose that f(z) is integrable
on (0,00). Let us pick r € (1,00) and let E C (0,00), E € .# with m(E) > 0.

Show that 1 B 1 O
G L) = (o Lrrs)

(Exercise 4) Let f(x) € L*([0,1]) and let g(x) aof fol \x{(tl\?ﬁ dt x € (0,1). Show
that

( /0 1 g(x)de) 1/2 <2v2 < /0 1 f(:z:)2d:v>

(Exercise 5) Show that the following two equalities cannot hold simultaneously.

1/2

/ﬂ(f(a:) —sinz)?dr < %,
0 9
and -

/0 (f(x) — cosz)*dr < é

(Exercise 6) Let f(x) € LP(R) (p > 1) and suppose that %+% = 1. Let
F(z) % [ f(t)dt where = € R. Show that

|F(z + h) — F(z)| ~ o(|h|"/?) as h — 0.

(Exercise 7) Let m(Ex) > 0 for all £ € N. Suppose that m(Ey) — 0 as k — oo.

Let
def XEy, (QJ)
m(Ek)l/‘I ’

where % + % = 1,p,q > 1. Show that for every f(z) € LP(R?), we have

gr(z)

lim [ gi(x)f(x)dr =0.

k—o0 Rd
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6.7. EXERCISES

(Exercise 8) Let f(z),g(z) € L*(E) and suppose that

1£1ls = llglls = /E 2 ()g(x)dz = 1.

Show that
g(x) =|f(x)] aex € E.

(Exercise 9) Let fi(y, 2), fa(z, 2), f3(z,y) be non-negative measurable functions

defined on R?. Let I; % | fill3. Let F(x,y,2) of f1(y, 2) fa(x, 2) f3(x,y). Show that

/ F(z,y,z)dzdydz < (I - I - [3)1/2'
R3

(Exercise 10) Let f(z) € LP(R) where 1 < p < co. Let r,s > 0 with r +s = p.
Let fn(x) o f(z + h). Show that

lim | f; f*][y = 0.

|h| =00

(Exercise 11) Let f,(z) be absolutely continuous functions defined on [0, 1]
with f,,(0) = 0. Suppose that {f/(z)},>1 be a Cauchy sequence on L'([0,1]).
(im0 | f1, — frlli = 0.) Show that there exists an absolutely continuous
function f(z) defined on [0,1] with f,(z) = f(z).

(Exercise 12) Let £ C RY E € .#. Suppose that ||f. — flli = 0, [lge —gll1 — 0
as k — oo on E.

(Exercise 13) Let fi(x) € LP(]a,b]) where 1 < p < co. Suppose that

o0
> I felly < oo
k=1

Show there exists f(z) € L”([a,b]) s.t

ka(a:) = f(z) a.e x € [a, bl

and

> fil@) = f(x).

(Exercise 14) Let {fi(z)}r>1 U {f(z)} € LP(E) and suppose that

1
1fe = Fllp < =7
Show that for all 6 > 0, there exists Fs C F, E5 € .# with m(FEs) < § s.t
fe(z) S f(z) on B\ E;.
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6.7. EXERCISES

(Exercise 15) Let {px(x)}r>1 C L*(F) be complete normalized orthogonal
systems. Show that for all f, g € L*(F) we have

<fag>:Z<f790k >< g,9k >
k=1

(Exercise 16) Let {¢.} C L*([a,b]) be complete normalized orthogonal systems.
Let {¢x} C L*([a,b]) be orthogonal systems s.t

> b
Z/ (n(x) — Yy (x))?dx < 1.

Show that {¢;} are complete orthogonal systems in L?([a, b]).

(Exercise 17) Let {¢;} C L*(E) be normalized orthogonal systems and let
& € [2(E) with
lok(z)] < |P(x)] a.e z € E.

Show that if . | axpr(x) converges a.e x € E, then a; — 0 as k — oo,
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CHAPTER 1

Solutions

§1.1

(Definition 1.17, 1.18, 1.19, 1.20, 1.21)

1) diam(E) = sup, ,epflr — yl}

(1)
(2) diam(E) < o0
(3) B(wg,0) = {x € R?: |z — x| <}, C(x0,0) = {z € R?: |2 — 20| £ 0}, where
2 = (S o),

(4) An open rectangle is defined as [[_,(a;, b;). A closed rectangle is defined as
Hle[ai, b;]. And a half-open rectangle is defined as H?Zl(ai, b or H?Zl[ai, b;).

(5) limy oo |z — 2| = 0.

(Definition 1.21, 1.22, 1.23, 1.24, 1.25)

(1) Let {zn} C E,z; # x;(i # j). Suppose x,, — x as n — co. Then z is an
accumulation point of E. Let E’ be a set of accumulation points of E. Let £ = EU £’
be the closure of E.

(2) Let z € E. Suppose 36 > 0 s.t B(z,0) N E\ {z} = 0. Then z is an isolated

point of E. We prove that a set of isolated points is expressed as E' \ E'. Let S o {z €

E | 35 > 0 st B(x,0) \ {z} = 0}. We show that S = F\ F'. (& S C E\ E' and
SDOE\FE.)

STEP 1. (S C E\ E') Let z € S. Obviously x € E. By definition of S, there
is no sequence {z,},>1 C E s.t z, — x (x; # z; if i # j) because when n is sufficiently
large (n > N), x, € B(x,0), hence z,, = x for all n > N. (" B(z,0) N E'\ {z} = 0) This
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1.1.

contradicts to the assumption that z; # z; if ¢ # j.

STEP 2. (S D E\ E') We show that £\ S C E'. Let x € E\ S. Since
E\S={r € E|Y)>0,B(x,0)NE\{x} # 0}, this implies that we can find a sequence
{zn}tnz1 C Estx, - . (z; # x; if i # j.) (We can consider 6, > 0 s.t d, ~\, 0 and
z, € B(z,d,) N E\ {z}. Moreover 0,1 < |z, — z|. Then we can assure that {z,},> are
different points from each other.) So =z € E".

(3) FE is a closed set meas that £’ C E. (Different books use different definition.
We use this definition.)

(4) E°is closed. Then FE is open.

(5) = is an interior point of £ means that 36 > 0 s.t B(z,8) C E. Let E be a set
of interior points of E.

(6) Let OE = E\ F be a boundary of E. We prove that 0F = A.

STEP 1. (OE C A) Let x € OE. Since x ¢ £, ¥6 > 0, B(x,0) ¢ E. This implies
that B(z,d) N E¢ # () for all 6 > 0. Furthermore, x € E = EU E’. We consider the cases
re€ Fandx e E.

case 1. (x € E) Obviously Vo > 0, B(z,0) N E # () because B(x,d) N E contains z.

case 2. (x € E') There exists {z,}n>1 C E s.t z,, = 2 (x; # x; if i # j.) From this
fact, we find out that V§ > 0, B(z, )N E # () because for sufficiently large n, |z, —z| < 6,
so B(z,6) N E contains {x, },>n, where Ny is a sufficiently large natural number.

STEP 2. (OE D A) Let x € A. Since V6 > 0, B(x,d) N E° # 0, (so B(z,0) ¢ E),
so z is not an interior point of E. So = ¢ E. Since Vé > 0, B(z,0)NE # (), wehave z € E.
The reason is as below. If x € F, the statement holds obviously. So we suppose = ¢ E.
Then we can pick z,, € B(x,d,) N E with §, — 0. So x,, — x. We may suppose that
x; # x;if i # j because we can take a subsequence n) so that 0 < |z, —z| < |z, —|.
So x € E’'. From this argument, we conslude that x € EU E".

(Theorem 1.13)

STEP 1. (=) Since x € E', we have {z,},>1(i # j = z; # ;) C E,z, — z.
For any 6 > 0, since z, — z, we can find N st |[x — x,| < d(n > N). Therefore
B(z.0)NE\{z} D {zn}n>n-

STEP 2. (<) We consider {0, }n>1 8.t §, \( 0. We pick 2y € B(z,6;) N E\ {z}.
Next we pick xo € B(x,d9)NE\{z}. (But we assume that |z —xz5| < |z—x1| to assure that
{z,} are different from each other.) In this way we obtain {z,, },>1 C E(i # j = z; # x;)
stxz, —>x. Sox € F.

(Theorem 1.14)
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1.1.

STEP 1. ((El U EQ)/ D) Ei U Eé) Since F; C E; U E27 we have Ei C (El U Eg)l.
(Because if 3H{z,}n>1 C By 8.t z, — x, we can say that IH{z,},>1 C B4 U Es s.t z, — )
Similarly we have E) C (Ey U Ey)'. So we have the desired result.

STEP 2. ((E1UE,) C EfUEY)) Letx € (B3 UE,) . Let {z,},>1 C E1UE, where
z; # x;(1 # j) and x,, — x. Since {z,},>1 C By U Ey, Ey (or Es) contain infinitely many
{z,}. We can choose infinitely many {z,} C E;. Hence we have a subsequence ny s.t
{p, }z1 C Ey. Of course, z,, — . Hence x € E]. From this discussion, x is always
containd in either E} or E). So x € E{ U E}. Now we have the desired result.

]

(Theorem 1.15 Bolzano-Weierstrass Theorem on R?)  Let {xy; }x>1 C E where
Tp = (Th1, Tnay + ,Tra)’ . Since E is bounded, |zx1| £ My < 00, o] S My |2p4] S
My for some M;,--- My < oo. By Bolzano Weierstrass’s theorem for R!, we can find a
subsequence {k;(¢)}e>1 s.t @k, (01 converges to some x € R. Next, {xy, (¢} is bounded,
similarly we can find a subsubsequence {ky(¢)} C {ki(£)} s.t @y, 2 converges to some
x5 € R. Of course, xy,(),1 also converges x7. By repeating this process, we will finally
obtain {zy, ) b1 8.6 gy = (2f, 25 ah)T. O

[ 6 | (Theorem 1.15 Supplement) O

(Exercise 1.4.1) E = {J,czln,n + 1) N E. Since E is uncountable, there
exists ng € Z s.t [ng,ng + 1) N E is an infinite set. (Otherwise F is counable.) Since
[no,no + 1) N E C [ng,no + 1] is bouned, so it has at least one limit point by Bolzano-
Weierstrass theorem. So E’ # (). Now the proof is complete.

We present an alternative solution. We prove the contraposition, that is if £’ = () then
E is not uncountable. (At most countable) Note that £ = (E\ E')U(ENE') = E\ F
and E \ E' is a set of isolated points. A set of isolated points is countable. (See Exercise
1.42) Now the proof is complete. O

(Exercise 1.4.2)

STEP 1. E=FE\F UENE'. Since ENE' C E' is countable, it is enough for us

to prove that £\ E’ is countable. S ) \ E’. Every point in S is an isolated point. We

show that if S is a set of isolated points then S is countable.

def

STEP 2. Let S, = {ze€[-nn]?|B(z,2)nS={z}}. We claim that S =
UnZi Sn-
First, we prove S C |J.2,S,. Let z € S. Then there exists sufficiently large n; € N
s.t x € [-ny,ny]% There also exists sufficiently large ny, € N s.t B(z, n%) NS = {z}. Let
no def max{ny,ny}. Then z € S,,.
Next, we prove S O (J>7, S,. However S,, C S holds obviously for all n € N.

STEP 3. We claim that S, is a finite set for every n € N. Vxy, 29 € S, (21 # 23),
B(zy, L) N B(x2, L) = 0. Suppose that S, is infinite, there exists inifinitely many disjoint
open balls {B(zy, £)}iz1 s.t Bay, +) C [-n — =, n+ +]%. However this can not happen
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1.2.

because [—n— 1, n+1]%is bounded and its volume is finite (so it can not contain infinitely
many disjoint open balls whose radius is %) So we conclude that .S, is finite hence S is
countable.

m

@ (Exercise 1.4.5) Every point in F is an isolate point. We have alreday proven

that a set of isolated points is a countable set in the previous question. O
§1.2

(Example 2 and 6)

STEP 1. (=) Suppose f(z) € C(R"). It is enough for us to show that E; is closed
for all t € R. (Here we may fix t € R.) When E; = (), E; is closed. So we suppose that
E} # 0. Let us pick zp € E} and {z,},>1 C E1(i # j = x; # ;) s.t x, — 9. Then
f(z,) 2 t. By taking n — oo, lim,, o f(z,) = t. The left hand side will be f(xg) because
f(z) € C(R™). So xzy € E;. This implies Ef C F; for all t € R. Therefore E; is closed.
Similarly Ejs is closed for all ¢t € R.

STEP 2. (<) We prove contraposition of the statement. We show f(z) ¢
C(R") = 3t € R s.t E; or Ey is not closed. Now f(x) is not continuous, so Iz, € R™
and Je > 0 s.t V& > 0 Jy € B(xg,0) s.t |f(y) — f(zo)| = €. This implies we can pick
{Yntnz1 Yo = xo 8.t |f(yn) — f(x0)| = €. (You may consider a decreasing sequence of
{6n} 10, \(0) So f(yn) = f(xo) +€o0r f(yn) < f(xo) — €. At least one of the conditions
(f(yn) 2 f(xo) +€or f(yn) = f(xo) — €) holds for infinitely many n. So we can find a
subsequence ny 8.t f(yn,) = f(zo) + €. Now let t = f(z9) + €. Then E; is not closed
because y,, € Ey and y,, — xo but f(z) =t (= f(x0) + €) does not hold. So zy ¢ E}.

]

(Example 3) We show that B(x,0) = C(z0,d). For simplicity, let B =
B([E075), C = O([Eo,(s)

STEP 1. From B C C, we have B = C. Since a closed ball is a closed set, C' = C.
So we have B C C.

STEP 2. Next we show B > C. Now let z € C. Let z, = (1 — §)z + %xg.
|zp—z| = 1|zo—z| £ 2 < §, hence {z},} C B and zy — x. Thereforexz € B' C B'UB = B.

O
(Example 4) Let § > 0 be an arbitrary small number. Let m € Ns.t 107 < 4.
Let us define ¢, ¢, - -+ and dy, ds, - - - for given natural numbers ny, ny as
nia — [nial = 0.c1C2¢3 -+ CrCmy1 - - -
o — [TZQCL] = 0.d1d2d3 ce dmdm—H oty
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where [x] o max{k € Z|k < x}. We can find ny,ny € N(n; # ng) such that
C1 = d1702 :d27"' » Cm :dm7

because the combinations of {c1,cs - - ¢, } have only 10™ but there exists infinitely many
natural numbers (ny,ny) € N2 Moreover since a ¢ Q (an irrational number),

[(nia — [ma]) — (nea — [naa])| > 0, (n1 # na).

(if = 0, a will be a rational number.) From this fact, we find that we can pick ny,ny €
N, keZst

0 < |nja—nga — k| <107™ < 4.
Hence we can find p + aqg € E, s.t p+ aq € (0,9). Now for any z € R, we can find z € Z
stx—0 < z(p+aq) <x+9 (because p+ aq is very small). This implies that we can find
a sequence {z,} C E, s.t x, — . O

(Example 5)

STEP 1. Since cos(z) is a continuous function, Vo € R, 3§ > 0 such that Vy €
(x — 0,24 9), | cos(z) — cos(y)| < e. Now choose an arbitrary number ¢ € [—1,1]. We can
find x € R s.t ¢ = cos(z). Now fix z € R and € > 0.

STEP 2. Let us be careful of the fact that E = {cos(n)|n € N} = {cos(n +
2mm)|lm,n € N}. Let Y = {m + (2r)n|m,n € N} (Let us recall the previous exercise).
From the previous exercise, we can find y = m+2nm € Y st [z —y| < d. (. 27 ¢ Q).
Hence |cos(z) — cos(y)| < e. Now cos(y) = cos(m + 2nmw) = cos(n), therefore we may
conclude that Ve € [—1,1],3n s.t | cos(n) — ¢| < e. This implies that for any ¢ € [—1, 1],
we can find a sequence of natural numbers {ny,}x>; s.t limy,_,o, | cos(n)—c| = 0. Soc € E.

]

(Theorem 1.16)

(1) We have already shown that (Fy; U Fy)' = F| U Fj. Since Fy, I, are closed,
Fll U F2/ C Fl U FQ. Therefore (Fl U FQ), C F1 U FQ.

(2) F C F,(Va € I). Hence F' C F! = F,(Ya € I). Therefore we have F' C
maGIFa =F.

(Theorem 1.17) We consider the following two cases.

case 1. (Fy \ Fry1 # 0 for only finite number of k) Fky = 1 such that Fj,1 =
Fyoro = Figps = ---. Then (;—, Fy = Fy, # 0 (. assumption). So the statement is true.

case 2. (Fy \ Fyy1 # 0 occurs for inifinitely many k.) We can find a subsequence
Fi, \ Fr,+1 # 0 for all £ € N. Let us pick x; € Fy, \ Fi,+1. Since {x4}p>1 C Fr, C Fy
and F is bounded and closed, we can find a subsequence ) 8.t xymm) — =* € F1 by
Bolzano-Weierstrass Theorem. And {[L‘g(m)}ng - Fké(Z) C F5 and F5 is closed, so x* € F5.
By similar argument, we have z* € Fj, for all k € N. So z* € (", Fk.
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[
(Exercise 1.5.1.4)
STEP 1. (D) Since E € {F}rprclosed; B D mFDE;F:closed F
STEP 2. (C) Let I be a closed set with F' > E. Then E' C F' C F so E =
ENE CF. Therefore £ C (55 petosed:
[

(Exercise 1.5.1.5) Since f(x) is real-valued so F' = {z € F' | f(z) < oo} =

U {z € F| f(x) £ n}. We prove that for each n € N, {z € F | f(x) < n} is a

finite set. Suppose that £, <& {z € F | f(x) £ n} is not a finite set then we can pick

infinitely many points {xfcn)} CF, (ifk #¢, xfg") + xén)) Since F,, C F is bounded, we
can find a subsequence {x%n)}mzl s.t x,(;zzn) — xo by Bolzano Weierstrass theorem. By

assumption lim,, oo f (x,(;(?n)) = oo. This means that we can find mg s.t f (xgzzno)) > n.
So this contradicts to the assumption.

(Exercise 1.5.1.6) We show that F’ C F. Suppose that F' # (). Let (zo,v0) €

F'. Then {(2n,Yn)}nz1 C F st (n,yn) = (20, v0) ((wi,v:) # (z5,y;) if @ # j). For each
n, f(zn) 2 Yn. Solim, o f(z,) 2 lim, o y,. Since f(x) is continuous, f(zo) = yo. This
means that (zg,yo) € F. So F' C F. O

(Theorem 1.18)

(1) G°=Naes G&- Since G, are closed sets, G is also a closed set. (See Theorem
1.16) So G is an open set.

(2) (Niz1 Gr)® = U5, Gf is closed. (. Gf are closed sets. See Theorem 1.16)
(3) Let F =G

STEP 1. (=) We consider its contraposition. We show that 3z € G,V§ >
0, B(x,0)\G # () = G is not open (F is not closed). By assumption, by taking a sequence
of {8} : 6, ¢ 0, we may obtain a sequece of point {z,} C B(x,d,) \ G = B(z,0,) N F.
(Moreover we may assume that |z — xj41| < |z — xy|. So z; # z; if i # j) Since z,, — =,
x € F' but « € G. This implies F'\ F' # (). So F is not closed.

STEP 2. (<) We consider its contraposition. We show that G is not open =
dr € G st Vo > 0,B(z,0) \ G # (. By assumpotion, F' is not closed, so there exists
z € F'\ F. We may take {x,}n>1 C F : 2, > 2 € G(¢ F). Then Vo > 0, there exists N
st {zp}nsn C B(x, ). This implies that B(x,0) \ G = B(z,0) N F D {x,}nsn # 0.

]
(Example 7) We use the result of the previous problem. We pick o € H. We
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show that 3B(zo,d) C H. By definition,

wy(wo) = lim  sup ){|f($1) — f(z2)]} <t

021 22€B(x0,5

Since - - - < t, there exists sufficiently small §; > 0 such that

sup ){If(:):l) — flz)[} <t.

1,22 GB(:EQ ,50

We pick an arbitrary point z* € B(xg,dy). Since B(xg,dg) is an open ball, we may
pick 0* > 0 such that B(z*,8") C B(wo,d). Hence sup,, . cpusilf(z1) — f(z2)]} =
SUDy, zaeBzo.0) LS (1) — f(22)|} < t. So we have lims\ g wy(z*) <t for all 2* € B(xo, o).
This implies that B(xg, o) C H. Therefore H is an open set. ]

(Theorem 1.19)
def

(1) For each z € G, let I, o (az,by) where a, = inf{a | a < z,(a,2) C G} and
b, sup{b | b >z, (x,b) C G}. Since G is an open set, so I, # (.
STEP 1. We prove that G = | J, . ,. First, let g € G be an arbitrary point in
G. Then xy € I, and I, C U, Llo- S0 G C U,eq Lo
Next, we prove that I, C G for all x € G. Let z € G. We can pick {a,} s.t
an, N\ ag. Since (a,,z) C G for all n € N, |2, (an,z) C G. The left hand side is
U~ (an, z) = (azx). So (ay,z) C G. Similarly, (z,b,) = U —,(x,b,) C G where b, /' b,.

So I, = (as,b,) C G for all # € G. Therefore | J, .. I, C G.

STEP 2. We prove that if z # y (z,y € G) then I, = I, or I, N I, = (). Suppose
that I, N I, # 0,2 < y. Since [z,y] C G, we find out that a, = a, and b, = b, by their
definitions. So G is a union of disjoint open intervals.

STEP 3. Finally, we explain that G is a countable union of disjoint open intervals.
Since each disjoint interval contains rational numbers, and the number of rational numbers
is countably many, GG is a countable union of disjoint open intervals.

(2)

STEP 1. First we prove that G is a countable union of open rectangles. (not
disjoint) Let

d
def ki ki +1 d
In = a0 5 N, kel
k H (2n on } n e S
We claim that -

c-U Ut

n=1kez%I, ,CG

First D is obvious because for each (n,k) € N x Z% we pick I, C G. Next we prove C.
Let us pick € G. Since G is an open set, there exists § > 0 s.t B(z,d) C G. For each
n € N, there always exists k € Z% s.t x € I,,;. By choosing sufficiently large n € N, we
can let diam(/, ) = *2/—5 < 4. So we have x € I, C B(z,d) C G. Such I, is contained
in the union of the right hand side. So z € U, exUpezaz, ,cq Ink- Now the proof is
complete.
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STEP 2. Let

m=1keZz4;1,, ,CG

Since H,, def Gy \ Gn—1 can be expressed as disjoint union of open rectangles {1, s }reza,
and G = J,_, H,, we have the desired conclusion.

(Exercise 1.5.2.1) Show that £ = (ﬁ)c
STEP 1. (E c (E°)°) We show that (E)° D B¢ = (E°) U (E°). Since (E)° is

o

closed, it is enough for us to show that (£)¢ D E°. However this is obvious because
ECE.

STEP 2. (E D (ﬁ)c) We show that (E)° C E°. Let 2 € (E)°. We show that
r € be.

case 1. (x € B°) x € E°C E°U(E°) = E°.

case 2. (v ¢ E°) Since z ¢ E, V5 > 0, B(z,6) ¢ E. Therefore V5§ > 0, B(z,0) N

E° # (). Moreover x ¢ E°, implies that Vo > 0, B(z,d) \ {z} N E° # . So = € (E°)".
Therefore z € (E°) U (E°) = E°.

(Exercise 1.5.2.3)

(1) Let us recall that 0G = {z € R? | V§ > 0, B(x,6) NG # 0, B(z,d) N G # 0}
from the previous question. From this, it is easy to find out that G = 9(G°).

STEP 1. (G isopen = GNIG =0) Let z € G. Then 3§ > 0 s.t B(x,§) C G. So
B(x,0) N G° = (). Therefore 2 ¢ JG. This implies that G N IG = ().

STEP 2. (G is open <= GNIG = ()) Let us pick z € G. Since = ¢ 9G, 30 > 0
st B(z,0) NG = 0 or B(xz,0) N G° = ) holds. = € G, {z} € B(z,0) NG # 0, so
B(z,8) NG = holds. This implies that B(x,0) C G. So G is an open set.

(2) Let G ' Fe. Then 0G = OF. G is open if and only if F is closed. 9F C F &
OFNF =)< 0GNG =0« Gisopen. (.- the previous question.)

]

(Exercise 1.5.2.4) Let a € A. There exists x € G s.t a € B(x,rg). Since G is
an open set, there exists § > 0 s.t B(z,0) C G. We may suppose 0 < 6 < rg — |z — al.
(lx—a| < o) We pick 2* € B(z,d) C G. Then |z*—a| £ |z —a|+|x—2*| < |[xr—a|+d < 1.
So a € B(z*,19) C U,cq B(x,m9) = A. This implie that a is an interior point of A. So A
is an open set. ]
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(Exercise 1.5.2.5) O

(Definition 1.26, Lemma 1.20, Lindelof’s Covering Lemma)

(1) Let E C R Let I' = {Gq }aer be a family of open sets on R If E C |J,o; Ga,
we say that I' is an open cover of E. If IV C I is also open cover of E, then I" is called a
sub cover of T'.

(2) We fix x € E. We can find r > 0 such that B(z,r) C E. Since Q is dense in
R, we can find y = (y1, %2, -+ ,94) € Q¢ s.t |z —ys| < ﬁé‘ Then |z —y| < 7. Now we
choose ¢ € QN (r/4,r/2). Then x € B(y,q) C B(x,r). Such B(y,q) € <.

(3) Foreach z € I, we can find at least one a(z) s.t © € Gu(z). We apply the previ-
ous lemma to each Gy ;). Then we may find B(y), ¢(z)) € 47 such that x € By, ¢m)) C
Gaw) £ =U,eplr} CUper BW@): 4@)- Since {B(Y), 4)) }oce C & is countable, we
may rewrite it as E' C |, B(zg, qx). For each k, we may find o, € I s.t B(zg, qx) C Ga,-
Therefore £ C |J;5; Ga,-

]

(Theorem 1.21 Heine-Borel’s Finite Covering Lemma) Let F' C R be a closed
and bounded set. Suppose that there exists an open cover {G,}acr (I is an index set. [

can be countable or uncountable.) Then we can find a finite cover {ay,as, - ,a,} C I
S.t .
Ec | Ga.
k=1

This is called Heine-Borel’s Finite Covering Lemma.

STEP 1. By Lemma 1.20 Lindelof’s Covering Lemma, we may suppose that
Fcl )G
n=1

without loss of generality.
STEP 2. Let . .
H, S J G, Le = P\ G
k=1 k=1

We consider the following two cases.

case 1. (L,, = 0 for some n € N) This implies that F' C |J;_, G,, for some n € N.
So the theorem is true for this case.

case 2. (L, # (0 for all n € N) Note that L,, is a bounded closed set for each n € N,
and L, D L,,1. By Theorem 1.17 Cantor’s Intersection Theorem,

dz* € ﬁLn (CF)

n=1
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z* ¢ G, for all n € N. This implies that z* ¢ |J,_, G,. However this contradicts to
the fact that {G),},>1 is an open cover of F. (z* is a point of F' but not is covered by

{Gn}nz1)

So we conclude that the there exists n € N s.t

FCOGk

k=1

(Example 8)

STEP 1. For each x € F, we can find 6, > 0s.t B(x,0,) C G because z € F C G.
Obviously,

F=|J{z} c | B(z,6./2).

zeF zeF

By Theorem 1.21 Heine-Borel Finite Covering Lemma, we can find finite number of points
in ', {z1,x9,--+ ,x,} and positive numbers {0, d2, -+ ,0,} s.t

k=1

STEP 2. Let us pick an arbitrary point € F. Since F is covered by { B(xy, dx/2) }i_;
we can find some i s.t © € B(x;,6;/2) Let us pick an arbitrary point y € G° and x € F.

b (2 & o .
lz—y| 2 ly—ai| — |z — x| > 3 = min{d,/2, -+ ,6,/2}.
e (1) is obtained by triangular inequality.
e (x2) is because y € G° and B(z;,0;) C G so |y — x;| = 6; and = € B(z;,0;/2) so

The argument above implies that for Vo € F and Vz € R? with |z| < 6* o min{d,/2,--,0,/2},

r+ z € G. (Conversely, if y Yrtzeaqe ly — x| = |2| 2 min{d,/2,---,0,/2} by the
argument above.) Now the proof is complete.

(Theorem 1.22)

STEP 1. (£ is bounded) For example, {B(q,1)},cq¢ is obviously an open cover
of E. We can pick finite number of {B(q;, 1)}¥_; s.t

k
Ec|JB(a.1).
i=1
by assumption. Let r & max;—; .. x{|@|} + 1. Then UL, B(g:,1) € B(0,7). So E is
bounded.
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STEP 2. (Fisclosed) We prove that E' C E. Let us fix an arbitrary point y € E°.
For eachz € E, x # y = | —y| > 0. So we can find §, > 0 s.t

B(z,6:/2) N B(y,6,/2) = 0.
Since {B(x,,/2)}.cr is an open cover of E, we can find {B(z;,d,,/2)}7, s.t

n

E c | JB(x:,6,,/2).

i=1

Let 6* & min{d,, /2, -+ ,0,,/2}. Let us choose an arbitrary point x € E. Then we can
find i € {1,--- ,n} s.t © € B(z;,0,,/2). Note that

(*1) £2
-1l 2 ly—zil— o o) 28,22 6

e (1) is obtained by triangular inequality.

e (x2) is because |y —x;| > 0., (" B(x;,04,/2) N B(y,d,,/2) = 0) and x € B(x;,0,,/2).

This implies that we can not find {z,},>; C F s.t x, — y. So y is not limit point of
E. In other words, y € E° =y ¢ E’. So

E°¢C (B

and this implies that E' C E.

]

(Exercise 1.5.2.9) Please refer to the Example 19 in the next section. Let F’
be a non-empty closed set and suppose that F’ does not contain any isolated point. Then
FFcFand F\F' =0. So F=F\F UF =0UF'. When F = F', I is called a perfect
set. A perfect set is known to be an uncountable set.

[l
(Exercise 1.5.2.10) Let € > 0 be an arbitrary positive number and let us fix e.

STEP 1. Let x; € F be an arbitrary point in F. Since fi(z;) — +0 as k — oo,
we can find N; € Ns.t 0 = fu,(z;) < 5. Moreover fy,(z) is a continuous function, there
exists §; > 0 s.t

[N, (@) = f, ()] < %, Vi € B(x;, 6;).

So we have

Iy, (x) <€, Y € B(x;,d;).

STEP 2. Note that
Fc | B(.5),

zeF
where 9, is defined in the same way in STEP 1. By Theorem 1.21 Heine-Borel Finite
Covering Lemma, we have

i=1
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STEP 3. Let k> max{Nj, No,--- N, }. Note that

(

1
sup fr(r) = sup fe()
zeF zelUi_, B(xi,0:)

—

A
&
&

' max Sup fk(x)
=121 e B(24,8)

—
=

‘ sup  fn,(2)
=121 e B(24,6:)

A
g
"

—
Nt

ITAWS
5
"
2
I
)

x1) F C U, B(z;, ;).

)
*2) See below.
*3) f

() is decreasing with respect to n.

(
(
(
(

x4) fn,(x) < € for all x € B(z;, ;).

IA

This holds for all n > max{Ny,---,N,}. Hence we have limsup,_,. sup,cp fr()
sup,cp fr(z) < €, so we conclude that

fe(z) Z0on F.

Finally, we present the proof of (¥2). First, sup,ejr | ps,s,) f5(¥) 2 SUDep(a, 5) fr(2),
foralli =1,2,---n. So

sup fu@) 2 max sup  fulo)
er?:l B(w;,0;) =L n z€B(xi,0;)

Second, for all w € | J;_; B(w;,0;), we can find i s.t 2 € B(w;, 0;). So fi(x) = SUp,ep(s, s fr(r) =
MaX;=1,... n SUPgep(a, 0,) [k(2). By taking sup,ejr  p(s, s,) of the left hand side, we have

sup Je(z) = max - sup fr(z).
z€Uiz, B(i,0i) =L pe B(ws,6;)

(Definition 1.27)  f(x) is continuous at xo € F means that
Ve > 0,30 > 0s.t Vo € B(xg,0) N E,|f(x) — f(z0)| <e.

Equivalently,
lim  sup  [f(z) — f(zo)| =0,

6—=+0 2€B(z0,0)NE
or
li = li inf = :
5—1}-?0 meB?aipé)ﬁEf(x) 5—1>r£0 xeB(lag,é)ﬂEf(x) f(wo)
(i.e lim, ., f(z) = f(x).) Note that when zg is an isolated point of E (i.e g € E'\ E’),
then f(x) is continuous at xy by the definition above. When f(x) is continuous at all
xo € E, we say that f(z) is continuous on E and denote it as f(z) € C(F). O
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(Example 9) Suppose that there isnot x € F's.t f(z) = z. Since |f(z) — f(y)| <
|z —yl|, f(x) is continuous on F. Let g(x) o |f(z) —z| : F — [0,00). g(x) is also
continuous on F. And F is bounded and closed. ¢(z) has a minimum value on F.
Suppose that g(z) takes the minimum value at zo € F. Since f(z¢),z9 € F, we have

9(f (o)) = [f o f(wo) = f(xo)| < [f(x0) — 0| = g(w0) > 0. (> 0holds because f(zo) # o
by assumption.) Let x; oo f(xg) € F. Now g(z1) < g(xg). (contradiction!!) O

(Exercise 1.5.2.11) Let A o {z € F | f(x) = 0}. We show that A" C A.
When A’ = (), A’ C A holds obviously so we may suppose that A" # (). Let ag € A’, then
there exists {a,} C A with a, — ag. Since f(a,) = 0, we have lim,,_,, f(a,) = 0. Since
f(z) is continuous, lim, . f(a,) = f(ag). So f(ap) =0. And ay € F' C F. So ay € A.
.. Ais a closed set. H

(Exercise 1.5.2.12) Let 9 € J,—, E,. We can find ng € N s.t 2y € E,,,. We
may suppose that ng = 1 without loss of generality. Since F; is an open set, if 6 > 0 is

sufficiently small, then B(zq,0) C E;. So

lim sup |f(x) — f(z0)]

0=+0 3¢ B(20,0)NU, En

= lim  sup [f(z) = flzo)| =0, " f(z) € C(En)

6—+0 wEB(mO,é)ﬂEl

(Exercise 1.5.2.13)

(1) Let f(x) = |z|. Then f(x) is continuous on E. Since f(x) =z € F is bounded,

E is bounded.
Suppose that E is not closed. So E'\ E is not empty. Let 2o € E'\E. Let f(z) o m
f(z) is continuous and well-defined on E because xy ¢ E. However, o € E' means that
we can find {z,} C E s.t x, = xo. So f(z) = oo as x, — xo. This contradicts to the

fact that f(z) is bounded. Therefore we conclude that E is closed.

(2) The functions above are non-negative so they have the maximum value means
that they are bounded. So we have the same conclusion as the previous question by the
same argument.

]

(Exercise 1.5.2.14) Let zy € E be an arbitrary point in E. If z, is an isolated
point (zg € E \ E'), f(z) is continuous at zp. So we suppose that g € E N E’. Let

{Zn}n>1 C E be an arbitrary sequence with z,, — zo. Since K o {Zn}nz1 U{z0} is a
compact set, we have lim,, ., f(x,) = f(xo). Now the proof is complete. O

(Definition 1.28) If a set is a countable union of closed sets, then it is called
a F, set. If a set is a countable intersection of open sets, then it is called G4 set. (F":
closed, G: open, o: countable union, §: countable intersection) O
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(Example 11) A set of continuity of f(z) on G is

(€ G wyle) = 0} = :{xeawf(o:)ﬁ},

where

ok -
wy (@) éggoxhxjggw)lf(m) f(a2)],

which is defined in Example 7 of the previous subsection. In Example 7, we have already
verified that

{r € Glws(z) <t}
is an open set for all £ € R when G is an open set. So the proof is complete. O

(Example 12) Let

A Y {z € R?| f is continuous at '},
(e e]

B ¢ wé(i>,

Ex(e) = {oeR[f(z) — fulx)] < €}

We claim that
A=DB.

STEP 1. (A C B) Let xy € A. We prove that zp € B. First, zo is a point of
continuity of f(z), we have Ve, there exists 6 > 0 s.t

[f (@) = f(zo)| < €/3, Va € B(xo,0).
Second, since fi(z9) — f(zo), there exists sufficiently large ko € N s.t
| fro(0) — f(@o)| < €/3.
Third, since f,(z) is a continuous function, there exists ¢’ > 0 s.t
[ fro(2) — fro(m0)| < €/3, V& € B(x0,0").
Now let 6* & min(d, ¢') and we have

| (@) = fio ()] |f(@) = f(@0) + f(20) = fro(T0) + fio(T0) = fao(@)]
|f(x) = f(o)| + | f(20) = fro(m0)| + | fro(T0) — fio ()]
€/3+¢/3+¢€/3=¢€Vr e B(xy,d").

A A

This implies that
B(xg,0") C Eg,(€).

Moreover the left hand side is an open set, so we have
B(xg,6%) C Eg,(€).
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It is easy to see that

B(zo,6%) | Ex(e)
k=1
Now we have -
xy € U Ey(€), Ye >0
k=1
Therefore
(o) [ee] . 1
g € ﬂ U E, (—)
m=1 k=1

STEP 2. (B C A) Let g € B. We prove that g € A. Our goal is to prove that
Ve > 0,30 >0s.t
|f(z) = f(zo)| <€, V& € B(w,9).
<

First we take mg € N s.t mLO 5 Note that

c>oo 1
X € 2 A ——

o 1
Xo € Eko <m—) .
0

Since the right hand side is a set of interior points, we can find g > 0 s.t

e 1
B(JIO,(S()) € Eko (—) .
m

0

o 1 1
B () < B (5 )
mo mo

[ fro () = f(2)] =

Note that xy € B(xg,dp), so we have

We can find kg s.t

Also note that

So we find out that

[ fro (o) — f(o)| =

Let us recall that fi,(z) is a continuous function on R%. So fi,(x) is continuous at .
This implies that there exists 6; > 0 s.t

€
|fio () = fio(@0)| < 5, V& € Blzo, 01).
Finally let § % min{dyp, 01 }. We have

|f(x) = fzo)] = |f(z) = fro(@) + fro(@) = fro(m0) + fro(w0) — f(0)]
S f(@) = fro (@) + [ fro(2) = fro (o) + [ fro (20) — f(20))]
< €/34+¢€¢/3+¢€/3=¢, VYr € B(x,0)
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STEP 3. (Ais a Gsset) A= B and B is obviously a Gs set. Now the proof is
complete.

(Definition 1.29, 1.30, 1.31)

(1) Let o be a collection of point sets. (VA € &7, A is a point set.) If o7 satisfies
the following conditions, we say that o7 is a o-algebra.

e Ve
o if VA € o/, then A° € of
o if {A4,}22, C &, thenJ ~ A, €

(2) Let X be a collection of point sets. And let {7 };c; be a collection of o-algebras

with ¥ C @, Vi € I. Then o & Nic; < is also a o-algebra. (the proof is easy.) We also

denote o as o [X]. This is called a o—algebra generated from Y. We can also say that
this is the smallest o—algebra that contains 3.

(3) Let 0 be a collection of all open set on R?. Then o [¢] is called Borel algebra,
or Borel sigma algebra. Each element in o [ﬁd} is called a Borel set. We often denote it

as BY 5 [07].

(Exercise 1) We claim that

A refat] | f@) <ty =B JU ﬂ{fce a:8] | fnl ><t‘l}‘

k=1n=1m=n

STEP 1. (A C B) Let g € A. Since f(zg) < t, there exists sufficiently large

l{io € Ns.t 1
<t— —
flag) <t -
Since f,(zo) — f(z0), there exists ng € N s.t Vm = ny,
1
t— —.
fm(xo) < ko
This implies that
= 1
re [) {:ve [a,b] | () St—k—o}
m=ng

and note that

A fecwiinmz-tl ¢ UA{remninms 1}

m=ng n=1
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So xg € B.

STEP 2. (BC A) Let xyp € B. There exists kg,n9 € N s.t
1
fm(zo) =t ——,Vm 2 nyg.
ko’
This implies that
1
f(zo) = limsup f,(zo) St — < t.

n—o0 0

So xg € A.

STEP 3. Since every f,(z) is a continuous function,

is a closed set for each n € N,k € N. (See Theorem 1.16 and Example 2 in the previous
section.) So B is a F, set.

(Exercise 2) We show that
A= {x € F | liminf f,(x) > a}, (a € R)
n—oo

is a F, set. (Then the rest proof is easy.) To prove the above statement, we claim that

A = B where

oo oo o0

s=UUN{rerimmzar ).

k=1n=1m=n

(It is easy to prove that B is a F, set.)
STEP 1. (A C B) First suppose that zy € A. Then

liminf f,(zo) > a.

n—oo

This implies that we can find ky € N s.t

1
hm mf fo(zo) >a+ —
ko

Let us define ot
gn( )E inf fm( )

m2n

Note that

1
lim mf fn(zo) = hm gn(mo) >a+ —

Since g,(zo) is monotone increasing with respect to n, we can find ng s.t

1
Gno(T0) > a + e
0
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So

This implies that

xOEﬁ{$EF|fm(x)>a+klo} C ﬁ{l’EF|fm(l‘)§a+kio}

m=ng m=ng

c fj ﬁ{xeFUm(x)ga—l—kio}

n=1m=n
o0 oo oo

c Ju ﬂ{x€F|fm(:c)§a+%}

k=1n=1m=n

= B
STEP 2. (BC A) Let x9 € B. There exists kg,ng € N s.t

1
fm(x0) = a+ e VYm = nyg.
0

This implies that
1
inf fm(xO) 2 a+ —

m2ng ]{30 7
and hence 1
liminf f,(zo) 2 ir>1f fm(zo) 2 a+ — > a.

n—oo m=ngo ko

This implies that zq € A.
STEP 3. (Proof of the rest part)

{z € F| fu(x) converges at x}

— {x € F | limsup f,(z) = lirginf fn(l’)}

n—o0

s {x € F | limsup f,(x) > liminf fn(x)}
n—oo

n—oo

2 (U G {x € F'| limsup fu(x) = r + QL and r — QL 2> liminffn(a:)})

reQnel 00 n n n—00

~ 1 1
= ﬂ ﬂ {x € F |limsup f,(z) <7+ — orr — o, < liminffn(x)}
n—oo

2n n n— 00
reQ n=1

= m ﬁ{:UEF]limsupfn(:v)<T+%}U{x6F]r—%<liminffn(x)}

n—00
reQn=1 n—00

e (x1) Note that limsup = liminf alway holds.

e (x2) This is because if a,b € R,a < b holds, then we can find a r € Q (the set of
rational numbers is dense in R.) and sufficiently large n € Ns.t [r—1/2n,r+1/2n| C
[a,b]. (The converse also holds obviously.)
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Finally,
1
{x €eF|r— o < hgglffn(:v)}
is a F, set by the previous result. And also note that

{x € F | limsup f,(x) <r+ in} = {x eFr|—r— % < liggiorolf(—fn(x))}.

n—0o0 2

A union of two F, sets is also a F, set. So we conclude that the set above is a countable
intersection of F, sets, which is called a F, ; set.

(Exercise 3) The proof is somewhat similar to that of Example 11. Let
w(r) = lim sup | f(x1) = f(22)].

024021 2reB(2,6)\{a}
Note that lim,_,,, f(z) exists if and only if
w(xo) = 0.
Since

{:p € R | lim f(y) exists} = ﬁ {x eR|w(r) < l},

—x n
Y n=1

it is enough for us to show that
{r e R|&(z) <t} is open ,Vt > 0.
Suppose that zg € {x € R | ©(x) < t} (We assume that ¢ > 0 is now fixed.). Since
sup —[f(z1) — f(22)]

z1,22€B(z,6)\{z}

is monotone decreasing with respect to 6 > 0, if ©(zg) < t, then we can find dy > 0 s.t

sup |f(z1) = flzo)| <t

z1,22€B(x0,00)\{zo}

We prove that
B(zg,00) C{z e R|&(z) < t},

and then the proof is complete. Let us pick an arbitrary point =* € B(zg, dg).
case 1. (2" =1x9) 2" =20 € w{r € R |w(x) <t} by assumption.

case 2. (x* # xy) We can find sufficiently small 0* > 0 s.t zg ¢ B(z*, ¢*). Note that

def

o(x*) = lim sup |f(x1) — fx2)]
0240 41 zoeB(z*,6)\{z*}
< sup |f(z1) — f(22)|
z1,22€B(x*,6%)\{z*}
< sup  |f(z1) — f(z2)]
x1,22€B(x*,6*)
<

sup |f(z1) — f(x2)] < t,

xl,xQEB(Io,(So)\{CCo}
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because
B(z*,0") \{z*} C B(2",0%) = B(z",0") \ {zo} C B(zo,d) \ {x0}-
f(z1) — f(xs)| decreases as 6 — +0.

e (x) Note that sup,, ,,ep(+ 5\ (2}

Now the proof is complete.

[
(Theorem 1.23 Baire) We suppose that E = |J,-, I} has an interior point

and derive a contradiction. Let us pick an interior point xy € E. There exists dg > 0 s.t
E(l’o, 50) C E.

This is possible because we can pick d5 > 0 s.t B(x,d5) C £ and pick &y € (0, d5) again,

then we have B(xg,dy) C B(xg,d5) C E.

STEP 1. (pick z;) We pick 21 € B(xg, )\ F1. B(xo, o)\ Fi is not empty because
B(zg,09) C Fy can not occur. Otherwise, zg is an interior point of F; and this contradicts
to the assumption that F; has no interior point.

Since B(xg, dp) is an open set, we can find §; > 0 s.t

E(Q?l, (51) C B(l’o, 50)
Moreover, by taking sufficiently small §; > 0, we can satisfy
F(ﬂfl, 51) N F1 = @,

at the same time. Otherwise, for all small 6; > 0, B(x1, ;) N F} # () implies that we can
find a sequence {x;,} C F} s.t 1, — 1. So x; € F] C F; and this contradicts to the
fact that z1 € B(xo, o) \ Fi.

STEP 2. (pick z3) Let usrepeat a similar argument. Let us pick zo € B(z1, 1)\ Fa.
B(x1,01) \ F3 is not an empty set because B(x1,01) ¢ Fy can not happen because F» has
no interior point. We can find small §, > 0 s.t

B(x9,05) C B(w1,01), and B(xy,0) N Fy = 0,
because B(z1,01) is an open set and if the second statement does not hold, we can find
{zon} C Fy s.t 29, — x9 € Fy C Fy and this contradicts to the fact that xo ¢ Fj.
STEP 3. (pick x;) Simiarly, we can find xj and dy s.t
B(xy,0k) C B(zp_1,6r-1) C E, and B(xy, 0) N Fp = 0.

Without loss of generality, we may suppose that

1
0<dp < —
< O k‘7

because the conditions above hold as long as Jj, is small enough. We claim that {z;} C R
is a Cauchy sequence. Let us consider ¢ 2 k. Then z, € B(xy, 6). So |x, — x| < % and
hence
li — =0.
k,EILnoo [k = | =0

By completeness of R, x; converges to x € R.
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STEP 4. (derive contradiction) Let ¢ = k = 1. By triangular inequality and since
xy € B(xg, dy), we have
|2 — m| + |2r — 2]
|z — xo| + g
This holds for all £ > k. By taking ¢ — oo, |z — x| < 0. So o € B(wy, 61,) C B(wg,dg) C

E. However, since x € B(xy, 1), v ¢ F), for all k = 1 (because B(xy, 6;) N Fj, = () , and
hence z ¢ |J;—, Fi, = E. This contradicts to the fact that z € E.

| — x|

A IA

]

— def

(Example 13) When A C Rand A = AU A’ =R, we say that A is dense in
R.

STEP 1. First we prove that if A is dense in R, then A° L Rd \ A has no interior

point. We consider its contraposition. If A¢ has an interior point, then A is not dense.
This is obvious because there exists x € A° and § > 0 s.t B(z,9) C A°. Then we can not
take {a,} C A s.t a, — x because when n is sufficiently large, |a, — x| < §, but then
a, € B(x,0) C A° and this contradicts to the fact that {a,} C A.

STEP 2. Suppose that Q is a G5 set. So there exists a countable number of open
sets {G}rz1 st

Q=G
k=1

From this equation, we find out that Q C G}, for all £ = 1. Since Q is a dense set, G,
is also dense in R. Let F, & R \ Gx (By STEP 1, Fj has no interior point.) and let

U~ {an} o Q. (For each n € N, a single point {¢,} is also a closed set with no interior
point.) Note that

R=R\QuQ=JFu Ha}

so R is a countable union of closed sets with no interior point. By Theorem 1.23 (Baire),
R has no interior point. (contradiction!!) Now the proof is complete.

(Definition 1.32)
— def

(1) Suppose A C R? and A= AU A’ =R?. Then we say that A is dense in R?. If
A C F and A = FE, then we say that A is dense in E.

(2) Let E C R Suppose that E = () (E has no interior point). Then we say that
E is a nowhere dense set.

(3) If E is a countable union of nowhere dense sets, then we say that E is a meagre
set or a set of first category. If E is not a meagre set, we say that E is a set of second
category.

112



1.2.

(Example 14)
def

STEP 1. Let A C R% Suppose that A°'= R?\ A has no interior point, then A is

dense in R?. (Equivalently, A is not dense in R, then A€ has at least one interior point.)
Let us fix an arbitrary point = € A°. Since A has no interior point, Vo > 0, B(x,d) ¢ A°.
This implies that B(x,d) \ A° = B(z,d) N A # (. By taking small 6 > 0, we can find a
sequence {z,} C A s.t z, = = (z; # x; if i # j). In other words, A° C A’. So we have

R =AU A°Cc AUA= A (Now we find out that A is dense if and only if A° has no

interior point. Also see Example 13.)
STEP 2. Let F, © R?\G,. Suppose that Nre, Gk is not dense. Then ((,—, Gx)* =
Ur—, Fr has at least one interior point.
Since every Gy, is dense, F} has no interior point. (See Example 13.) By Theorem 1.32
(Baire), |J,—, F) has no interior point. This contradicts to the fact stated above. Now
the proof is complete.

(Example 15) In Example 12, we have already shown that

{z € R?| f is continuous at z} = m U B, (1/m),

m=1 k=1

where

Ei(e) < {w € RY | |fu(a) — f(a)] S e}

Let G(e) o U, Ex(e), and we show that G(e)° is a meagre set. Then |J_, G(1/m)° is
a meagre set.

STEP 1. Let us fix € > 0, which is an arbitrary positive numbers. Let

oo

Fi(e) = (z € R | |fu(x) = frse(2)] = e}

(=1

Note that Fj(e€) is closed because fi(x), frie(z) are closed and an intersection of closed
sets is also closed. We claim that

R = ] Fi(e).
k=1
Let us pick arbitrary point z € R? and fix = for now. Note that
Jim | fe(z) = fi()] = i ([ fi(z) = f(@)] + [f3(z) = f(2)] =0,
N des] k,j—o00
because fx(z) — f(x). This implies that there exists sufficiently large ko € N s.t
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This also implies that
[ Fio (%) = Frote(x)| = €, VEZ 1.

So we have

x € ﬂ{x e R? | | fro () = frore(w)] = €}

/=1

¢ UNHE € R 1i@) — funslo)| £ ¢}

k=1/(=1
= U Fu(e
k=1

STEP 2. We claim that
Fr(€) C Ex(e).

Let x € Fy(e€), then we have.

() = ()] () = Sere(@)] + [frse(x) = f(2)]

<
S e+ | frere(x) — f(2)] = € as £ — oo.

So z € Ej(e). This implies that Fi(e) C Ek(e).
STEP 3. Note that

ﬁk(E) C Fk<6) C Ek(G) C G(E),

so we have

| File) € Ge),

therefore,
Gley =R\ G(9) Rd\gﬁk@)
_ ng@)\Qﬁk(e)
c Qma\ﬁk(e)

= |JoFu(e

We show the following two facts, and then the proof is complete.
e OI is a nowhere dense set when F' is a closed set.

e A subset of a meagre set is also a meagre set.
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STEP 4. (OF is a nowhere dense set if F' is closed) We show that OF has no
interior point. Note that F = F \ F is a closed set. So 9F = dF. We show dF has no
interior point. Suppose OF has an interior point. Then there exists B a non-empty open
set s.t B C OF C F. From this, we find out that

B COF, and B C F.

(B is an open set and B is a subset of F. We can say that every point of B is an interior
point of F'. So B C F.) So ]
BCOFNF.

But the right hand side is an empty set. (contradiction!!) So we concldue OF has no
interior point.

STEP 5. (A subset of a meagre set is also a meagre set.) Suppose that A is a
meagre set. Then there exist nowhere dense sets {Ej}r>; st A = Uzozl E.. Let B C A.
Then B = UZOZ1 E, N B. Since B, N B C Ey, E, N B is also a nowhere dense set.

]

(Cantor Set: Definition and Properties) Let us define {C}, },,>; in the following
way.

o Cy ¥ 0,1].

o ¢y ¥ 0,1/3]U[2/3,1).

o Co ¥ 0,1/9]U[2/9,1/3]U[2/3,7/9] U [8/9, 1].

o C, def Z;l I k.

The rule is easy. C), consists of 2" closed intervals. We divide each closed interval into
three peaces, and then remove the one in the middle. For example, if n = 1, we divide
Co = 10,1] into [0,1/3] U [1/3,2/3] U[2/3, 1] and remove [1/3,2/3]. Note that C, 1 C C,,.
Finally

c= ﬁ Ch.
n=1

C is called a Cantor set defined on [0, 1].

(1)  Obviously, C' C [0, 1]. So C' is bounded. Since C,, is closed for all n € N, their
countable intersection C' = ()~ C), is also closed. (Theorem 1.16)

(2) Since C is closed, C" C C. We show that C' C C’. Let us pick an arbitrary
point z € C. Then z € C,, for all n € N and there exists k (1 £ k < 2") s.t x € [, 5. Let
us pay attention to the fact that the edge points of I, are contained in C. Therefore at
least one of the edge point of I, is not z. Let z,, € I, be the edge point of I, ; with

Now we have a sequence of {z},21 with 0 < |z, — 2| £ 5. (because the length
1

of interval is z.) From this inequality, we can assume that z,, are different each other,
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because we can find a subsequence so that {x,} are different from each other. (Even if
Lp = Tpy1---, we can take larger n* such that |2, — 2| £ £+ < |2, — z].) Note that
{z,} € C s.t x,, - x. Therefore z € C'. So we conclude that C' C C".

(3) Let x € C and let § > 0 be an arbitrary small positive number. Let us take
sufficiently large n such that 3% < 0. x€C,foralln 21 and we can find k (1 < k £ 27)
st x € I, . When constructing C),41, the middle part of I, will be removed and the

removed part is not contained in C. This implies that B(z, 57) C B(z, ) contains points

which are not in C'. So x is not an interior point of C'. We conclude that C' has no interior
point.

(Example 17 Cantor function)

(1) Let us construct a sequence of continuous functions {®,(z)} defined on [0, 1]
shown in the figures below. (See the figures.) Let us recall how to construct a Cantor set.

STEP 1. In constructing C;, we remove (1/3,2/3). So ®i(x) = 1/2 for z €
(1/3,2/3). And we connect (0,0) with (1/3,1/2) and (2/3,1/2) with (1, 1) so that ®;(x)

becomes a continuous function on [0, 1].

STEP 2. Since (1/3,2/3) is already removed, we use the same definition on the
removed part. (i.e ®o(z) = 1/2 for z € (1/3,2/3).) And we update the definition on
other parts. In constructing Cs, we remove (1/9,2/9) and (7/9,8/9). So ®y(x) = 1/4 for
z € (1/9,2/9) and ®o(x) = 3/4 for x € (7/9,8/9). And we connect the dots again so that
the ®5(x) becomes a continuous function on [0, 1].

STEP 3. We continue the similar procedure and obtain {®,(z)},>1 C C([0,1]).
Finally, ®(z) C Jimy e ®,,(z). (We will prove why this limit exists and that ®(x) is
continuous.) ®(z) is called a Cantor function.

(2)  We prove that ®,(z) = ®(z) (converge uniformly) on [0,1]. It is easy to see
that 1

[®n(2) = Poa(2)| = o
Therefore Y " | |®,(z) — ®,_1(x)| < co. Absolute convergence implies convergence. (i.e

> lan] < oo implies Y~ | a, converges.) So

n

Tim D7 (@4(x) — By 1(2)) + Bofe)

k=1

converges. So we conclude that

lim @, (z) converges.
n—oo
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Let ®(x) L im,, o ®,, (). Note that

[Pn(z) = @(2)] = lim [®p(z) — Py (2)]

m

= lim [®(2) = Ppya (2) + Prga(2) = -+ + P (2))]

m— 00

T D |@(e) - (@)

k=n+1

A

m

. 1
Jim Yo

k=n+1

=1 1
= D 5=
k=n+1

[IA

This implies that

1
sup |®,(z) — ®(z)| £ — — 0 as n — oo.
2€[0,1] 2"

Since ®,,(r) = ®(x) on [0, 1] and {®,,(7)},=1 C C([0,1]), ®(z) € C([0,1]). (Recall that if
a sequence of continuous functions uniformly converges, then the limit is also a continuous
function.)

Figure 1.1: ®y(x)

(Example 18)

STEP 1. (=) Suppose that E is a perfect set. F = E’ implies that £/ C E so
E is a closed set. Therefore £ C R is an open set. By Theorem 1.19, we there exists
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1
2
Figure 1.2: ®4(x)
Yy
1 ,,,,,,,,,,,,,,,,,
3 l
ZL iiiiiiiiiiiii | | :
1 Lo
2 [T | Lo
1 | S
ZL ki\ | 1 | | | |
121 2781 r
O 99 3 390

Figure 1.3: ®y(x)

countable number of disjoint open intervals s.t

[e.o]

E° = | J(an,by).

n=1

We show that {(ay,b,)} have no common edge point. We suppose that {(a,,b,)} have a

common edge point. Assume that (aq,b1), (a2, b2) have the common edge point b; = as.
Let z* & by = as. Then x* is not contained in K¢ so z* € E. x* is an isolated point

of E because for any small § > 0, B(z*,d) N E' = {z*}. However, a perfect set does not
have an isolated point because E\ E' = () (E = E'). (Let us recall that E'\ £’ is a set of
isolated point of E.) Now the proof of = is complete.
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STEP 2. (<) Suppose that

[e.e]

B (an, bn),

n=1

where {(an, b,)} have no common edge point. We show that E is a perfect set. From the
equality above, E° is an open set. (A countable union of open sets is also an open set.)
Therefore F is a closed set, and we have £’ C E. It is enough for us to prove that £ C E’.
To prove this, suppose that F'\ E’ # ) (isolated points). Let x € E'\ E’. Since x is an
isolated point of £, 3§ > 0s.t B(x,d)NE = {z}. So B(z,0)\{z} = (x—0,z)U(z,x+0) C
E*. This implies that there exists (a;, b;) and (a;, b;) which have the common edge point
{z}. This contradicts to the assumption. Now the proof of < is complete.

]

(Example 19) Suppose that E o {zn}nz1 (i.e E is a countable set) and we
derive a contradiction.

STEP 1. (pick y1,d1) Let us pick y; € E'\ {z1}. Let us take §; € (0, |x; — 11]).

STEP 2. (pick y2,d2) Note that B(yi, 6;)NE\{y1} is not empty because y; € E and
a perfect set E does not have an isolated point. We can pick y, € B(y1,01)NE\ {y1}(# 0)
with yo # x9. (Otherwise, it follows that B(y1,01) N E \ {1} = {x2}. If we take
01 < |zg — y1|, then B(y1,7) N E\ {y1} = 0, hence y; is an isolated point of E, which
contradicts to the fact that a perfect set E has no isolated point.) Let us take d; with
0<dy < |y2 —(L’g|.

STEP 3. (pick y3,03) Let us continue the same procedure. Note that B(ya, d2) NV E'\
{y2} is not empty because y, € E and E is a perfect set (it has no isolated point). We can
pick y3 € B(ya, 02) NE\{y2} with y3 # x3. (Otherwise, it follows that B(ya, d2) NE\{ya} =
{z3} and if we change J5 change to §5 € (0, |x3 — ya2|), then y, turns out to be an isolated
point.) Let us take d3 with 0 < d3 < |y3 — x3].

STEP 4. (derive contradiction) By continuing the same procedure, we obtain

B(Yn,0,). Note that B(y,,d,) N E is a bounded and no-empty closed set. Let F), def

N B(Ym, 0m) N E. Then F, .y C F, and F, is also a bounded closed set. So

m=1
n=1 n=1

by Theorem 1.17 Cantor’s Intersection Theorem.

However, let us recall that B(y,, d,) does not contain {z,} because 6,, < |z, — y,|. So
the (°2, B(yn, 0,) does not contain any x, (n = 1). Hence the (", B(yn,6,) N E =0
and it contradicts to the fact above.

]

(Exercise 1) Fix x € E. Let us consider A o {r —y |y € E}. Obviously, A
is an uncountable set because F is uncountable. (There is a bijective mapping between A
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and E, so the cardinality is the same.) So A C Q can not happen. We can pick a € A\ Q.
Then x — a € F is the desired y. O]

(Exercise 4) Let C be a Cantor set defined on [0, 1]. In constructing C,,,; we

remove 2" intevals from C,,. Let {.J,x}7-, be the intervals that are removed from C,, to

construct Cp41. Let ¢, be the center of J,  and define E = det (o Uk 1 Cng- Then E'is

the desired set. Obviously, each x € E is an isolated point of . We prove that E' = C.
(C is a perfect set.)

STEP 1. (C C E') Let 6 > 0 be an arbitrarily small positive number and let us
pick arbitrary point x € E. Let us recall that x € C,, for all n. We take large n € N so
that % . 3% < 6. We can find k s.t x € I,, . In constructing C,, 41, the middle part of I,
is also removed. Let the removed interval be J,, g«. Then |c,, s < 0. This implies
that we can find a sequence of {¢,} C E'st ¢, > x. Sox € F.

STEP 2. (E' C C) Let z € E'. There exists {z,}n>1 C E s.t x, — x. First,
|zy — @ | < |y — 2|+ |20 — 2| = 0 as n,n’ — oo, so {x,} is a Cauchy sequence. We can
take a subsequence {n,,} s.t

<1
= 2 37L

1

1
— < Z

For simplicity, we define x}, o Tn(m)- Then |z, — % 4] < 5 - 57 and note that z, — .

Let us recall that 27 is a center of an interval J which is removed when constructing C'.
If the length of J is 1arger than - 3m, then the above inequality does not hold. So if Jy, () k(m)
is the interval that contains z7,, then the index number n(m) > m. Let us consider the
intervals Ip,(y)41,« beside to Jn(m),k(m) which are the components of C,(,)41. Note that
the edge points of I,()41,+ are Contained in C'. So we pick the nearest one from 3: , and
denote it as y,. Then |z, —ym| < 3+ 57 Finally, |yp—2| < |ym—af,|+]a), —2] < 55 —> 0.
So we have {ym}m>1 C C s.t y,,, — . This implies that z € C' = C.

§ 1.3

(Definition 1.33 and Theorem 1.24)

S def

dist(Ey, By) < inf — |t

( ! 2) y16E17y26E2{‘y1 Z/2|}
(2) By the definition of dist(zg, F'), we can find a sequence of points {y,} C F
s.t |xg — yn| — dist(zg, F). Obviously dist(zg, F') < oco. (If we arbitrarily pick y € F,
then |zo — y| < 0o) Let d f dist(xg, F'). Without loss of generality, we may suppose that
|20 — yn| < d+=. By triangular inequality, we have |y,,| < |2o|+|yn—zo| < |zo|+d+1 < 0.
S0 {yn}n>1 C F is bounded. By Bolzano-Weierstrass’s Theorem, we have a subsequence ny,
8.t Yoy, — Yo € F' C F. Finally |2 — yo| = [20 = Yne|+1Yn, — Yol < dt -4y, — 30| — -
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]

(Theorem 1.25) Let z,y € R%. Let € > 0 be an arbitrary positive number.
By the definition of dist(y, E'), we can find e € F s.t |y —e| < dist(y, F) + €. Since
dist(z, F) S |z —e] S |z —y|+ |y —e] < |z —y|+dist(y, E) + €. So we habe dist(z, F) —
dist(y, £') < |x — y| + €. Therefore dist(x, E') — dist(y, £) < |z — y|. By swapping =,y we
have |dist(z, E) — dist(y, E)| < |z — y|. This implies that 36 = € s.t Ve > 0,Vz,y € R?
with |z —y| < 0, |dist(x, E) — dist(y, £')| < e. Now the proof is complete. O

(Corollary 1.26) Suppose that Fj is bounded. There exist sequences {1} C
Fl, {l’g’k} C FQ S.t
|I17k — $2’k| — diSt(Fl, Fg) < 0.

Without loss of generality, we may suppose that

’.%’17k — .21327143‘ < diSt(Fl, Fg) + %
By assumption, {z1,} is bounded (|z;x| < M), so by Bolzano-Weierstrass’s theorem,
there exists a subsequnce k; s.t x1x, — xo € F| C Fy. By triangular inequality, |xoy,| <
|To g, — @1, |+ |21k, | S dist(Fy, Fy) + 14 My, so xay, is also bounded. Again by Bolzano-
Weierstrass’s Theorem, there exists a further subsequence ky,, s.t xop, —— 22 € F) C
Fy. Finally, dist(Fy, F5) < |z — 22| < |2, — 21| + |22k, — 22| + 214, — T2k, | =
dist(Fy, F»). Now the proof is complete.

(Example 2)

def dist(z, F:
@)= 5 )
dist(x, F1) + dist(z, F3)
Notice. dist(z, F}) + dist(x, F») # 0 because if dist(z, F}) = 0,dist(z, F5) = 0, then
x € F1,x € Fy. (By Theorem 1.24) However, F, F; are disjoint. ]

(Theorem 1.27)

STEP 1. (g1(z)) Let us divide F into the following three parts.

o Ay ={zeF|M/3EZ f(z) <M}

e Bi={xcF|-MEZ f(z) £ —M/3}.

e C1={zxeF|-M/3< f(x) < M/3}.
case 1. (Ay, By #0) Let us define

(z) det M dist(x, Ay) — dist(x, By)
I =73 dist(x, A;) + dist(z, By)

We claim that
e gi(x) is continuous on R?. (Of course, well-defined. i.e dist(x, A;)+dist(z, By) # 0)
o |g1(z)] < & on R

o |f(z) —qi(x)| = % on F.
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Continuity of g(z) is shown using Theorem 1.25. When = € A;, M/3 < f(z) = M
and gi(z) = M/3, 800 = f(x) — g1(xz) < 2M/3. When = € By, the proof is similar.
When 2 € R4\ (AU By), —M/3 < gi(z) £ M/3. Of course, x € C; C R4\ (A, U By),
—M/3 < g1(x) £ M/3 holds, hence |f(z) — g1(x)| < 2M/3.

case 2. (A1 #0, By =0) Let us define

ef M

g1(x) = 3
Note that gi(z) is continuous on R%, |gy(z)| < & on R? and [f(z) — g1(z)| < 2£ on F.
The proof is easy. (We show that last part.) Since Bj is empty, —M/3 < f(x) = M for

all z € F. Therefore |f(x) — g1(z)| £ 2M/3 on F.
case 3. (A; =0, By #0) Let us define

Note that gi(z) is continuous on R?, |g;(z)| £ & on R? and |f(z) — g1(z)| < 2L on F.

The proof is completely same as the previous one.

case 4. (A1, By =0) Let us define

[N
@

f

91 ()

0.
Note that gi(z) is continuous on R?, |g;(z)| £ & on R? and |f(z) — g1 ()| < 2L on F.
The proof is easy. (We show the last part.) Since both A;, By are empty, this implies
that —M/3 < f(z) < M/3 on F. So |f(x) — g1(z)| = |f(z)| < M/3 £ 2M/3 on F.

In conslusion, we can find a function g;(z) defined on R? s.t
o g1(z) € C(RY),
o |gi(x)| £ M/3 on RY,

o |f(z)—gi(z)] =2M/3 on F.

STEP 2. (¢gs(x)) Let f(z) o f(x) — g1(z) and let us repeat the similar argument
with the previous step. Let us divide F' into the following three parts.

o Ay={x e F|2M/9< f(x) < 2M/3).

o By={xeF|-2M/3< f(x) £ —2M/9}.

o Chy={x € F|-2M/9< f(x) <2M/9}.
case 1. (Ag, By # 0) Let us define

def 2M dlSt(I, Ag) — dlSt(l’, BQ)
9 dist(z, Ay) + dist(z, By)”

92()
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case 2. (Ay # 0, By =0) Let us define
case 3. (Ay =0, By # () Let us define

case 4. (Ay # (0, By =0) Let us define

ga(z) = 0.
In this way, we have a function defined on gs(x) s.t
o gaox) € C(RY),
o |g2(z)| = 2M/9 on R,
o |f(z) = ga2(2)] = |f () = g1(2) — ga(2)| < (2/3)*- M on F.

STEP 3. (¢g(x)) From the arguments above, we can obtain a sequence of functions
{gn(x)} satisfying

o gu(z) € C(RY),

o |gn(x) £1/3-(2/3)" - M on R,

o [f(x) =0, gr(x)] < (2/3)" - M on F.
We prove that

9(@) €Y gala)

is the desired continuous function on R¢.
First, we prove that > 7 g,(x) converges (the limit exists and is finite). Note that

g|9n<l‘>’ < g% (g)”_l_M

= M, (‘v’xERd) e (%),

Since absolute convergence implies convergence, (i.e Y~ |a,| < oo = > a, exists
and finite.) g(x) is well-defined and is finite. Therefore,

@) —g(@)| = lim |fx)~ Y glx)

(2"
jim (3) a0
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From (x), we also have

|<Z\gn )| £ M < oo, (VzeRY).

Second, we prove that g(z) is continuous on R¢. Let G, (z) oo > p1 gr(z). Since
G, (z) is a finite sum of continuous functions, G,, () is continuous on R¢. We prove that
Gn(z) % g(x) (converges uniformly) on R%. Then g(x) is continuous on R?. (Let us recall
that if f,(z) is continuous and f,(z) = f(x), then f(x) is also continuous.)

Gule) — gl@)] = [Gule) — lim Go(w)
— i [Ga(#) — Gonlo)

= lim Zgi(x) - Zgi(x)

| 3 a0

i=n-+1

Tim Y gilw)

i=n-+1

A

A

17AN
f:

85
ol —
M~
ol o
N
T

~

From the inequality above, we have

2 n
lim sup sup |G, (z) — g(x)| < lim (5) M =0
n—oo

n—oo R4

So Gn(z) 2 g(x) on R? and we conclude that g(x) is continuous on R

(Extension of Theorem 1.27) Let

f(z) L arctan f(z).

Note that f*(z) is continuous and bounded on F. We apply Theorem 1.27 to f*(z) and
then obtain g*(x) € C(R?) with f*(z) = ¢g*(z) on F. Let

g(x) < tan g*(z).

Then g(x) € C(RY) and f(z) = g(z). So g(x) is the desired function. (We should prove
that g*(x) # +5. We will supplement the proof in the future.) O
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(Exercise 1) We show that ' C E (so E'\ E = ()). We suppose that E'\ E # ()
and derive a contradiction. Let x € E'\ E. Since x € E', there exists {y,}n>1 C E s.t
Yn — T as n — 00. Since x € E°, there exists y € F s.t |z — y| = dist(x, £). Note that

0= |z —y|=dist(z, E) < |2 — ynl,

because y,, € E. By taking n — oo, we have |x —y| = 0. This implies that z = y. x € E°
but y € E. (contradiction!!) Now the proof is complete. ]

(Exercise 2) Let us recall Corollary 1.26. Apply Corollary 1.26 to the closed
sets ' and G°. There exists x; € F' and x4 € G° s.t

|z1 — xo| = dist(F, G°).

Let us take r & |z1 — x5| and let z € R If dist(z, F) < r, then 2 ¢ G° because if
r € G then dist(z, F) = r. So dist(z, F') <r =z ¢ G° < z € G. Now we conclude
that {z € R?| dist(z, F) <r} C G. O

§ 1.4

(Exercise 8) Let us pick y* = f(z*) € E. By assumption, we have 6* > 0 s.t
f(z) 2 f(a*) for all x € (z* — §*, 2% + 0%). So f(x) takes the minimum value at x = z* if
x € (x* =% 2*+0%). We can find and choose 15,75 € Qs.t x* € (rf,r5) C (z"—0*, 2" +0%).
Now we have a map {y*},«cp — {(r],73)}. Conversely, if we are given (r7,73), then f(z)
takes the minimum value at some z* € (r},r}), so we can determine y* = f(z*). So
y* € E and (rf,r3) are one-to-one. Obviously, there exists only a countable number of
(ri,73), hence E is also countable. O

(Exercise 9) Let us define the surface
S(a,r) = {y €R! | |x —y| =1}, (d=3).
First, let us pick z; € E and note that

E = U S(ml,'r’l)ﬁE,

T1 EQQ[0,00)

because the distance of any two points is rational number. (Q: a collection of all rational
number.) From the discussion above, it is enough for us to prove that S(xy,r) N E is at
most countable (countable of finite) for each r; € QN [0, 00).

Second, let us pick xo € S(x1,71) N E with x5 # x1. (If we fail to choose such x5, this
means that S(z1,7) N E = {z1}. And it is a finite set.) Note that

S(xy,r)NE = U S(x2,r2) N S(x1,7m) N E.

r2€QNI0,00)

So it is enough for us to prove that S(x,72) N.S(z1,71) N E is at most countable for each
ro € QN [O, OO)
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Third, let us pick x3 € S(xq,r2) N S(x1,7r1) N E with x3 # x5, x1. (If we fail to choose
such x3, this means that S(xq,re) NS(xy,r) N E C {x1,x2}, hence it is finite.) Note that

S(IQ,TQ)QS(Il,Tl)ﬂE: U S($3,T3)OS(I2,T2)ﬁS(Il,Tl)ﬂE.

7"36@(7[0,00)

The right hand side are intersection points of three surfaces. The number of intersection
points of three surfaces are at most 2. Now the proof is complete. n

(Exercise 11) O

(Exercise 13) We show that £/ C E. When E’' = (), the statement holds
obviously, we suppose that E' # (). Let us fix ¢ > 0 which is an arbitrary positive
number. Let us take x € E’. There exists {z,} C E st x, — z. For sufficiently
large n, v, —x| < 5. Then x +€ =2 — 2, + v, +€ > =5 + 1, + € = 2, + 5, and
T—€=2T—Ty+ T, —€< §+x, —€=1,— 5. Since f(x) is monotone increasing,
flx+e)— f(x—e) 2 f(xn+¢€/2) — f(x, —€/2) > 0, because x,, € E hence Ve*(= €/2),
fxn+€)— f(x, —€) >0 S0 x € E. Now we conclude that E' C E and the proof is

complete. O

(Exercise 14.1)  E'is an infinite set, and £ C F implies that F is also bounded.
By Bolzano-Weierstrass Theorem, E has at least one limit point. So E’' # (. And
E'CF =F.SoE'NF+#0. ]

(Exercise 14.2)

STEP 1. (F is closed) Let us pick z € F’. Then there exists {z,},>1 C F s.t

z, = 2 (x; #x;if i # j). Let B oo {z,}. And E' = {z}, ---(x). So E'N F # () implies
that x € F', and we conclude that F' is closed.

(x) It is easy to show that y (# x) can not be y € E’. For sufficiently large n > N,
|z, — 2| < @ By triangular inequality, |z, —y| 2 |z —y| — |z, — 2| 2 @ > 0. Now

let & & min{|z; —yl, -, |zxy — yl, |z — y|/2}, and then B(y,0) \ {y} N {z,} = 0.

STEP 2. (F is bounded) Suppose that F' is not bounded. Then we can take

{z,} € F st |z,| = oo. Let E o {z,}. Then E’ = (), and it contradicts to the
assumption. So F' is bounded.

]

(Exercise 15) We show that E' C E. If E' = (), then the statement holds
immediately, so we assume that E’ #. Let us take t € E’. There exists {t,} C E s.t
t, — t as n — oo. By assumption, there exists x,, € F st |t, — z,| = F. When n
is sufficiently large (say n = N for some N € N), |t, —t| < ¢ for some 6 > 0. So
ltol < |tn —t| + |t] £ 0 + [t| < oo for all n = N. Therefore, we may suppose that |t,| is
bounded. And |z,| = |z, —t, +tu] = [t — zp| + [ta] =7+ [ta] S r+ 5+ |t] < 00. So
{z,} C F is bounded. By Bolzano-Weierstrass’ Theorem, we can find a subsequence ny,
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s.t x,, — x, and € I because F' is closed. Note that

’t_x| = |t_tnk+tnk_xnk+xnk_x‘
é |t_tnlc|+|tnk_xnk|+|x_xnl|
= |t—tp|+r+|z—a,|—71 ask — oo
and
|t—:13| = |t_tnk+t"k_xnk+$nk_$|
z _|t_tnk|+|tnk_xnk|_|x_xm|

—|t—tn | +r—|x—24]| =71 ask— o0

(The inequalities above are obtained by triangular inequality. |a + b| < |a| 4+ |b] and
la+b| 2 |a] —|b]. Moreover |a+ b+ c| = |a| + |b] + |¢| and |a + b+ ¢| = —la| + |b] — |¢].)
Now we have t € E. So F' C E and we conclude that F is a closed set. ]

(Exercise 17)  Let us fix y € R. If E, is an empty set, then £, =0 C E, =0,
so the statement holds. Suppose that E, # (). We prove that E, CE, fE, = (), then
E, C E, So E, is closed. We assume that FEj # (). Let us pick # € Ej. Then we
have {z,} C E, s.t z,, = z. By definition, (z,,y) € E. Note that (z,,y) = (z,y) and
(z,y) € E because E is a closed set. This implies that » € E,. So we have E; C E, and
we conclude that F, is closed. O]

(Exercise 18)

STEP 1. (C) Note that f (e, Fx) C f (Fy) for all £ = 1. Therefore,
f <ﬂ Fk) c()f(F
k=1 k=1
holds immediately.

STEP 2. (D) Let us pick yo € (No—y f (F). Then yo € f(Fj) for all & = 1. There
exists z € Fy, s.t f(zg) = yo. Since {xy} C Fy (because Fj is a decreasing sequence)
and [} is bounded and closed, we can find a subsequence k; s.t x, = xo € F;. Note
that xy, € Fy if £ 2 2, so x, — zo € Fy. By repeating the same arguments, we conclude
that xy € Fj, for all k = 1. So x¢ € (=, Fk, hence f(zo) € f(Npe; Frx). Moreover,

f(zk,) — f(xo) because f(x) € C(R), and f(xy,) = yo for all £ 2 1, so f(xg) = yo. We
conclude that yo € f((Noe; Fk)-

(Exercise 19)
STEP 1. We prove that

Bz eR| f2)>t}, B2 ¥ {zeR]| f(z) <t}

are open for all t € R. (See Example 2 and 6.) However it is enough for us to prove that

def

Bz eR| f2)>r}, B2 ¥ {zeR| f(z) <r}
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are open for all » € Q. This is because for all £ € R, we can find a sequence of r,, € Q s.t
rn \t (or r, /tfor Ey), hence

By S {zeR| f(z) >t} = J{z eR| f(z) > ru}.

(Note that a countable union of open sets is also open.)

STEP 2. Let r € Q be an arbitrary rational number and let us fix r. Let F; dof

{z eR| f(x) >}, By = {r e R| f(x) <r}. By assumption, E; U Ej is open. We prove
that E; and Fs are also open. Let us pick zy € E;. Since x¢y € Fy U Ey and Ey U Fj is
open, there exists 0y > 0 s.t B(xg,dy) C E1 U Eh.

STEP 3. Suppose that B(zg,d9) N Fy # (). Let us pick yo € B(xg,d) N E,. Note
that |zg — yo| < 6. Since f(xg) > r and f(yo) < r, there exists z € B(xg, |ro — yol|) s.t
f(z) = r by assumption. However, z € B(zg,dy) C E1UEy. So f(z) > ror f(z) < r. This
contradicts to the fact that f(z) = r. Therefore, B(xq,d9) N FE2 = 0, hence B(xg,d¢) C E;.
So E is open. Similarly, Fs is also open.

(Exercise 20) Let z € Ey and let y € E}. Note that E; = Ey U EJ.

case 1. (z € By and y € Ef) There exists {y,} C Ey (y; #y; if i # j) st y, — .
{r+y,} CEI1+Eyand v +y, — v+y. And o4y, #ov+y;if i # j. Sox+y € (E1+Esy).

case 2. (x € Ff and y € E}) There exist {z,} C £ and {y,} C Es s.t x,, — = and
Yn — Y. {xn+yn} C E1+ Es and x, +y, — x+y. However, we have to consider the case
ZTp +yn = x +y for all n > N where N is some integer. In such a case, we can consider
{zn + Yns1}. Then z, + y,1 are different from each other for sufficiently large n. (Let
a=x,+y, forn>N. 2,4+ Y1 =2, + Ypt1 —a+a=19yYy,s1 — Yo +a. And note that
Ynt1 — Yn 7 0 but y,1 — y, — 0.) From this argument, z,, + y,11 — = +y € (E1 + Ey).
Now the proof is complete.

O

(Exercise 21) OF = () implies that E = £ = E. From this relationship, E is
both open and closed. We prove that if £ is open and closed (hence E° is also open and
closed), then E = R? or (). We suppose that £ # () and E # R% We can take z € E and
y € E°. (We will supplement the proof in the future.) O

(Exercise 22) We suppose that G; N Gy # () and derive a contradiction. We
can take o € Gy NGy Then 29 € G1. So x5 ¢ Gy because G and Gy are disjoint,
and note that xp € Gy, so 19 € G5. We can take {x,} C G5 s.t 2, — zy. Since G| is
open, there exists 0 > 0 s.t B(xg,0) C G1. When n is sufficiently large, |z,, — zo| < d. So
x, € B(xy,d) C G;. This contradicts to the assumption that {z,} C Gs. O

(Exercise 23) Let E © Ge = RY \ E. Then GNG* C (GNGe) = (. So
G N G¢ = (. This implies that G and G¢ are disjoint, hence G¢ C G°. Therefore G¢ is
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closed. So we conclude that G is open. O

(Exercise 25)

STEP 1. (=) Suppose that f(z) € C(R). We prove that Gy, G2 are open. The
procedure of proof is similar for G; and G5, we only prove that G; is open. Let us pick
(x0,Y0) € G1, then yo < f(a:o) Since f(x) is continuous at x = xy, there exists dy > 0 s.t

|f(z) = f(zo)| <€ def f(xo N Yo € B(xg,d). Especially, we have
f(xo) — €0 < f(x), Yo € B(wo,dp), -+ (*)

Let r & min{dy, €9 }. We claim that B((zo,%0),7) C G1, hence G is open. Let us pick an
arbitrary point (x,y) € B((xo,40),7).

(.To) — 260) +7r
(z0) — €0) + (7 — €0)

Io) Yo

o (x1) eg = Z22—% by definition. So yo = f(xo) — 2€.
e (x2) r = min{dp, 6} < €.
° (x3)

So y < f(z) and we conclude that (z,y) € G; for all (z,y) € B((xo,%0),7)-

See (x).

STEP 2. (<) Suppose that Gy, Gy are open. We prove that f(x) is continuous at
all zg € R. Let zp € R and let € > 0 be an arbitrary positive number. Let us note that

(2o, f(xg) — €) € Gy, and (wo, f(x0) + €) € Gb.

Furthermore, G; and G5 are open sets. We can find sufficiently small d, > 0 satisfying
both
B((l’g, f(xo) — 6) ,50) C G1 and B((l‘o, f(l’()) + 6) s (50) C GQ

Now let us pick arbitrary z € B(w, ). Since |z — 2| < dy, note that
(z, f(z0) — €) € B((@o, [(z0) — €),00) C G1,

0 (x, f(z) — €) € Gy. Therefore, f(zo) — ¢ < f(z) & —e < f(z) — f(x0). Similarly,
(@, f(z0) + €) € B((zo, f(x0) +€),00) C Go.

so (z, f(xg) +¢€) € Ga. Therefore, f(zg)+e€ > f(z) & f(z)— f(xy) < e. Now we conclude
that Vx € B(xo,d0), | f(z) — f(z0)| < €, hence f(z) is continuous at x.
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(Exercise 27) We prove the contrap081t10n We show that if (., Fo = 0,
then there exists a finite number of {ay, g, -+ , o} C I st (2, Fo, =0

Let G, & Fe = R4\ F. Note that

| Ga=R"

ael

We arbitrarily pick g € I. Then F,; C (J,c; Ga. Ga is open for all @ € I. By Heine-
Borel’s Covering Theorem, we can find a finite number of {ay,- -+, } C I s.t

By taking the complement of the both sides, we have

m
() Fo. C FS,.
=1

Therefore,
() Fo, C Foy NEFS, =0

Now the proof is complete. n

(Exercise 28) Let I G° = R?\ G. F is closed. Let F* = F, N F, then F*
is also bounded closed. Note that

®:<ﬂFa>ch = (ﬂFa>mF
= ((FanF)

ael

M Fe

acl

By the conclusion of Exercise 27 (contraposition of the original statement), we can find a
finite number of {ay, -+ ,a,} C I s.t

(Fi =0
=1

So
ﬁng = ﬁ F., O F)
i=1 i=1
= (ﬂFai>mF:®.

i=1

This implies that (), F,, and F' = G are disjoint. So (|-, F,, C F*=G. (if A and B
are disjoint, then A C B and B C A°.) Now the proof is complete. ]
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(Exercise 29) We consider the negation of the statement. So we suppose that
Veg > 0, dxg € K st Vk 2 1, B(xo,€9) ¢ Gi. Let us put € + % For each n € N, there
exists z, € K s.t B(xy, ) ¢ Gy for all k 2 1. Note that {z,,} C K and K is bounded and
closed, we can find a subsequence x,, — 2* € K. Since {G}}r>1 covers K, and z* € K,
there exists k* € N s.t 2* € Gy-. Gy~ is an open set, we can find €* s.t B(z*, ") C Ggs.

Now let us choose sufficiently large n € N s.t |z, — 2*| < 5= and 5~ < ¢*. Then

2e* 2n

1
B (:L‘n, —) C B(x",€") C Ggr.
n

This contradicts to the fact that for each n € N, B(z,, +) ¢ Gy for all k = 1. Now the
proof is complete. O

(Exercise 30) The proof is the same as Exercise 19. All we have to do is to
prove that f’(x) has intermediate value property. It is known that if f(x) is differentiable,
f'(x) has intermediate value property.

Suppose that a < b and f'(a) < f/(b) holds. (The proof for the case f'(a) > f'(b)
is similar.) We prove that Yu € (f'(a), f'(b)), there exists ¢ € (a,b) s.t f'(¢) = p. Let
F(x) o f(z) — px, (x € [a,b]) . Since f(x) is differentiable, F'(z) is also differentiable.
Note that F'(a) = f'(a) — p < 0 and F'(b) = f'(b) — p > 0. This implies that F'(z) is
decreasing around a and increasing around b. Furthermore F'(z) is continuous on [a, b],
so F(x) has a minimum value at some ¢ € (a,b). Then F'(c) = 0 = f’(¢) — p. Now the
proof is complete. O

def

(Exercise 31)  We prove that R(f) = {f(x) | x € R} is open and closed. Then
R(f) =0 or R by the conclusion of Exercise 21.

STEP 1. (R(f) is closed) We show that R(f) C R(f). When R(f) =0, R(f) C
R(f) holds obviously, so we suppose that R(f)" # 0. Let us pick y* € R'(f). There exists
{yn} C R(f) s.t y, — y* € R. Since y,, € R(f), there exists x,, € R s.t y, = f(z,). Now
by assumption,

By taking n, m — oo,

()

0 lim |f(z,) — f(zm)| 2 limsup a|z, — ).

n,Mm—00 n,m—00

o (%) f(zn), f(zm) = y* €R.
So {x, }n>1 is a Cauchy sequence. (By completeness of real number,) a Cauchy sequence

converges. Let 2o < limy,_so0 7y, (xo € R) . Since f(x) is continuous, we have
n—oo n—oo

The left hand side is y*. So y* = f(x¢). This implies that y* € R(f). Now the proof for
this part is complete.

STEP 2. (R(f) is open) Since
[f(z) = f(y)] 2 ale =y,

131



1.4.

if f(z) = f(y), then |x —y| =0< 2 =y. So f(x) is one-to-one. Since f(z) is continuous

and one-to-one, f(z) is strictly monotone increasing (or decreasing). Let g(x) dof ).

Note that R(f) oo {f(z) |z e R} ={g7'(z) | z € R} = g7'(R). When f(z) is strictly

monotone increasing and continuous, g(z) = f~!(z) is also continuous. Since R is an
open set, so g~ (R) is also open. Now the proof is complete.

STEP 3. (Supplement (I)) We prove that if f(z) : R — R is continuous and
one-to-one, then f(x) is either strictly monotone increasing (or decreasing).

First, we claim that if f(z) : R +— R is continuous and one-to-one, and suppose a < ¢ <
band f(a) < f(b), then f(a) < f(c) < f(b). Suppose that f(c) < f(a) < f(b). Let us pick
a € (f(e), f(a)). By intermediate value theorem, there exists z,y (o < z < ¢ <y < b)
st o = f(z) = f(y). However, this contradicts to the fact that f(z) is one-to-one. So
f(c) < f(a) can not happen. Similarly, f(a) < f(b) < f(c) also can not happen. So we
conclude that f(a) < f(c) < f(b).

By applying the same argument to [a,c] and [¢,b], if a < g < b < h < ¢, then
fla) < f(g) < f(e) < f(h) < f(b). And we conclude that f(x) is strictly monotone
increasing (or decreasing) on any interval [a, b], so on (—o0, 00).

STEP 4. (Supplement (II)) We prove that if f(z) : R — R is continuous and
strictly monotone increasing (or decresing), then f~!(z) is also continuous. Let € > 0 be an
arbitrary positive number, and let yo = f(x¢). We show that 3§ > 0 s.t Vy € B(f(x),0),
|f~%(y) — f~'o f(xo)| < e. Since f(x) is strictly monotone incresing, f(xg—¢) < f(z0) <
f(zo+€). Let 6 > 0 with 6 < min{f(zo+€) — f(z0), f(x0) — f(xo — €)}. Then we have

[z —€) < f(mo) =6 < flzo) +0 < f(xo+¢).

Ity € (f(wo) = 0, f(wo) + 6) = B(f(w0),0), then f~1(y) € (zo — €, w9 + ¢), because f(z)
is strictly monotone increasing. So |f~'(y) — zo| = |f ' (y) — f ! o f(x0)| < €. Now the
proof is complete.

]

(Exercise 32) The proof is quite similar to Example 13 (£ = Q). Suppose
that £ = {e, },>1 is a G5 set. Then there exists a countable number of open sets {G,, }n>1

s.t -
E = ﬂ G
n=1

Since £ C Gy, G, is also dense in R. Let F,, = G§. F,, is a closed set and F,, has no
interior point (). Finally,

R=(R\E)UE = GFnUD{en},

so R is a countable union of closed sets with no interior point. By Baire’s theorem, R has
no interior point.(contradiction!!)

(x) We prove that if G is dense then F' = G has no interior point. Suppose that F'
has an interior point, then 3xy € F and 30y > 0 s.t B(xg, o) C F. Since G is dense, there
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exists a sequence {z,} C G s.t z,, — xo. However, when n is large enough, |z, — x| < do,
so =, € B(xy,09) C F, and this contradicts to the assumption that z, € G. O

(Exercise 34) Let us recall that the set of points of continuity of f(z) is a Gy
set. (See Example 11.) And we also show that Q is not a Gs set. (See Example 13.)
From these two facts, it follows that f(z) can not be continuous on Q and discontinuous
on R\ Q. Now the proof is complete. O

(Exercise 37) We show that every closed set F' on R? is a G set. Let

f(z) o dist(z, F).
We claim that
F = {2z € R*| dist(x, F) = 0}.
First, C is obviously holds. Second, let us recall that if F' is a non-empty closed set,
then for all x € R?, there exists y € F s.t |z — y| = dist(z, F'). (See Theorem 1.24.) So
dist(z, F') = 0 implies that |z — y| = 0 for some y € F, hence x = y € F. Now the proof
for the claim above is complete.

Since
o0

1

{r € R | dist(z, F) =0} = ﬂ {x c RY| dist(x, F) < —},

n
n=1

and dist(z, F) is (uniformly) continuous (Theorem 1.25), so {x € RY| dist(z, F) < L} is

an open set on R? for each n € N, hence the right hand 81de is a G5 set. Now the proof

is complete. O

(Exercise 38)

STEP 1. Let {a,},>1 a sequence. First we explain that we can find a subsequence

ng s.t a,, — limsup,_,a,. Let @ X lim SUp,, o, @n- Let us recall that

— . def .
a = limsupa, = lim sup a,.

n—oo n—oo mzn

Let b, = supm>n am, then b, \ @. Since b, = supm>n am,, we can find a subsequence ny
st an, bk S ap, + k. Finally, 0 < by, — a,,, < + — 0 and by, — @, 0 a,, — @.

STEP 2. Let us pick z € [0, 1] and let us consider an arbitrary sequence {z,} C
0,1] s.t z, — xo. Note that {(x,, f(z,))} C Gy. Let us pick a subsequence z,,
st f(xn,) — limsup,_,. f(z,) < oco. (< oo holds because Gy is bounded.) Since
Gy is closed, (z,,, f(xn,)) = (xo,limsup,_,. f(z,)) € Gy. This implies that f(z,) =
limsup,,_,., f(x,). By repeating a similar argument, we also have f(x¢) = liminf,, . f(z,).

]

(Exercise 39) We prove the contraposition. Suppose that F' is not closed, and
we prove that there exists a continuous function f(x) € C(F) which has no continuous
extension. Since F' ¢ F, F'\ F # (). We can pick zo € F'\ F. Let us define

fla) = , (e F)

|z — x|
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Obviously, f(z) is continuous on F. (Note that o ¢ F.) Suppose that there exists
g(x) € C(R) with f(z) = g(z) for all z € F. Let us pick {z,} C F st z, — .
(xo € F'). Then

g(xo) “ i g(xy) “ Jim f(z,) = o0
n—o00 n—o0
e (x1) g(z) is continuous on R.
e (x2) g(x) = f(x) on F and note that z,, € F for all n = 1.

This implies that f(x) has no continuous extension on R. O

134



CHAPTER 2

Solutions

§ 2.1

(Definition 2.1) We define m*(E) as below.

iIFlf {Z |I|| E C U I, T is a collection of at most a countable number of open rectangles.}

Ier Iel

e Note that in the definition above, I' is a collection of at most a countable number
of open rectangles, so we also allow I' to be a collection of a finite number of open
rectangles.

e Note that m*(E) = 0 holds obviously for any F C R%.

O

(Example 1) This problem claims that a set which consists of a single point
has measure zero. Let

7, % [T (z0— Sim0+§) n=1
" 0 n>2

Note that .
{.flf[)} C U [n,
n=1
and {I,,},>1 is a collection of a countable number of open rectangles. So by the definition
of m*({zo}), we have

[e's) d

()
0= m*({zo}) = Z | = 11| = HE = ¢

n=1 i=1
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(%) holds because according to the definition (See Definition 2.1) of m*({zo}), we take
infimum of ), . |I| with respect to I', so m*({z¢}) is less than or equal to ), . |I| for
any I' which is a cover of {xy}. Since € > 0 is an arbitrary positive number, we have the
desired result by taking ¢ — 0. O]

(Example 2)
(1)

STEP 1. Let ¢ > 0 be an arbitrary positive number and let

d
def € €
J - ( i_-_7bi —).
H a 2 +2

i=1

def

Note that I C J. Let I' = {J}, then T is a finite cover of I. By Definition 2.1,

STEP 2. Let us consider an open cover of I C |-, I, Since I is bounded and
closed, we can find a finite subcover. (Theorem 1.21 Heine-Borel’s Covering Theorem.)
Sol CIC UkK:1 I,,, . Since the number of open rectangles which cover [ is finite, we have

(1) K (x2) 22
IS Yl £ )l
k=1 n=1

Finally let us take infimum of the right hand side with respect to an open cover {I,}°,.
By Definition 2.1, we have -

1| = m*(I).

e (x1) As we have stated in the question part, we suppose that if I C UZ:1 I, (I,1,:
open rectangles, k is finite.), then [I| £ 32F_ | |1,

e (*2) This holds obviously.

Someone may feel that this solution is roundabout (or doing something unnecessary).
However, when I C |J;2, I, we can not directly conclude that [I| = > [I,|. So we
first need to find a finite cover of I.

(2) The solutions is similar to the previous case.

STEP 1. Similarly let J < [T, (a; — &b+ £). Then I C J and let T < {J}.

Since I' is a finite cover of I, we have m*(I) < |J| = H?:l(bi —a; + €). By taking € — 0,
we have m*(I) < T, (b — a;) = |I].

136



2.1.

STEP 2. Similarly consider the cover of I. Suppose that I C |J;~, I,. Let I, =

Hle (a; + £,b; — £). Note that I, C I. € I C ;= In. Since I, is bounded and closed,

and I, C Uf;l I,,, we can find a finite subcover s.t

I.c|J 1.
k=1
Since
K
I.c | L.
k=1
we have

K [e%s)
L] S | £ 1.
k=1 n=1

By taking infimum with respect to {I,},>1 on the right hand side, we have
|| < m*(I).

Note that the left hand side is

d

1L =T [ (b — a; — o).

i=1
Finally, by taking ¢ — 0, we have |I.| — ||, hence

1] = m*(]).

(Theorem 2.1)

(1) Suppose E C (J,>; I, For all open covers, > -, [I,] 2 0. So m*(E) 2 0. Let
I with |[I| <e. VI,0 C 1. Som*(I) S |I| <e

(2) Let us consider an open cover of B, I'g. Let I'g &f {LSB)}%O:l. Bc U2, 119
Of course, A C U3, 1P Som*(A) < > )[T(LB)‘ for any I'p. Take infimum of the right
hand side with respect to I'g. Then we have m*(A) < m*(B).

(3) Foreachn =1,2---, suppose A, C |U,>; Inm With m*(A,) = 37 o) [Inm| <

m*(A,) + 57 Since >, U,,>1 In.m 18 an open cover of (J,,~, A, we have m*({J,_; A,) =

St Somet Hnm| < 3oty (m*(An) + 55) = 0,1 m*(Ay) + €. Finally by taking € \, 0,
we have the desired result.
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(Corollary 2.2) We present a proof in the case of d = 1. (Extension to the

general case is easy.) Suppose E o {z£}52,. Let us consider I o (xk ShrTy Tk Qkﬂ)
Let us pay attention to the fact that £ C |J;—; Iy. Then we have m*(E) < "7 5% =€
by the definition of outer measure. This implies that m*(E) = 0. O

[ 6 ] (Lemma 2.3) We show m*(E) < m3(F) and m*(E) > m}(E).

(1) m*(E) £ mj(E) holds obviously from their definitions because A C B =
inf A 2 inf B holds. (Let {I,}22, be a cover of E and suppose that the edge length
of each I,, < 0. In the definition of m*(FE), we also consider such {I,} because it also
covers E. So m*(E) < > 77, |Ix|. By taking the infimum of the right hand side, we have
m*(E) < m}(F).)

(2)

STEP 1. Let us consider a cover of E. Suppose that £ C |J'—, I, (I, are open
rectangles) For each I,,, we devide I, mto smaller disjoint open rectangles {Lix}(k =
1--- K,) whose edge length is all less than 2. (You can easily imagine that you can do so
when d = 1. Of course so is d > 1.)

However {I,,x}(k =1---K,) does not actually cover I,, because the boundary points
are lost. So we enlarge each I, by A € (1,2) times without moving its center so that
(AL} will cover I,,. Now we have E C U, _, I, € U, _; Uy Mok

STEP 2. From the fact that £ C |J,_, Ur", My .k, we have

o0 Kn o9] Kn
E) gZZwm— MY .
n=1 = n= 1k 1

Let us be careful of the fact that |I,| = S>0" |L,x|. (If you do not know why, let us
consider a simpler case. |(a,b)| + [(b,c)| = (b—a)+ (¢ —b) = c—a =|(a,c)|.) Therefore,

oo Kn

DD sl = 1A |Z|f\

n=1 k=1

By taking the infimum with respect to {I,}5°;, we have m}(E) < |\%m*(E). The
argument above holds for all A € (1,2). Finally by taking A \, 1, we have the desired
conclusion.

(Theorem 2.4)
1)
STEP 1. By Theorem 2.1 (and Lemma 2.3), we have
my(E1 U Ey) < mi(EL) +ms(Es).
STEP 2. Next we prove that
my(Ey) +ms(E2) < ms(Ep U Ey).

138



2.1.

Let § & \/Lgdist(El, Ey) > 0. If the edge length of I,, is less than §, then we have

d 9 1/2
diam(1,) < (Z (%dist(El,Ego ) = dist(Ey, Es).

i=1

Let us consider a cover of E; U Ey by a countable number of open rectangles {/j }x>1
whose edge length is less than ¢. (i.e Ey U Ey C J;—, I.) Without loss of generality, we
may suppose (E1 U Ey) NI, # () for every k € N. (If By U Ey N I, = (), we may get rid of
it from the cover.)

Note that By NI, =0 or BN 1, = 0, and I,, can not have a common point with both
E; and E, simultaneously because diam([7,) is less than dist(E7, E2). So we can always
separate {[j},~, into {I,g”}pl U {I,EZ)}PI where By ¢ (U2, ItV and B, ¢ U, 1”

Also note that - -
m;(Eh) éZ‘]’S)" m;(E) §Z‘ ‘7
k=1 k=1

hence,

2 00
mi(EL) + mi(Es) gz ‘1“

= |L.
n=1

Finally, by taking infimum on the right hand side with respect to {I,,},>1, we have
(2) Since
(U] £ 3w
n=1 n=1

holds by sub-additivity of outer measure (Theorem 2.1), it is enough for us to prove that

n=1

For each N € N, U, E, € U, E,, so we have

(U)o (=)

by monotonicity of outer measure (Theorem 2.1). We claim that the left hand side

m@ ) Zm

n=1

If this holds, then
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for all N € N. By taking N — oo, we have the desired result. Now we prove the claim
above. First we show that dist(Ey, UflVZQ E,) > 0. If this is true, then

m* (CJ En) =m* (El U C[J En> =m"(Ey)+m” (Cj En> ,

from the previous result. By repeating the similar argument, we have m* (Ufj:l En) =

Zi:le m* (E,). So all we have to do is to prove that

N
dist(Ey, | ) En) > 0.

n=2

By definition,

N
dist(E, E,) = inf r—y
( H ) z€F1,yeUl_, En, | |

A
IV

min inf |z —y|
n=2,-- ,N x€F1,ycE,
= minNdist(El, E,) >0

n=2,---,

Finally, we explain (x). By the definition of infimum, we can find a sequence {x;} C

By {y} C UL, By sit

oe—wl N\ nf oy
zeFE1,yel, o En

And there exists some ng € {2,--- , N} s.t yx, € Ey, for infinitely many k. So we can find
a subsequence ky s.t yy, € E,,. Finally,

lim |z — yl lim |2k, — yg,|
k—o0 l—o00

> inf —
- a:EEH@l/GEnO ‘x y‘
=  min inf |z —yl

n=2,--,N x€F1,yc b,

Now the proof is complete.

O

(Theorem 2.5 (a)) Suppose E C %, I,. Then Eypy C U, Tnjay: M (Bigg)) <
> nswel =0, |1,]. Finally let us take infimum of the right hand side. In the same
way we may prove =. O

[ 9 | (Theorem 2.5 (b)) E C | J°2, I,. Then \E C | J°°, M,,. So we have m*(\E) <
S0 IA.]. By taking infimum, we have m*(AE) < |A|*m*(E).
This holds even if we change A to +. So we have m*(;E) < Wm*(E) We can also

change E to AE. Then m*(E) = #m*(AE}. Now we have the desired conclusion. [
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(Generalized definition of outer measure) p* : 2% — [0, 00| is an outer measure
when it satisfies the following conditions.

(3) (non-negtative) VA C X, u*(A) = 0 and pX(0) = 0.
(4) (monotone) If A C B(C X), p*(A) < pu*(B).

(5) (countable sub-additive)Let A, C X for all n = 1. Then pu* <Un;1 An> <

[
(Exercise 1) Note that AUB=AU(B\A)=BU(A\ B).
*1
m*(B) S m*(AUB) = m*(AU(B\ A))
*2
S m(A) + (B A)
= mi(B\A)
*4
s m'(B).
e (x1) BC AU B. Theorem 2.1: m*() is monotone.
e (x2) Theorem 2.1: sub-additivity
o (x3) m*(A) =
e (x4) B\ A C B. Theorem 2.1: m*(-) is monotone.
Similarly,
m*(B) Sm*(AUB) = m*(BU(A\ B))
< m*(B)+m*"(A\ B)
= m'(B).
e (xb) m*(A)=0and A\ BC A. Som*(A\ B) =0.
[

(Exercise 2) By sub additivity and monotonicity, we have

m*(A) m*(A\ BUANB)

m*(A\ B) + m" (AN B)

A I

INZE

m*(AAB) + m*(B).

e (x) A\BCAAB, ANBC B.
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So m*(A) —m*(B) < m*(AAB). Swap A, B we have |m*(A) — m*(B)| £ m*(AAB).

O

(Exercise 3) E = J,cpiz} C U,cp B(x,9,). By Lindelof’s covering theorem,
we can always find a countable subcover. So E C |J,—, B(xy,0,,). And ENE =FE C
(=)U,—, B(z4,d,,) N E. By Theorem 2,1, countable sub-additivity of Lebesgue outer
measure, we have

m*(E) < im* (B(xp,0,,) NE)=0

]

(Exercise 4)  f(z) o m*([a,z] N E), (z € |a,b]). Then f(z) is a continuous
function on [a,b]. First f(x) is monotone increasing on [a, b]. Next,

flx+h) m*(la,z + h] N E)

*
—_

m*([a,z] N E)+m*([x,z +h]NE)

*

m*([a, ] N E) +m*([z,z + h])
m*(la,z] NE)+h
x) + h.

& NIAE IIA

=

e (x1) Theorem 2.1, sub-additivity
e (%2) Theorem 2.1, monotonicity
e (x3) Example 2

So0 < f(x+h)— f(z) £ h. This implies that f is continuous. Finally we may prove the
statement by intermediate value theorem. O

(Exercise 5) Let C' C [0, 1] be a Cantor set constructed in Chapter 1. Let us
recall that C =, C, C C,. C, = Uz; I, So by Theorem 2.1 (monotonicity and
sub-additivity) and also by Example 2, we have

(@) € £ Y miltu = (2)

Finally by taking n 7 oo, we have the desired conclusion.

§ 2.2

(Definition 2.2) Let E C R?. If the following inequality holds for all B C R,
we call that E is Lebesgue measurable. Let .# be a collection of Lebesgue measurable
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sets on R?. (In the inquality below, < always holds by sub additivity of an outer measure.
So we may use = instead of 2.)

m*(B) 2 m*(BNE)+m*(BnNE°).
[l
(Example 1) We show that for all N € R? : m*(N) = 0, N € .#. By

monotonicity of an outer measure, we have
m*(BNAN)+m* (BN N =m*(N)+ m"(B).

In the inequality above, m*(N) = 0, so we have the desired result. ]

(Theorem 2.6)

(1) Since m*(0) =0, 0 € A . (See Example 1.)

(2) If E €, for all BCRY
m*(BNE)+m*(BNE°) <m*(B).

So
m* (BN ES)+m*(BN(E) < m*(B).

Hence E°¢ € . #

(3)

STEP 1. (EyUEy; € #) Let B,C C R? be an arbitrary subset of R%. FE; is
Lebesgue measurable, so we have

m*(EyNC)+m*(E;NC) <m*(C).
Since C' is arbitrary, so we may change C' = B N ES. So we have
m* (BN Ey\ Ey) +m* (BN (Ey U E)) < m* (BN ES).
Recall that Es is also measurable, so
m*(B N Ey) +m*(B N ES) < m*(B).
So we have
m* (BN E;\ Ey) +m* (BN Ey) +m*(BN(Ey U Ey) ) <m*(B)
Finally, by sub additivity of an outer measure,
m* (BN (E1UEy)) = m*(BNE;\ Ez) +m*(BNE,).

And we have the desired result.

STEP 2. (Ey N Ey, Ey1 \ Ey) The rest is easy. Recall that Ef, ES € #. Ey N Ey =
(BSUES €. B\ By=ENES € M.
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(4)
def def def
STEP 1. Let Al = E17 Ag = E2 \ El; Ag = E3 \ (El U EQ) cee {An}nZI are

disjoint and | J77, A, = U2, B, and UY_ | A, = Un:1 E, for all N € N. By the previous
result UnN:_I1 A, € . So we have, for all C C R,

m*(C) =2 m* <U1Anﬂ0) +m” ((UlAn) ﬂC’) .

Since C'is arbitrary, we may change C' — B N Ufj:l A, where B C R? is also arbitrary.

So we have
(BmUA>>m (BNAy) +m* (BmUA)

By reating the similar argument, (Un:_1 A, € M), we will have

N N
m* (Bﬂ UAn) > m*(BNA,)
n=1 n=1

STEP 2. Since Uivzl A, € A and by the result from the previous STEP,

m*(B) =2 m" <BﬂLj\jAn>+m*<Bﬂ<O n))

A
im*(BmAn) +m* (Bm (CJ An> )

n=1
n=1
This holds for all N =1,2---, so we have

>Zm (BNA,) —i—m( (GAR>

n=1

1\

Moreover, BN (UY_A,)¢ D BN (U2, An)°, we have

>Zm BNA, +m (Bﬂ(

n=1

Finally, by sub additivity of an outer measure, we have

m"(B)

v

3

w

D)

:L

_l’_

3,
A
/\

¢

I

3

V4
S*
I/~
Sy
D)
(.
&
~_—
+
3*
I/
Sy
D
T~
(.
I
3

Since Upz1 4, = U,>, B we have U<, E, € 4.
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STEP 3. If {E,} are disjoint, A, = FE,. In the last inequality, let us consider
B+ U _, A,. And we have

So we have the desired conclusion.

(Theorem 2.7)

STEP 1. (3k € N s.t m(Ey) = co) Obviously the both sides are infinite.

STEP 2. (m(Ey) < oo for all k € N) It is easy to verify that A, B € .#,A C
B, m(A) < oo, then
m(B) —m(A) =m(B\ A).

First, m(B) = m(B\ AU A) = m(B\ A) + m(A). Since m(A) < oo, we can subtract
m(A) from the both sides. So we have m(B) —m(A) = m(B \ A).
= B\ Bror, By < 0.

Let Ak =
k=1 k=1

e (x) Since Aj are disjoint and measurable, m (U;—, Ax) = > pe; m(Ag).

]

(Corollary 2.8) Let Eo, % N>, Ey. Let Ay = E; \ Ey. Then A, 2 E; \ Eo.
By the previous result m(F;)—m(FEy) = m(E1\Fs) = limg_oo m(Ag) = limy_oo (m(Ey)—
m(FEy)). Since m(FE;) < oo, so may subtract m(E;) from the both sides. O
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(Example 2) Let A, = ,—,, Ex. By sub-additivity of an outer measure, we
have m(A;) = m (U~ Ex) < c0.

m (ﬂ U Em> =m <ﬂ Am> = lim m(A,,)
m=1m=k m=1 meo
By sub-additivity,
p— 1 < 1 p—
i (kU E) < Jim, 3 m (Ee) =0
Notice. Let a, =2 0 and Y, a, < co. Then limy oo Y ., a, = 0. ]
(Corollary 2.9)

(1) Let A, o Nozn Em- An is an increasing sequence of measurable sets. So we

have
<ﬂ A ) = hm m(Ay).

The left and side is m(lim infy_,o, Ex). Moreover,

So we have
liminf m(Ag) < ll}gn inf m(Ey), Yk 2 1.

k—o00

The left hand side is limy_,o m(Ag) because limy o, m(Ay) exists. Now the proof is
complete.

(2) Let B = o U,~_, Ey. Let us apply the previous result to Ej “E \ Ej.
m (lim inf E,:) < liminfm (E}) .
k—o0 k—o0

Since m(E}) = m(E \ Ex) = m(E) — m(Ey), (- m(Ey) < 00), we can rewrite the right
hand side as
liminf (m(E) — m (Ey)) = m(E) — limsup m(E}).

k—o0 k—o0

Note that liminfy_,., E\ Ex = E'\limsup,_,., Ek, and also note that m (limsup,_,.) < oc.
Now we can rewrite the left hand side as

m (E \ lim sup Ek) =m(E) —m (lim sup Ek)

k—o0 k—o0

Finally since m(E) < oo, so we may subtract m(E) < oo from the both sides. And we
have the desired result.
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(Exercise 1)

STEP 1. (m*(A) + m*(B) = m* (AU B) + m*"(AN B)) Since A € ., for all
By € R™ we have
m*(By N A) +m*(By N A°) < m*(By).

Since By is arbitrary, we substitute By <— AU B. So we have

m*(A) +m*(B\ A) = m*"(AU B).
By adding m*(A N B) to the both sides,

m*(A) +m*(B\A)+m"(ANB) < m*(AUB)+m" (AN B).
By subadditivity, the left hand side is larger than m*(A) + m*(B), so
m*(A) +m*(B) = m* (AU B) +m* (AN B).
STEP 2. (m*(AU B)+m*(ANB) < m*(A) + m*(B)) Since A € .#, we have

m* (AN B)+m*"(A°N B) < m*(B).

By adding m*(A) to the both sides, we have
m* (AN B)+m*(A°N B)+m*(A) = m"(A) + m*(B).

By subadditivity, m*(A° N B) +m*(A) in the left hand side is larger than m(A U B), so

m* (AU B)+m" (AN B) < m*(A) + m*(B).

]

(Exercise 2) < always holds by sub additivity of an outer measure. In the
proof of Theorem 2.6, we have already shown that for all B C R,

m*(B) 2> m*(BNA,)+m*(Bn (] A4.)),
n=1 n=1
so we may substitute B < |J,~, B,. Then we have the desired result. O]

(Exercise 3) Ej \ Es, By \ By € A since they are measure zero sets. We will
have the desired conclusion from the formula below.

EQZEQ\ElLJ(El\(El\Eg))

Both m(E,), m(Es,) are equal to m(E;, N Ey). O

(Exercise 4)

147



2.2.

STEP 1.

m*(limsup E,) = m" ﬁ[jEk

A

3-)(-
v

=

IN
(]
3*
B

for all n € N. By taking n " oo, the right hand side N\ 0. So m*(lim sup E,,) = 0.
STEP 2. Let

nglimsupEn:{zeRl|#{n|x€En}:oo}.

Fixz € R'\ Z. Then #{n : x € E,} < oo. (Only finite number of E,, contain x). Hence

for sufficiently large Vn > N, ¢ E, & W < 1. So limsup,,_, ., W < 1,Vx €
R\ Z.
O
(Exercise 5) Since E € ., for all B C R?, we have
m*(T'(B)) Zm*(T ' (B) N E) +m*(T"'(B) N E°).
Since T does not change outer measure,
W(ToTYB)) 2 m(T(T-1(B) N E)) +m*(T(T"(B) N EY))
> m*(ToT Y B)NT(E))+m*(T oT YB)NT(E)).
Moreover T' is one-to-one and onto so T o T~ (B) = B, T(E¢) = T(E)¢. Therefore
m*(B) 2 m*(BNT(E))+m*(BNT(E)°).
This implies the desired result. O

def

(Exercise 6) Let X = {F,}aca and let

e 1
And:f{@eA ] m(Eaﬂ[—n,n])>ﬁ}.

STEP 1. We prove that A =J~ | A,. Obviously A, C A. Next, if « € A. Then
m(E,) > 0. So for sufficiently large n € N, m(E, N [—n,n]) > 0. (Otherwise, m(E,) =0
and it contradicts to the assumption.) Since m(E,N[—n,n]) /7 m(Ey) > 0 and £\, 40,
we can find n € N s.t m(E, N [—n,n]) > <.
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STEP 2. We show that A, is a finite set. Since {E,N[—n,n|}aca, are also disjoint

and Jyeu, Eo N [=n,n] C [-n,n], so A, is finite. Otherwise,

m(U Eaﬂ[—n,n]> = Z m (E, N [—n,n]) > %~#An:oo.

aeAn OLGATL

(But m([—n,n]) = 2n < c0.)

(Exercise 7)

STEP 1. By Fatou’s lemma (measure version), we have

m (lim inf Ek> < liminf m(Ey).
k—o00 k—o00
STEP 2. Since E; C [a,b], so Uy, Bx C [a,b] and m (U2, Bx) S b —a < oo,
we apply Fatou’s lemma (measure version), and we have

limsupm(Ey) < m (lim sup Ek) :

k—o00 k—ro0

(In the proof of Corollary 2.9, if we let £ = Uzozko Ej and then we have the same conclu-
sion. So starting from k = ky does not matter because we are interested in the situation
when £ is sufficiently large.) Now the proof is complete.

O]
(Exercise 8)
> X (¥) < 00, Y €[0,1]\ N,m(N) =0
n=1
implies that {x € [0,1] | = is contained in infinitely many F,} = limsup,_,. E, C
[0,1] \ N. So we have
limsupm(E,) < lim m E,.|l=m E,.|l.
i) < (U ) = (O )
(The equality holds because E,, C [0, 1]. See Corollary 2.8.) O

2.3
(Lemma 2.10) Let F e Ge. Since Ey C Eyq, limgoo m*(Ey) exists.

When limy_, m*(Ey) = oo, the statement holds obviously. We only need to consider
limy 0o m*(Ey) < 00.

149



2.3.

STEP 1. (proof of |, Ex = E) First we show that | J;-, Ex = E. Since E, C E
forall k =1,2---, o, Ex C E.
Next, for any = € E, dist(z, G) > 0. To verify this, let us recall Theorem 1.24. Since
F = G°is a non-empty closed set, Vo € R%, there exists y € G¢ = F, dist(z, G¢) = |z — y|.
If dist(x,G¢) = 0, then x = y € G°. However z € E C G so this contradicts to the
assumption. So we conclude that dist(z, G¢) > 0 for all z € E. For each x € F, by taking
sufficiently large k, we have dist(z, G%) 2 £. So x € U, Ej, for all € E. This implies
that £ C UZil E,.

STEP 2. (proof of limy_,oo m*(Ex) = m*(E)) E) is monotone increasing. So
limy,_, oo m*(E}y) exists. Obviously limy_,o m*(Ey) < m*(E) holds. So our goal is to show

that m*(E) < limy_o m*(Ey).

Let Ay, © Ey\ Eyn_y, Eo & 0. dist(Ag, As) > 0 if k < ¢ holds. We will prove this

later, but let us accept this fact for now. Since U§:1 Ay; C Eyy, we have

m* (U A2j> é m*(Egk)

j=1

The left hand side is i i
m’ (U AZj) = m*(Ay),
j=1 j=1

because dist(Aax, Ag) > 0 if & < [ and Theorem 2.4. Therefore,

k

> m (Ag) S m" ()

j=1
Similarly we also have
k
Z m* (Agj—1) < m* (Eo—1) .
j=1

By our assumption, supy>; m*(Ey) = limj_,oo m*(E}) < oo, therefore we have

> m(Aw), Y m*(Agr) < 0.
k=1 k=1

Since
[o.¢] [o.¢]
E = Egk U U Agj U U A2j—17
Jj=k+1 Jj=k+1
and by sub-additivity of an outer measure, we have

m*(E) £m*(Ba) + > m*(Ag)) + Y m*(Ay; 1),
j=k+1 j=k+1

By taking k& — oo, > 72,y m*(Ag) + 372, m*(Azj—1) — 0. So we conclude that
m*(E) £ lim m*(Fay).
k—o0
Since Fj is monotone increasing, so the right hand side = limy_,, m*(E}).
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STEP 3. (proof of dist(Ag, Ay) > 0,k <) Let z1 € Agg, x9 € Agy. Sinde F = G°©

is a non-empty closed set, there exists y, € G° = F' s.t
|zg — yo| = dist(xq, G°).
By triangular inequality, we have

dist (2, z2) 2 dist(z1,y2) — dist(z2, y2)
= dist(zq,y2) — dist(xq, G)

Further more, since dist(z1, y2) = dist(z1, G¢) o inf,eqe

x1 — y|, we have
dist(zq,m9) = dist(x1, G) — dist(z2, G°).

Since x1 € Agy, 9 € Agy, dist(xy, G¢) 2 i and dist(z1, G%) < so we have

_1
2017

|ty — x| = dist(xy, z9)
Z diSt(ﬁl, GC) - diSt(I‘g, Gc)
> 1 b
- 2k 20—-1
This implies that
1 1
inf > — — > 0.
$1€A21kr}1'2€1422 lxh $2| - 2k 20—1

]

(Theorem 2.11) Let B an arbitrary subset ofR? and let F' be a non-empty
closed set. We use Lemma 2.10 (G = F°,E = B\ F C G). Let

e , 1
E@Q{xeB\F\ma@jng}.

Then limg_,oo m*(Ex) = m*(B \ F). Since
m*(B) m*(BNFUB\F)

m*(BNF)+m*(Ey),

s IvVE

o (x1) B\ F D E,.

e (x2) This hold because dist(Ey, B N F) > 0. First, dist(Ey, BN F) = dist(Ey, F).
(It is easy to verify by the definition of dist(+,-).) Let z € Ey,y € F. be arbitrary
points in Ej, and F. Then |z — y| 2 dist(z, F) = ;. Therefore dist(Ey, F) = +.

Finally,by taking k " oo, we have the desired result. m
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(Theorem 2.12) Let ¢ be a collection of open sets on R? and let % be a

def

family of Borel measurable sets. VG € 0% F = G° € M4 = G € .# so 0° C .#. Since

% ™ 5[07 is the smallest o—algera which contains 6%, ¢[04] C 4. O

(Theorem 2.13)
(1)

case 1. (m(F) < oo) By the definition of Lebesgue (outer) measure, we have
{[n};ozla EC Uzo:l In, s.t

m(E) £ |L,| <m(E) <e

Let G & U~ I,. We show that G is the desired open set. By sub additivity m(G) <

Yoo n| < m(E) + €. Since m(G) < oo and E C G, m(G\ E) =m(G) — (E) <.
case 2. (m(F) = oo) Let Ej “EN B(0,k) (E = U,—, Ex). Then m(Ej) < oo.
From the previous result, for each Ej we have an open set G, D Ej s.t ,m(Gy \ Ei) < 5.
def

Let G = Jpo, Gy. G is the desired open set. m(G \ E) < > 77, m(Gy \ Ex) S e.
(2) We have G D E°. s.t m(G \ E°) < € from the previous result. Let F © Ge.
Then m(E\ F) =m(G \ E°) < e.

[]

(Converse of Theorem 2.13) We can find a sequence of open sets {G,,}7%, 8.t

m* (G, \ E) < L. Let H® (\°,G, € 4. Then m*(H\ E) £ m*(G, \ E) < L for all
n=12--som(H\FE)=0. Finally E = H\ (H \ E) € 4 because HLH\ E € /.
Now the proof is complete. O]

(Theorem 2.14)

(1) By Theorem 2.13, we have G, : an open set s.t m(G, \ E) < = and E C G,.

Let H® N>, G,. (This is a Gy set.) Then E C H and m(H \ E) < m(G, \ E) < L for

alln=1,2---. Som(H\ E)=0. Let Z ©H \ £. (This is a measure zero set.) Then

E=H\Z.

(2) By Theorem 2.13, we have F), : a closed set s.t m(E\F,) < . Let K o Uo—, Fa.
(This is a F, set.) Then m(E\K) S m(E\F,) < tforalln=1,2---. Som(E\K) = 0.

Finally let Z < E \ K. (This is a measure zero set). Then £ = K U Z

O

(Theorem 2.15) We may suppose that m*(F) < oo because if m*(E) = oo,
R? is the desied set. By the definition of Lebesgue outer measure, for each n = 1,2-- -,
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we have {I,x}r>1 s.t

3

1
m*(E) | k| <m*(E)—|—ﬁ.
k=1

Let G, def Ui I~ (This is an open set. G, D E) Then we have
m(Gp) £ m*(E) + —.
n

Finally let H < MNoe; Gn. (This is a Gs set. H D E) Then we have

3*
5
I
3

E
IA

< m(G) < m (E) + 2. ¥n=1,2---
n

So m*(E) = m(H). O
(Corollary 2.16 and Corollary 2.17)
(1) Foreach k=1,2---, we take a Gs-set Hy s.t Ey, C Hy and m*(Ey) = m(Hy).

*1
m*(liminf Ey) < m (11,523,2f Hk>

k—o0
(0]
k=1m=k

B

lim inf m(Hy)

k—o0

I1& &

IAE

*
ot

= liminf m*(Ey).
k—o0

(*1) By C Hy,

(¥2) By definition.

(%3) (No_, H,, is an inreasing sequence of sets with respect to k. So we may swap
lim and m.

(x4) No_, Hy C Hy. m(Hy) does not necessarily have a limit. So we consider
lim inf.

o (xb) m*(Ey) = m(Hy).

So we have the desired result. Notice. Some people may think that we can use this
lemma to prove Lemma 2.10. But we can not do so. In this proof, we used measurability
of Hj; which was derived from the fact that a closed set is Lebesgue measurable. However
measurability of closed sets was proved using Lemma 2.10.

(2) If E) is an increasing sequence, each liminf in the formula above becomes lim
So we have m*(limg_,o, Ey) < liminfy ., m*(Ey). 2 is obvious.
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]

(Theorem 2.18 (a)) We have already shown that m*(E) = m*(E,,,) where
Ei., = {x + 20|z € E}. In this theorem we prove measurability is also preserved by
translation. Suppose E € .#. Then E = H \ Z where H is a G4 set and Z is a measure
zero set. Obviously E .y = Hiwy \ Ziay- Z+ao 1S also a measure zero set since translation
does not change outer measure. Hi,) = (o) Grig,- Obviously Gy, is also an open
set. So E,, is also measurable. ]

(Theorem 2.18 (b)) Let E C R. Let us recall that YA € R, m*(\E) =
|IA|m*(E). (Theorem 2.5 (b), d = 1.) Let B be an arbitrary set on R.

STEP 1.
m*(BNAE)+m*(BN(AE))
m*(BNAE) +m*(BNAE"))
= m*AABNE)) +m*(AA BN EY))
= [Mm*A'BNE)+ | \m*(A\'B N E°).
o (x1) (AE)® = A(E£°)holds. We explain this in the next step.
e (x2) A\(AN B) = AA N AB holds. We also explain this in the next step.

Further more, since E is mesurable, for all B C R, we have
m*(B N E) +m*(B N E°) <m*(B).
Let B = A~'B. Then we have
INm* (A BN E) + |)\|m*( A'BnNE°)

< Pmr(ATIB) = A |A| m*(B) = m*(B).

Now the proof is complete.
STEP 2. First, we verify that (AE)® = AE°. Let f(x) o 2. Then A\E = f~'(E).
Since f71(E) = f~}(E°), we have (AE)® = \E".
Next, let f(x) v f(ANB) = f(A) N f(B) holds. So AANAB = A(AN B)

]

(Exercise 1) Cosider a Gs set Hy D E st m(H;) = m*(E) < oo. Let

}; F, € E be a bounded closed set with m(Fy)  m*(E). Let Hj o Uk 1Fk

E\ Hy) < m(H; \ Hy) = m(Hy) —m(Hsy) < m*(E) —m(F;) forall k =1,2---. So
E\Hy)=0=FE\Hye . Finally E = (E\ Hy) UH> € /. O

(Exercise 2)

3 3%

*

i
(
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(1)  We prove the contraposition. Suppose that £ # [0, 1]. Let us pick xo € [0, 1]\ E.
Since zg € [0, 1]\ F’, there exists 6y > 0 s.t B(xg, d)NE = (). Therefore, B(zg, d)N[0,1] C
[0,1] \ E. And we have

0 < m(B(20,60) 1[0, 1]) £ m([0, 1]\ E) = m([0,1]) — m(E).
Som(FE) < 1.

(2)  We prove the contraposition. Suppose that E # (). This implies that Jzq € E
and 39y > 0 s.t B(zo, ) C E. Then 0 < m(B(xg,d)) < m(E).

]

(Exercise 3) We prove the contraposition. In other words, our goal is to prove
that if 3z € (a,b) s.t f(xg) > g(xo) then Ity € R st m({z € [a,b] | f(x) > to}) >
m({z € [a,8] | 9(2) > to}).

Let tg = f(zo), then ty is the desired ty € R. m({z € [a,b] | f(z) > to}) = m([a,z0)) =
xo — a because f(z) is continuous and strictly decreasing. Since g(x) is also continuous
and strictly decreasing, there exists 6y > 0 s.t

Vx € (l’o — (50, b], g(l‘) <ty = f(l’())
So

m({z € [a,b] | g(x) > to} m({z € [a,b] | g(x) = to})

m([a, g — d]) = xg —a — 0.

ANIVAN VAN

o — a

m({z € [a,b] | f(x) > to})

]

(Exercise 4) We use Theorem 2.11 and Theorem 2.13. (Recall that we have
not shown that a closed set is Lebesgue measurable.)

STEP 1. First we explain that we may suppose that E is bounded without loss of
generality. Let E, < E N [—n,n|. Then m(E,) /* m(E). If m(F) > «, we can find n s.t
m(E,) > a. So we just need to find F' C E, s.t m(F') = a. We explain how to find such
F' in the next step.

STEP 2. Next we suppose that £ C [-M, M] is bounded. By Theorem 2.13, there

exists a closed set K C Est m(E\ K) <e o m(E) — a. Since m(E) < oo (. bounded),

m(E\K)=m(E)—m(K) <m(E)—a. Som(K) > «a. Now let f(x) o m(KN[—M,zx]).

Then f(z) is continuous because f(z + h) — f(z) £ m((z,z + h]) = h. f(=M) =0

and f(M) = m(K) > «. By intermediate value theorem, there exists ¢ € [—-M, M] s.t

fle)=a. So F KN [—M, ¢] is the desired closed set.
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(Exercise 5) This does not necessarily hold. Let

def > 1 1
G = <r” ont17'n + 2n+1> ’

n=1

where {r,} ' Q. Since G contains all rational numbers on R (hence it is dense), so
G = R, however

- 1 1 =1

Z n 2n+1 T+ on+1 o 2_n o

n=1 n=1

(Exercise 6) Let us consider G sets Hy, Hy s.t £y C Hy, By C Hy and

m*(Ey) = m(H,), m*(Es) = m(H,).

||/\

We have

*1

m(Hy) +m(Hs) = m(H; U Hy) *22 m(Ey U Ey)
= m'(Er) +m’(By)
= m(Hy) +m(Hy).

x1) sub-additivity

(+1)
e (*2) monotonicity of measure
(*3) by assumption

)

o (x4) m(Hy) = m*(Eyr), m(Hz) = m*(Ey)
From this fact, we find out that
m(H1 N HQ) = O,

hence

So E; N E, is also a measure zero set hence E; N By € .# . Moreover
(H1UH2\(E1UE2)) (H1UH2) (E1UE2) :O,
so Hy U Hy \ (E7 U Es) is also a measure zero set.

e (x5) Both HyUH,, EyUFE, are measurable and H;UHy D EyUE; and m(EyUE,) <
00.

Therefore we find out that both Hy \ Ey, Hs\ Ey are measure zero sets. (You may draw a
Ben figure.) Finally £y = Hy \ (Hy \ E1) and Ey = Hy \ (Hy \ E2). So we have the desired
conclusion. O
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(Exercise 7)

STEP 1. Let {r,} € [0,1]NQ, let L, x © B(ry, z27) and let Gy & U, Ls. Gy

contains all rational numbers in [0, 1] so Gy is dense in [0,1]. m (=, Gk) < m(Gy) =

S et = g1 S0 m (e, Gi) = 0. We prove that E o N, G is a set of the

second category. (not a meagre set).

STEP 2. Let B¢ % [0,1]\E = [J3*,[0, 1]\Gy. Since [0, 1)\Gy is closed, [0, 1] \ Gy, =
[0,1] \ Gk. Therefore [0,1] \ Gx = [0, 1]\ Gy. It is enough to show that [0,1] \ G has no
interior point.

Since G, is dense in [0, 1] (G}, contains all rational numbers in [0, 1]), [0, 1] \ Gy has
no interior point . So [0, 1] \ G\ = [0, 1]\ G =0, hence [0, 1] \ Gy is a nowhere dense set.
Therefore £ = (J;—,[0,1] \ Gy, is a meagre set (a set of the first category). So E' is a set
of the second category. (x)

STEP 3. Finally, we explain (*). We show that if A C R? is a meagre set. Then

BY A¢isnot a meagre set (a set of the second category). Suppose both A, B are meagre

sets and A = J,~, FV B = U~ F?, where {F{"} U {F{*} are collections of nowhere
dense sets.

R'=AUB = GF}LUU OF,(L?)
n=1 n=1

F=0 =
c FUul |F
nul nul
= R4

So it follow that R? does not have an interior point by Baire’s theorem (Theorem 1.23).
(contradiction!)

(Exercise 8)

STEP 1. Let

Adéf{xE]R\#{(p,q)EZxN :

1
b))
q q
def

We show that m(A) = 0. Let B, = [n— 1,n|N A,n € Z. It is enough for us to
prove that m(B;) = 0 because for any m € Z, x € A = x + m € A and this implies
m(Bo) = m(By) = m(B_1) = -+ (o — 2| = |z +m — B9 = | - — £ )

STEP 2. Let B = B;. We show that m(B) = 0. Let
def (P 1 p 1)
L, (2= L4 -
m (q ¢q ¢
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Suppose x € B C [0, 1]. There are infinitely many (p,q) € Z x Ns.t [z — £| = q%(<:> T €
I,,). So

1 1
v —— Sp=qr+ —.
q q
Moreover, since z € [0,1],q = 1,
—-1=p=q+1

From this inequality, we can find out that there are only finite number of ps.t x € I,,,

for each fixed ¢ =1,2---. So if we let E, def

g s.t x € E,. Therefore Vo € B, we have

Ugii1 I, ,, there should be infinitely many

z € {z € R | z is contained in infinitely many E,} = limsup £,
q—00

In other words,
B C limsup £,

q—00
Now Z;il m(E,) < oo, (.m(E,) = %2),
limsup B, | = i E,
omee) - o ()
< i _
< (}L@O%m(Em) 0.

(You may also use Borel-Cantelli’s lemma to explain this part.)

§ 2.4

(Theorem 2.19)

STEP 1. (m(E) = +o0) In this theorem, we may suppose that m(E) < oo. Let

E o B(0,k) N E. Then Ey /' E, so we may find k s.t 0 < m(Ey) < co. So let us find

the desired interval with respect to Ej. Then, A|I| < m(I N Ey) < m(INE).
STEP 2. (m(F) < oo) Let

(a(t) ma)

We may find a collection of open intervals {Ix}r>; s.t

Ec|Jn ) Ikl <m(E)+e
k=1

k=1
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Next if we suppose that
m(ENIy) S M|, VE=1,2---, (%)

then since E = |J,-, £ N I}, we have

*
—_

m(E)

A

PRA
Am(E) +¢€) = Im(E) + Xe

2 Am(E) + A G - 1) - m(E)

A

LOAG

< m(E).
(*1) measure has sub-additivity
e (x2) we suppose that m(E N I},) < Al
(+3)

*3) we picked {I;}72, s.t D oy [Ik] < m(E) +¢

(#4) we chose € < (3 — 1) - m(E)

A contradiction occured because the assumption (x) is incorrect. So there exists at least

one [, s.t
m(E N Iyy) > Mg, |-

(Theorem 2.20 Steinhaus Theorem )

STEP 1. Let
re(1--1
c\ o)

By Theorem 2.19, we find an open interval [ o Hle (a;, b;) s.t
A <m(ENI). (xa)

Now let § be the shortest edge length of I.
def .
0 = 1,1=n1md{bz —a;}

STEP 2. Let

We prove that J C E — E. However, it is enough for us to prove the following statement.

Vao € J, (ENI)N(ENT) g # 0. (+b)
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We state the reason why it is enough for us to prove (xb). If there exists y € (E'N
INN(ENI)ig, theny € (ENI) and y = z + z for some z € (E'NI). This means that

Jy,z € (ENI) st y—z=x. Inotherwords,:z:oGEﬁ[—EﬂIdﬁf{y—z|y,z€Eﬁ[}
for all xg € J. So J C ENI — ENI. Moreover, obviously, FNI — ENI CFE—FE. So
we can conclude that J C E — F.

STEP 3. (Proof of (xb)) Let xy = (201, 204). Since |xo;| <
shortest edge length of I, the each edge length of I N I,, is larger than

and J is the

% a;). So

1
2

L0 ()

m<[m[+zo) > 2d

And

mIUli,) = m(l)+m(liy,) —m N L)
= M+ Lagl =m (I N L)
2 201 —m(IN L)

*4 1

< 2|I|—%'|f|
1

*H

< 2A|1].

x1) m(AU B) =m(A) +m(B) —m(AN B).

*2

m(I) = |I| when [ is an open rectangle.

(x1)
(+2)
e (x3) obviously |I| = |I,,| holds from the definition of |I|.
(x4) by (xc)

(*D)

e (x5) we assume 1 — zdlﬂ < A\

Now suppose EN I and (ENI),,, are disjoint. Then,

m(ENI)U(ENI) m(ENT) +m(ENT) i)

2m(EN 1)

+$0)

m ([ U IJrzo)
2|1,

ANIVAN- S|

o (x6) ENIUENT) 4y, C LUy,

So we have m(E N I) < A|I|. However this contradicts to the assumption (xa). So EN I
and (E'N 1), are not disjoint for any =y € J. Now the proof of (xb) is complete.
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(Exercise 1) By Theorem 2.20,
(—a,a) C E— E, for some a > 0.
This means that Vo € (—a,a), Jy,z € Estor=y—z. Sincey=z+ 2,y € E,,. So
ye ENE., #0.

]

(Exercise 2) By assumption, for all x € (=6,0), z € E_, or x € —E_, where

B, {—z |2 e E_,}. Therefore we have

(=0,0) CE_,U—FE_,.

By monotonicity and sub-additivity of Lebesgue measure, we have

*
—_

m((—6,0)) = m"(E_,U—E_,)
*§2 m*(E_,) + m*(—E_,)
2 (B_y) +m*(E-,)
= 2m"(E_,)
= 2m(E_,)
2 om(E)

x1) A C B then m*(A) < m*(B)

*2

*(AU B) = m*(A) + m*(B)

(*1)
(¥2) m
(x3) m*(AE) = |M?m*(E). (Theorem 2.5)
(*4)

x4) By Theorem 2.18, F € .# then E_, € .#. So we can change m* to m.

(%5) By Theorem 2.18 or Theorem 2.5. Translation does not change the value of
Lebesgue outer measure.

From the inequality above, it follows that 20 < 2m(FE). Now the proof is complete. [
(Exercise 3) f is bounded in E. We suppose that |f(x)| £ M for all z € E.

STEP 1. (Vr € Q, f(r) =rf(1)) First f(0) = 2f(0), so f(0) = 0. Next y = —x
and we have f(z) = —f(x). Then f(n) =nf(1) for n € Z.
Letr € Q. Thenr =2 neZmeN. f(LX+I...0)=mf(2)= f(n)=nf(l). So
FGo) = f).
STEP 2. By Theorem 2.20, there exists an interval I = [—¢,¢] C E — E. Let
x € [. Then Jxy,29 € F st © = x; — x5. By assumption, f(z) = f(z1) — f(z2) so
[f(@)] = [f(x1) = f(22)] = 2M < o0,
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STEP 3. Let x € R and let N € N. We can always find r € Q s.t [z — 7| = &
because Q is dense in R. We show that |f(z) — 2 f(1)] =0 for all x € R.

[f(@) —2zf()] = [fle=r)+ f(r)—zf(1)
= |fl@—=r)+rf(1) —2xf)
< [fle - 7’)\+|7"—iv||f( )|
s |flz— 7’)|+—|f( )|

Moreover,

fe=nl = |7 (¥ -n)]

1

1 (V=)

2M

N

e (x) N(x—r)el=][—cc]so|f(N(x—r))|=2M by STEP 2.

[ *

Since N € N is arbitrary, the right hand side \, 0 by taking N  oco.

§ 2.5

(Example: non Lebesgue measurable set)
(1) First we construct a non Lebesgue measurable set on R!.

STEP 1. Let

I, Y {z+7|reQ} (zeR), R\QX (I, | z € R}.

By axiom choice, from each I' € R\ Q, we can pick an element a € ', and define a new
set W& {a} by gathering a € I' together. Note the following facts.

o *1)Ifx —y € Q, thenI', =T,. (In this case, I';,I', are equivalent.)

o (*2) If a1,as € W (a1 # ag), then a1 — ag ¢ Q. (This implies that W — W does not
contain any rational numbers except for 0.)

o (*3) R =U,eq Wy, where W, o {r+r|zeW}l

(*1) is easy to verify. (*2) If a1 — ap € Q, then there exists I' € R\ Q s.t ay,a2 € I'. But
we pick an element a € ' only once from each I" € R \ Q, so both a;,as € I' can not be
contained in W. (*3) Let us pick an arbitrary real number # € R. There exists some
ae€Wstaxel, (Because we pick some a € I'; to construct W.) So there exists ' € Q
sta=xz+71". Letr=—r". Thenz=a+r.
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STEP 2. We show that W ¢ .#. We use proof by contradiction. Suppose that
We#.

case 1. (if m(W) = 0)

(contradiction!!)

case 2. (if m(W) > 0) By Theorem 2.20 Steinhaus Theorem, we 3§ > 0s.t (—9,0) C
W —W. However (W — W)\ {0} are irrational numbers by the argument above. In other
words, W — W can not contain rational numbers, so it can not contain an interval. (An
interval always contain rational numbers.) (contradiction!!)

In conclusion W is not Lebesgue measurable.

(2) Extention to the case of R? is quite easy. We just need to change R, Q into
R?, Q% in the discussion above.

O

(Additional Theorem) We show the case of R'. (Modification to the case of
R? is easy.) Let W be a non Lebesgue measurable set on R'. Let Wy, = {z+7r |z € W}
where r € Q. Since J,q Wy, =R, we have A = Ureco W, N A. By sub-additivity,

0<m*(A) £ m* (W, NA).
reQ

So there exists at least one g € Q s.t 0 < m*(W,,, N A). W = o Wi, N A is the desired
non Lebesgue measurable set.

Suppose W € ., by Steinhaus Theorem, 36 > 0 s.t (=6,6) CW —W = W+T0 NA-—
Wiy NAC Wy — Wy, = W — W. However, we have already shown that W — W does
not contain any intervals in the previous question. So W ¢ .Z . O

(Exercise 1)  We can construct a non Lebesgue measurable set W C [0, 1] by
the Additional Theorem. From each I',,z € A, we can always choose a, € [0,1]NT
Then W C [0,1]. Such W satisfies the given condition. ]

(Exercise 2) We construct a non Lebesgue measurable set W C [0, 1] using

the Additional Theorem. Let {ry} = o [—1,1] N Q and let Ej o W, where W, o

{w+r, | we W}. Note that each Ej are disjoint. (Suppose that Ey N Ey # (). Then pick
x € E1NEy. x =wy + 11 = wy + ry where wy, wy € W. This implies that w; — wy € Q.
But this can not happen.)

U E, C [—

k=1

So m*(Ur—, Ex) < 3 but Y ,-, m*(E)) = oo because m*(Ey) = m*(W,,, ) = m*(W) > 0.
[
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(Exercise 3) Since (W — W) \ {0} does not contain any rational numbers,
Ve e W —-W,V6 > 0,B(x,0) ¢ (W —W)\ {0}. (.- B(z,d) contains rational numbers.)
Therefore we conclude that W — W has no interior point. O

(Exercise 4) We suppose that EAW € .# and derive a contradiction. Then
EAWNE € # thus E\W € 4. And EAW \ (E\W) = W\ E € .#. Next
E\N(E\W)=EnNW € . Finally W =ENW UW \ E € .#. (contradiction!!)

(Exercise 5) We show that £ € .# =

sup {m(F)} = inf  {m(G)}.

F: closed;FCE G: open;ECG

Let S déf SUpp. closed; FCE {m<F)} and [ déf infGi open; ECG {m(G)}

case 1. (m(FE) < o) By Theorem 2.13, we have a sequence of closed sets and open
sets {Fntnz1 0 Fr C B, {Grlaz1 0 G, D E where

1
m(G,\E) < —, m(E\F,) < —
2n
Then

m(Gn) —m(E) +m(E) —m(F,)
(€

[

m(G, \ E) + m(E\ F,)
< % — 0
o (x) m(E) < 00, E C G, s0o m(G, \ E) =m(G,) —m(E). Similarly, m(E \ F,,) =

m(E) —m(F,).

case 2. (m(E) = oo) It is enough for us to show that S = oco. Since Ve > 0,
dF C E,F : closed st m(E\ F) <e. m(E) =m(E\ F)+ m(F) holds. The left hand
side is co. If m(F) < oo, the equality does not hold, hence m(F') = co. So we conclude
that S < m(F) = oo.

]

61 Exercise 6) Let I € R% be a non Lebesgue measurable set. We define
61] ( g
E, ¥ R \ {a} (So E¢ = {a}). Then

N E. = (UE;)CZJC¢.///.

a€cl acl

(Extra Exercise 1) Let
def

I, Y(Jer|InJ+£0}.
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First ep, J is also an interval. Second {I';}rer is at most countable. (.- We pick
U1, T, € {T1}rer. Then Ujep, J; Ujep, J are disjoint intervals. Each interval contains
1 2

rational numbers and rational numbers are countable, so disjoint intervals are countable.)

Finally
Jr=-Uuyv

Ier Ier Jer;
is a countable union of intervals. So it is measurable.
O]

(Extra Exercise 2) Suppose that there exists a measure zero set Z s.t m(f(2)) >
0. By Extra Theorem, there exists a non measurable set W ¢ .# st W C f(Z).
Then f~Y(W) C Z so f~}(W) is a measure zero set, hence measurable. By assumption
f(f~H (W) = W is measurable. This contradicts to the fact that W is not measurable.
O

§ 2.6

(Definition 2.3) Let &% be a collection of all open sets on RY. T is continous
Yvge o, THG) Y {z eRY | T(z) € G} € 6°. O

(Theorem 2.21)
def

STEP 1. (=) Suppose VG € 0% T 1 (G) = {zr € RY | T(z) € G} € 0% Let
2o € R™ and let € > 0. Since B % B(T(xg),€) is an open set,

TYB) = {z e RY | T(z) € B(T(x0),¢)}

is an open set by assumption. Since T!(B) is open (and zy € T~1(B)), there exists § > 0
s.t
B(z¢,0) C T"Y(B).

This implies that Yy € B(zo,9),T(y) € B(T(x¢),€). T(y) € B(T(xg),€) is equivalent to
|T(z9) — T(y)| < e. In conclusion,

36 > 0, s.t Yy € B(zo,9), |T(zo) —T(y)| <e.

STEP 2. («) Suppose that Vo € R% Ve > 0,35 > 0 s.t Yy € B(xo,9), |T(x0) —
T(y)| < e. Let G be an open set on R%. We prove that T~(G) is open.

case 1. If T71(G) is an empty set, T~!(G) is open so the statement holds.

case 2. If T71(G) is not an empty set, we pick an arbitrary point zo € T7(G). (We
aim to show that 30 > 0 s.t B(zo,d) C T~*(G).) Since T'(z¢) € G and G is an open set,

de > 0 s.t B(T(z0),¢) C G.
By assumption,

36 > 0s.t Yy € B(x0,0),T(y) € B(T(xp),e) CG.
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From this fact, we find out that

B(x,0) {y e R T(y) € B(T(w),€)}
{yeR"| T(y) € G}

T7YG).

So we conclude that T71(G) is open for all G € 0.

[l
(Example 1) Let x = (x1,---24) = 2?21 zie; € RY where e, ,eq are

standard basis. We define
d
def
rE (z w)
i=1

2
Let

By linearity of T', we have

Then

*
[ray

=]
s
A

d

>l - 17 (e

B d /2 , 4 1/2
(Z W) (Z ||T<ei>||2)

= Milz|.

A&

e (x1) triangular inequality
e (x2) Cauchy Shwartz inequality

So || T(x) = T(y)|| = |T(x — y)|| £ M|z — y||. This implies that y — « = T'(y) — T'(z).
By Theorem 2.21, T is continuous. [

(Theorem 2.22)

STEP 1. Let us consider an arbitrary open cover of T'(K) as below.

T(K) C | Ga: {Ga}aer C 0°

ael
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where 0% is a collection of all open sets on R?. By Lemma 1.20 Lindelof’s covering lemma,
we can always find a sub cover with countable number of open sets. Therefore we may
assume that

T(K) C G G,

We aim to prove that we can find a finite number N € N s.t

STEP 2.

K ¢ T'oT(K)

c 17! (D Gn)
2 | JT74Ga).

e (1) by definition 7' o T(K) = {x € R? | T(z) € T(K)} and obviously K is
contained in it.

o (x2) generally f~'(U,ca Aa) = Upea 71 (As) holds.

Since K is a compact set, by Heine-Borel’s covering theorem, we can find a finite number
N <00 s.t

N
Kc TG,
n=1

Therefore,

N
=3 U ToT YG,)
n=1

*4 N
C U G,.
n=1

o (x3) generally f(U,ca Aa) = Ugea f(Aq) holds.

e (¥4) by definition T o T™Y(G,) = {T(x) | z € T"YG,)} = {T(z) | z € {y € R? |
T(y) € G,}} C G,.

For all open covers of T'(K') with countable open sets, we can always find a sub cover with
finite number of open sets. So T'(K) is compact.
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(Corollary 2.23; 2.24)
(1)

r-Ur-UU
n=1 n=1m=1

where F,,,, = F, N B(0,m). Then F,,, is a bounded and closed (= compact) set.

T(E) - U T(Fn) - U U T(Fn,m>

n=1m=1

Since T'(F, ) is also a compact set (= bounded and closed) by Theorem 2.22, T(E) is a
countable union of closed sets. So we conclude that T'(E) is a F,, set.

(2)
E=KUZ

where K is a F, set and Z is a measure zero set. Since
TE)=T(KuZ)=T(K)uT(Z),

and T'(K) is also a F, (by the previous result) set and T'(Z) is a measure zero set, T'(E)
is measurable.

(3) Give a counter example. Let C' C [0,1] be a Cantor set and let ®(x) be Cantor
function. ®(z) is continuous and m(C') = 0. However m(®(C')) = 1.

(Extra Theorem: Lipschitz Continuous)
(1) Let T : R4~ R? If there exists a positive number L s.t

o,y € RY||T(x) = T(y)ll < L]z — y],

1/2
where ||a|| o <Zf:1 af) . Then we say that 7" is Lipschitz continuous.

(2) If Z C R?is a measure zero set and T is Lipschitz continuous, then T'(Z) is also
a measure zero set.
If Z is a measure zero set, for any positive number ¢ > 0, we can find a countably

many open balls B; et B(zi, 1) s.t

Z C [OJBZ-, im*(Bi) < e (%)
i=1 i=1

168



2.6.

Let us consider the diameter of 7'(B) where B is an open ball with radius r. Since

diam(7(B)) = sup [|T(z) — T(y)]|

z,yeB

= sup Lijz —y|
z,yeB

= L -diam(B) = 2Lr,

we can cover T'(B) with an open ball with radius 2Lr. Therefore

ﬂ@CT<6&>:GT@Q

and

m*(T(Z)) < Zm* (T(B;)) < (2L)? - e.

by taking € N\, +0, we have the desired result. So our main task in this question is to
prove ().

STEP 1. First, we prove the following fact. Let ¢ > 0 be an arbitrary positive
number. If Z C R%is a measure zero set, then there exists countably many open rectangles

{I,} s.t

zcJo ) Il <e
n=1 n=1
with
max (b(n) - al(-n)) < min 2(b ™ _ aln))
=12 d =12 d
where

Let A € (1,2). By the definition of outer measure, there exists coutably many open

rectangles {J,}22 | s.t
oo oo €
ZC | Jdw D |l <3
n=1 n=1

Next, we can divide each open rectangles J, into {J,.m}e_, so that the longest edge
lengtNh is equal or less than the twice of the shortest edge length. And we rename {.J,, 1 }nm
to {I,} by reindexing them. Since

*1 i
’Jﬁ|::j£:|JﬁmJa
m=1

e (1) this holds obviously by the definition of | - |.
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we have

Z\J | —ZZIJWI —Zuny.

n=1 m=1

I, can not necessarily cover Z because the boundaries among {Jnm m_, have been cut
out. Let I,, be an open rectangle which has the same center with /,, and each edge length
is A times of I,. Then Z C (J°°, I,. And we have

PTAES A
n=1 n=1
hence,

> €
Z|In| <)\d’F:€.
n=1

{I,} is the desired open rectangles. The proportion of each edge length is same as I, so
the longest edge length of each I, is also less than or equal to the twice of the shortest
edge length.

STEP 2. Next we prove the following fact. Let I = [[,(as, b;) be an arbitrary
open rectangle on R¢ with

(bi — a;).

max (b; —a;) £2 m
d i=1

7=1,2.-

in
2-d
Then we can always find an open ball B s.t

where C' is a constant which is not related to I.

Let ¢ min;—y 9. a(b; — @;), let r def diam(I) and let ¢ < def )d/2

p 1/2
3 diam(I) = (2:@)Z - ai)2>

o\ 1/2
< (d- ( max (b —ai)) >
i=1,2-d

< (d-(202)"* =2V

Moreover,

d d
|I| def H b . CLZ z H
i=1 =1
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An open ball B with r can cover I. The outer measure of B is
/2

T

I(4+41)
df2 d

< (o)
I(4+41)

2
(47Td)d/2 d
I'(¢+1)
(47Tal)d/2

S —\I|=C-|I]
<t =0

m*(B) =

Now the proof is complete.

STEP 3. (proof of (x)) Let € > 0 be an arbitrary positive number. Let Z C R? be
a measure zero set. For ¢ = & > 0, there exists countably many open rectangles {/,,} s.t

oo o0 €
Z C I, I <e =—.
Yl << =g
By the previous result, for each I,,, we have B, with
I, C B,, m"(B,) = C-|L]

Therefore

Zc G By, im*(Bn) < ic- 1| < C- é
n=1 n=1

n=1

(Theorem 2.25) O
(Extra Exercise 1) Let Ej “En B(0,k). For all z,y € E), we have
[f@) = fI S M |z —y| < e |z —y].

So f(x) is Lipschitz continuous on Ej. Therefore, if m(E) = 0, then m(Ey) =0 (" Ey is
a subset of F) so m(f(Ey)) = 0 by Extra Theorem. Therefore

m(f(E)) = m (f ([] E))

IA
=
g
S

I
o
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(Extra Exercise 2) Let T be a rotation on R?. Then

def {cosf —sinf x
T(z,y) = (sin@ cos 6 ) (y) '

So T is a linear transformation and the determinant is 1. By Theorem 2.25, we have the
desired conclusion. O

§ 2.7

(Lemma) We just have to confirm the following three conditions.
STEP 1. Since f'())=0€eT, 0 e «.

STEP 2. Suppose A € o, then f~!(A) € T. SinceI'is a c—algebra, so (f~1(A))° €
. Therefore (f~'(A))¢ = f~'(A°) € I'. This implies that A° € & .

STEP 3. Let {4,}°°, C &. Then for each n = 1,2---, f~}(4,) € . Since T
is a o—algebra, we have 7", f71(A,) € &. U2, f1(4,) = fHU2, Ay) € T. This
implies that (J)~ | A,, € .

We conclude that 7 is a o-algebra.

O

(Corollary) In the previous lemma, let ' ' % : the family of Borel sets on R
Then
g CIACR| T (A) eB)

is a o—algebra. Moreover VG € & (the family of open set on R). f~1(G) € 6 C £
because f is a continuous function. This implies that & C 7. Since A is the smallest
o—algebra that contains &, so # C o/. (because & is also a c—algebra that contains
0.) Now pick B € 4. Then B € « so f~'(B) € % according to the definition of &. So
the proof is complete. n

(Example: non-Borel set) Until now, we have already shown that there exists
a non Lebesgue measurable set. So

M+ 2 where 28 = {B c R}

We have also shown that a Borel set (or Borel-measurable) set B € % is Lebesgue
measurable B € .#. Therefore
P C M.

It is natural for us to have such a question.
B=Mor BF#* M7

To prove that & # .#, we construct a set A € .# but A ¢ AB. Let ®(x) be the
Cantor function. Let us recall that ® : [0, 1] — [0, 1] and & is continuous on [0, 1]. Let C'
be a Cantor set defined on [0, 1].

n 27-1
def

ie C'= ﬂCn and C, [0,1]\U U Lik

n=1 j=1 k=1
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where ]1’1 = (%, %) ,]2’1 = (é, %) ,12’2 = (g, %) ---. Note that
oo 2"—1
c=0,0\J U L
n=1 k=1

and ®(x) is a constant on each interval x € I,, ;. So ®(x) increases only on z € C.

STEP 1. Let

() %(m +d(2) z € [0,1].

Since z is continuous and strictly monotone increasing and ®(z) is also continuous mono-
tone increasing, W (z) is continuous and strictly monotone increasing. So ® is a one to
one mapping from [0, 1] to [0, 1]. (¥(0) =0, V(1) =1). We show that

({0T)

Since I, are disjoint and W(x) is strictly monotone increasing, {¥ (I, )}, are also
disjoint with each other. So we have

m (xp (G QU Ink>> = m (G 261‘11 (In,k)>

n=1 k=1 n=1 k=1
2" —1

23 m (W (L))

n=1 k=1
o (+1) f (Uner Aa) = Uner f(Aa).
o (%2) {VU (I,.x)}n are also disjoint with each other.

Furthermore, we claim that

To prove this, let
def
In,k é (an,kybn,k)-

Since ¥(z) is continuous and strictly monotone increasing,

P
U(Ink) = (a"’k +§) (Gnt) D +2 (b”"“)> .

Recall that if x € I, , then ®(x) is constant, so ®(b,x) = P(a,x). Therefore

So,

m<qf (U U Ink>) :Z - %-m(fn,k) *:%.

n=1 k=1
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o (+3) m(C) = 0= m([0,1)\ C) = m(U, Uiy Lnx) = 1.

(0

m<pu\@<LJL]MQ> m(@@JD\@(U[JIM)>

STEP 2. Since

we have

2 m (xp ([o, 1\ | Lj Ink>>
= m((C) =5 >0

o (x4) Let f : X — Y be a bijective function. If A C B C X, then f(B\ A) =
f(B)\ f(A). First we claim that f(X\ A) =Y\ f(A). (This is easy.) We also claim
that Al,AQ C X, then f(A1 N AQ) = f(A1> N f(AQ) f(Al N AQ) C f(Al) N f(AQ)
is obvious. We prove f(A;) N f(A2) C f(A1 N Ay). Let y € f(A1) N f(As). Then

dry € Ay, 9 € Ay st y = f(x1) = f(x2). However, f is one to one, so x1 = z5. Let

2 21 =2y Then z € Ay N Ay. Soy € f(A1 N Ap). Finally let Ay = B, A, = A°.

By the additional theorem in §2.5, there exists a non Lebesgue measurable set W with
W C ().

Let

AL (W),

We claim that A is the desired set. Note that
A=T' W) culow(@) 20
e (x5) W is a one to one function.

This implies that A is a measure zero set. Therefore A is Lebesgue measurable. (i.e
A € ). However, A ¢ HB. To prove this, suppose A € B, and we apply the previous
lemma. Let f = U~!. Note that ¥ is strictly monotone increasing so U~ is strictly
monotone increasing and continuous. Then

(A ez
However it follows that
FHA) = V(A) = Vo U (W) =W.

So W € A. (contradiction!!)
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§ 2.8

(Exercise 1)  We show that V(a,b) C R!, we have m(E N (a,b)) = 0. Then
limg 0o m(E N (—n,n)) =m(E) = 0.
(

STEP 1. Let (a,b) C R! be an open interval. By assumption, we have open
intervals {I,,}2°, s.t EN(a,b) C U,—, I, and

Zm < (b—a)q.

Now we apply the assumption to each open interval I,, (n =1,2---). Then we have open
intervals {1, }2°_, s.t ENI, C U _, Im and

2)mgm<m@m.

Here EN(a,b) C U,~, I, = EN(a,b) C ., ENI,. By monotonicity and sub-additivity
of Lebesgue measure, we have

m(E N (a,b)) = im(E N1,)

A
g
(]
E
=
g

< Zm(ln)q < (b—a)q.

STEP 2. Similarly, we apply the assumption to each I, ,,,. We have open intervals
{[n,m,k}zozl st BN [mm C UZO:1 In,m,k and

k=1
Since
En(ab) c (JENI,
n=1
c UUENLnm
n=1m=1

oo 0 XX

¢ UU UL

n=1m=1 k=1
(In Step2, we have ENI, C U Inmso ENL, CU>_ ENI,,.) we have,

[c ol olNe 9]

m(EN(a,b) = > % > mlym)

n=1 m=1 k=1

< Zqu wm) < (b—a)g® (.- Step2)

n=1 m=1
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STEP 3. We repeat the similar argument. We have m(E N (a,b)) < (b — a)g* for
all k=1,2--- som(EN(a,b))=0. (F0<qg<1).

]

(Exercise 2) There exists a Gs set H D Ay s.t m*(As) = m(H) < oo. Of
course, Ay C H so m*(H \ A3) S m(H \ A1) = m(H) —m(A;) = m*(Ay) —m(A;) = 0.
So H \ A, is a measure zero set. (= Lebesuge measurable) Ao = H \ (H \ As) € #. O

(Exercise 4) There never exists such a closed set F'. Suppose F' is a closed set
and F # [a, b].

STEP 1. First, we can find 2 € (a,b) s.t g ¢ F. (Otherwise, (a,b) C F. Since
F is closed, a,b € F. So F = [a,b] and this contradicts to the assumption.)

STEP 2. Second, suppose that Vd > 0, B(xg,0)NF # (). (Actually this assumption
is false.) Then we can find a sequence {z,} C F;z, — . Since F is closed, xy € F.
However, this contradicts to the fact that zy ¢ F. This implies that 3§ > 0, B(x¢,0)NF =
0. So [a,b] \ F D B(xg,0) and hence we have m([a,b] \ F) = (b —a) — m(F) = 26. Now
we conclude that m(F) < b — a.

[
(Exercise 5) For example, let {7} = [0,1] N Q and let € € (0,1). Consider

def € €
B = (T‘k okt W) :
Let

=[0,1\ | Bs.

E is the desired closed set. (F C [0,1] and E does not contain any rational numbers in

[0.1].)
m(E) =1-m (UBk> >1—22k_1—e>0

[
(Exercise 7) Let F = o Ui Ex. Then m(E) < co. We use Fatou’s lemma to

A, Y EN\ Ey.

Then we have

m <lim inf Ak) < liminfm (Ag) .
k—00

—0Q0
Since m(E) < oo, we have
m(E) —m (lim sup Ek) < m(E) — limsup m(Ey).

k—o0 k—o0
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(Exercise 8) Since (N,—; Ex C [0,1], we prove that

m ([0,1] \ ﬁEk> ~0.

Since

m ([0, 1\ Ek> = m <U[0, 1]\Ek>

> m([0,1]\ ) = 0.

A

Now the proof is complete.

O
(Exercise 9)  We show that
k
m (U Ef) <1
i=1
By the assumption,
k k k
S m(E) =) (1 —m(E)) =k—Y m(Ef)>k—1
=1 i=1 =1
So we have .
> m(E)) <1
i=1
By sub-additivity,
k k
m ( Ef) < Zm(Ef) <1
i=1 =1
O

(Exercise 11) This question is related to Vitalli’s covering lemma (finite ver-
sion).

STEP 1. G is an open set so G € .#. By Theorem 2.13, Ve > 0,dF : closed
(FC@)stm(G\F) <e.

case 1. (m(G) < o0) Let € = m(G) — A\. m(G\ F) = m(G) —m(F) < e. So
m(F) > A.

case 2. (m(G) =o0) m(G\ F)+m(F)=m(G) =00. So m(F)=o00> A\

So in any case, we can suppose that m(F) > . Now let Fj = N B(0,k) (B: closed

ball). Then each F}, is a bounded closed set (a compact set). Since Fj, N F = m(Fy) /

m(F) > A, we may find kg € N s.t m(F,) > \. Let K o F, -
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STEP 2. K C G = J,c, Ba- By Heine-Borel’s covering theorem, we may find a
sub-cover with finite number of open sets. So we have K C |J,-, B, where {a;---ay,} C
1.

First, we pick By € {Ba,, Bay: - - - Ba,, } which has the largest radius. If {B,, | Ba, N
By = (0}%=" = (), then we terminate the process.

Second, we pick By € {Ba, | Ba, N By = 0};=7 which has the largest radius among
them. If {By,, | Ba, N U, B; = 0}5=7 = 0, then we terminate the process

Similarly we continue to choose By, By -+ By (¢ < m) until {B,, | Ba, N Uézl B, =
P}E=" becomes empty.

STEP 3. We claim that |J,_, 3B, D ", Ba, holds. Here 3B denotes an open
ball with the same center with B but has three times the radius of B. (We sometimes

define AE & {\z | z € E}, however in this question, we define 3B is an open ball with
the same center with B.)

Let B and B be two open balls and suppose that B N B # () and that B has a larger
radius than B. Then 3B D B. (You may imagine on R or R2.)

Forany B € {B,,,--- , Ba, }, we can choose B € {By --- B;} s.t B = B or B intersects
with B and B has a larger radius than B. (Let us recall that after we finish picking
By, -+, By, therest of balls {B,,, -+, Ba,,} \{B1, -+, B¢} all intersect with By, -+, By.)
Therefore | J5_, 3By D (U}, Ba, holds.

STEP 4. Finally K C ", Ba, C Ui_13Bk. So A < m(K) £ Y, m(3By) =
30 S m(By). (By--- By are disjoint.)

]

(Exercise 12)  We use Corollary 2.16 and 2.17. Let B o (i, Bk, then By, \, B
and F=ANB.

STEP 1. Since B, and B are measurable, we have
m*(A) =m* (AN Bg) + m*" (AN By), (x1)

and
m*(A) =m* (AN B) + m" (AN B°). (x2)

STEP 2. Since AN B /' AN B¢ and by Corollary 2.16, 2.17, we have

m*(A) — lim m* (AN B,) £ lim m*(AN BY)
k—o00 k—o0
= m*(AN B°)
2 m*A) - m* (AN B).
e (x3) by (x1), the limit exists because m*(A N Bf) is monotone increasing.

e (x4) Corollary 2.16, 2.17.
e (x5) by (x2).
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Since m*(A) < oo, we can subtract it from the both sides and we have

lim m* (AN Bg) =m* (AN B).

k—o0

This implies the desired result.

]

(Exercise 13) Consider a Gs set G D E s.t m(G) =m*(E). H\GC H\ E
and H\ G € 4 so H\ G is a measure zero set by assmption. m*(E) < m(H) =
m(H\G)+m(HNG)=m(HNG) =m(G) =m*(E). Som(H) =m*(E). O

(Exercise 14)

STEP 1. (=) By Theorem 2.13, we have G : open and F : closed (G D E D F)

s.t
m(G\E)<§, andm(E\F)<§.
So we have
m(GNF°) = m(G\F)
= m(G\EUE\F)
S m(G\E)+m(E\F)
< %—i—%ze.

Let G1 = G, Gy = F° and then we have the desired conclusion.

STEP 2. (<) We can find a sequence of G,, D E D F, (G, : open, F,, : closed)

st m(G, \ F,) < L. (" consider G,, + G4, F,, +— GS). Let K def > F,. Then
n 2 n=1

e (B\K) £ m(Gu\ Fa) < .

foralln e N. " m(E\K)=0. So E=KUFE\ K € .#. (You can also use the converse
of Theorem 2.13 to explain this part.)

m
(Exercise 15)  Suppose that E,,, o {y+z;|ye B} (i=1,2---n) are disjoint
with each other. We have already proven that E,, ¢ = 1,2---  n are also measurable

and m(E,,,) = m(E). So we have

m (U Eﬂi) = Zm (Etz,) = nm(E) 2 ne > 2. (%)

=1

However, for each i =1,2,--- ,n
E.,, C0,2],
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SO .
B, cl0,2].
i=1

From this fact, we have

m <O Eﬂi) < 2.
i=1

This contradicts to (x). This implies that F,,,,i = 1,2--- ,n are not disjoint. In other
words, there exist 4,7 € {1,2---n} st Ei,, N Ey, #0. So

3y17y2 € F st Y1+ T; = Yo +[Ej.

Now we conclude that there exist y,y2 € F and z1, x5 s.t

Y1 — y2| = |21 — 22] .
O

(Exercise 16) We consider the contraposition of the statement. That is Ve >
0,3EC0,1;Ee #;m(E)2est WNEe M =W e .

Let ¢, =1 — % There exists E, C [0,1]; E, € A4 ;m(Ey) = 1 — % and WNE, € #.
Let £ < Upey Ex. Then 1 — + < m(E;) < m(E) < 1forall k=1,2---. So we have
m(E) = 1 hence m(E°) = 0. Finally ;> , WNE, € # = WNE € .4 and WNE® € ./
because E¢ is a measure zero set so its subset W N E¢ is a measure zero set. So W € ..

O

(Extra Exercise 1) Let F be a closed set.

case 1. (F D @) First, G contains all rational number on R' so G = R'. F is a
closed set and F D G implies that FF > G = R!. Hence ' = R!. Second,

GAF = (G\F)U(F\G)=F\G.

So
m(GAF) =m(F\ G) =m(R"\ G) = m(R") —m(G) = co.

e (x) Since m(G) < oo, such an operation is allowed.

case 2. (F' 7 G) F 2 G implies that G\ F # (). Since G \ F is an open set, if we
pick xg € G'\ F then there exists g > 0 s.t

G\F D) B(x0,50),

therefore,
m(GAF) 2 m(G\ F) 2 m(B(xg,d)) = 25y > 0.

Now the proof is complete.
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(Extra Exercise 2)

STEP 1. limsup, ., m(E,) = lim, . sup,,>, m(E,) = 1. So for each k, we can
find a subsequence ny s.t sup,,>,, m(Em) > 1 — 12 And we can find my = ny s.t

m(Ep,) >1—52 Som([0,1]\ En,) < 52 :

2k

STEP 2. m([0, INNZ, Emy) = m(UpZa[0, 1N\ Em,) = 32502, m([0, 1\ B, ) = 1
So we have a < m([(r—; Em, )-

(Extra Exercise 3)

STEP 1. Let
file) € m(EN0,2]), = €0,1].

Obviously, f1(0) = 0, fi(1) = m(F) and fi(z) is monotone increasing. And fi(x) is

continuous because

filx +h)=m(EN[0,z + h) m((EN[0,z]) U (EN[x,z+ h)))

NS IAE I

m(E N [O x]) + m([z,z + h))
fi(z) +

(

m(EN[0,z]) + m(E N [z, x + hl)
(
(

hence

e (1) by sub-additivity
e (*2) by monotonicity (i.e E N [x,x 4+ h| C [z,z + h])

Therefore we can find z; € (0,1) s.t

by intermediate value theorem.
STEP 2. Similarly let

Folz) ¥ m(EN[21,2]), z € [21,1].

Obviously, fo(z1) =0, fo(1) = =Lm(E) and f5(x) is also monotone increasing. Further-
more, fa(x) is continuous by the similar argument. We can find xs € (21, 1) s.t

falas) = Zm(E)

STEP 3. We repeat the similar argument until we obtain x1,z5---z,_1. And let

E Y EN0,2), B2 E EN{zy,29), s En € EN 201, 1]
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CHAPTER 3

Solutions

§3.1
(Definition 3.1) Let .# be the family of Lebesgue measurable sets on R9. If
VieR, {zeE| f(x) >ty ={x e E| f(zx) € (t,0|} € A,

then f(x) is a measurable function defined on E.
In some textbooks, the definition of Lebesgue measurable function is different.

VBe BR), f Y (By={zr€E| f(z)e B} e .,
where Z(R) € o[ 7], 7 € {[—o00,b] CR|beR}.

However, these two definitions above are equivalent. (You may skip the following
proof.) Let ¢ be a family of point sets on R, that is VG € ¢,G C R. We claim that
VG €9, fY(G) € # if and only if VB € o9, f~1(B) € A.

First, < hold obviously because VG € ¢, G € o[¥]. Second, we prove =. Suppose
that VG € ¢4, f~Y(G) € 4. Let us consider the following family of sets.

g C{ACR| fY(A) e}

It is not difficult to prove that o is a o—algebra (*). Furthermore, 4 C &/ by assump-
tion. Since o[¥] is the smallest o—algebra containing ¢, o[¢| C &/ holds. Therefore
VB € 0l¥9], B € o (f'(B) € .#). So the proof of = is also complete. Finally,
Vie R, {z€FE| f(x) >t} A if and only if Vt € R, {x € E'| f(z) £t} € A because
A is a o-algebra. Now the proof is complete.

Proof of (x). 0 € o because () =0 € #. Let A € &/. Then f~1(A) € A
by definition of &/. Since . is a o—algebra, (f~'(A))¢ = f~1(A°) € 4. This implies
that A° € #. Finally let {A,},en C &, then f71(A,) € # for all n € N. Then
Ui f7H(An) = FH Ul An) € A So U, An € 7.
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(Theorem 3.1) We pick a countable subset {d,} C D s.t d, \ .

{zreE| f(x >t}_U{:ceE\f( ) > d,}

By the assumption and the property of Lebesgue measurable sets, the right hand is
Lebesgue measurable. So the proof is complete. O

(Example 1) Suppose that f(x) is monotone increasing. Then {z € [a,b] |
f(z) >t} = [a*,b], (a*,b] or ) where a* = a. Therefore {z € [a,b] | f(z) >t} € 4. So
f(z) is a Lebesgue measurable function defined on [a, b]. Now the proof is complete. [

(Theorem 3.2) By the assumption (definition), {z € E | f(x) > t} € .« for
all t € R. As we have shown in Chapter 2, the family of Lesgue measurable sets .Z is a
o—algebra. We derive the following facts by the properties of c—algebra ..

e Ac M & A°e .
e {A el =U Ave M, 1 A€ A,

(1) {z€E|f(x)St}={zeFE|f(x)>t}ecA.

(2) {reE|f@)ztt=Mllzel]|fla)>t—y}ed

(3) {ze€eE| f(x)<tt={xe€FE| f(x) 2t} € .#. (Use the previous result.)
(4) {zeFE| flx)St}n{x e E| f(x) 2t} € #. (Use the previous result)
6) {zreE|f(z)<oc}=U-_{rel|flx)<tte.#

6) {rekb|flz)=oc}=N{zeck]|flx)>t}eA

(1) {zeE| f(x)> -} =Ui{z € E| f(z)>-n}

®) {rel|flz)=—o0} = fzreE] [f(z) <—n}

(Theorem 3.3)

(1) {xe EyUEy | f(z) >t} ={x € E| flz) >t} U{z € By | f(x) >t} € A
because {x € F | f(x) > t},{z € Ey | f(x) >t} € .4 by the assumption.

(2) {xe€ Al f(x) >ty ={x e E| f(r) >t} NAE . because both {x € F |
f(z) > t}, A € A by the assumption.

[ 6 | (Example 2)

f 1<5t<o
{reR | xg>t}={F 0<t<1
R t<0
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And 0, E,R™ € .#. So the proof is complete. O

(Theorem 3.4)
(1)

case 1. (¢>0) {zeE|cf(x)>t}={xeE| f(x) > L} e & because if we let

to L then the right hand side is {z € E | f(z) > to}

In any

case 2. (¢ =0) {xEE|cf(:v)>t}:{m€E|0>t}:{5 Ei;g;

case, it is Lebesgue measurable.

case 3. (c<0) {reE|cf(x) >t} ={zreF| f(x) <’} e.# by Theorem 3.2.

(2) Let {r,} ' Q be rational numbers. We use the fact that {z € E| filz) >
L@)}=U"{zr e E| fi(x) >r, > fo(x)}. (This holds because Q is a dense set in R. If
fi(z) > fa(x), then there exists at least one rational number r € Q s.t fi(z) > r > fao(x).)

{reE|f(x)+g) >t} = {rek|f(x)>1-ygr)}

= U{er]f(a:)>rn>t—9(3?)}
= JlzeElf@) >r}n{z e Elr>t—g(x)}

= U{x€E|f($)>7“n}ﬁ{a:€E|g(x)>t—rn}

(3)

STEP 1. We show that f(z)? is also a Lebesgue measurable function on E if f(z)
is Lebesgue measurable on F.

case 1. (t = 0)
(e B|f@)?>t)={ascE|flx)>Vt}U{zc E| f(x) < —Vt} e/
case 2. (t<0) {reFE|flx))>t}=Fe. .
So f(z)? is Lebesgue measurable.

STEP 2. f(z)g(z) =1 ((f(z)+ g(x))* — (f(z) — g(z))?). By the previous results,
f(z) + g(z), f(x) — g(x) are measurable hence so are hy(z) = (f(z) + g(x))? hao(z) =
(f(x) — g(x))% Since hq, hy are measurable so is hy — hy and §(hy — ho)

[l
(Corollary 3.5)  We need to check if the statement holds when f(z), g(z) = oo

or —oQ.
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(1) In extended real numbers, we assume the following rules. So the same argument
holds.

e ifc>0,c - co=o00.
e ifc=0,c - 0c0=0.
e ifc<0,¢c - c0o=—.

(2) If (f(z),g9(z)) = (00, —00), (—00,00), f(z) + g(z) is not defined. In this ques-
tion, we should assume that f(x)+ g(z) is defined on Yz € E. Then the method of proof
is the same as the previous question.

However, actually, f(z) + g(z) does not have to be defined every x € E. {x € E |
f(@) = 00} Nz € E [ g(z) = —oc} and {w € B | f(x) = —o0} N {z € E | g(z) = o}
are measure zero sets, though f(z) + g(z) is not defined on some points on E, we still
may regard f(x) 4 g(z) as a Lebesgue measureble function. Such f(z) + g(x) is called a
Lebesgue measurable function defined almost everywhere.

(3) LetteR. Let By & {2z € E| — o0 < f(x),9(x) < oo}. Ey € M,Ey C E s0
f(x), g(z) are also measurable functions defined on Ej.

{zeE|[flzr)gle) >t}
= {zeE|fl@x)glx)>t}nEU{zeE] flx)g(x) >t} NE;
= {rek | flx)g(z) >t }u{z e E| f(z)g(z) >t} n{x € E | f(z),g(x) = oo}
= {zek | fla)g(z) >t }u{r e B f(z) =g(zr) =oc} U{z € B | f(2) = g(x) = —o0}

]

E (Theorem 3.6, Corollary 3.7) We can use the following fact to solve this
question.

{x€E|su>1i{fm(:c)}>t}: Uf{zeE| fulz) >t}

From this fact, we easily find out that sup,,>;{ fx(z)} is a measurable function for each
k.

(1) We just have to put & = 1 in the equation above.

{x€E|8u>Ii{fm(x)}>t}: U{xEE|fm(m)>t}€//

(2) Let us recall that f(z) is measurable then — f(z) is also measureble. So — fi(x)
is also measurable for each k. infy>1{fi(z)} = —supy>{—fi(z)}. So we may repeat the
same argument.

(3)  limsupy o, fr(x) = infr=y sup,,>p { fm(z)}. Let gi(z) o Sup,, > {fm(2)}. ge(2)

is a measurable function for each k. Then limsup, . fi(x) = infy>y gx(x). By the
previous result, we obtain the desired result.
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(4) liminfy o fr(x) = —limsup,_, . (— fe(2)).

[
(Example 3) By Theorem 3.4, f(x) is Lebesgue measurable if and only if — f(z)

is Lebesgue measurable. It is enough for us to show that f*(z) is Lebesgue measurable.
Note that

{xeE|fH(z) >t} = {x€FE|max{f(z),0} >t}
= {ze€E| flx)>t}u{ze E|0>t}.

Let g(x) . g(x) is a measurable function, so {x € E | 0 >t} € .#. Now the proof is
complete. O

(Example 4) Let fo(z,y) < f(z, %) if y € [E, EL) (k= 0,41,42---). Asn
becomes larger, the partition {[%, %)}kez will become finer. Since f,(z,y) is a contin-
uous function for every fixed x € R, f,(z,y) — f(z,y). It is enough for us to show that
fa(z,y) is measurable because if f, is measurable for all n € N and f,, — f then f is
measurable.

{(x,y) eRxR| fulz,y) >t}

= U{xER\f(:L',E)>t}x{y€R[ﬁ§y<k+1}.
n n n

keZ

For fixed y € R, f(z,y) is a measurable function with respect to x. Moreover, if A, B C R,
A€ M and B € .4 then A x B is measurable on R? (€ .#5). So the proof is complete.
[

(Example 5) {z € E | f(z) >t} ={ 2z € E| f(z) € (t,00)} = EN
f7H(t,00)) = ENG where G = f~!((t,00)). Since f is continuous and (¢, c0) is open, so
G isopen. G € .# hence ENG € . H

(Exercise 1) {x € F| f(x) >0} € A.
case 1. (t = 0)

{reE|flx)>t)={zecE| f)?*>t}In{rcE| f(z)>0}ec.#.
case 2. (t <0) Lett =—t.

{zeB|flz)>t) = {zel|flx)>-t}
= (2€E|flx)>0U{zeE| —t < f(z) S0},

And
{reE| —t<fla)S0}={zcE| f(x)>0n{recE]| f(x)>t?}"

So the proof is complete.
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]

(Exercise 2) We show g(z) is measurable. Since h(r) = —supcz{—f(7)},
we may show in the same method.

We show that {z € (0,1) | g(x) > t} is an open set. (¢ & C B C .#). We pick
o € {z € (0,1) | g(x) > t}. Then g(xzy) > t. By the definition of g(z), we can find
f e F st f(xg) > t. Moreover, f is continuous, there exists § > 0 s.t f(z) > ¢ for all
x € B(x,09). Therefore B(zo,d) C {z € (0,1) | g(x) > t}. Now the proof is complete. []

(Exercise 3)  f converges at xo < limsup,_, .. fr(zo) = liminfy_,o fr(z0). So
A¢={z € FE | limsup,_,, fr(x) > liminfy_, fe(z)}. Since both limsup,_, . fr(x) and
liminfy_, ., fx(x) are measurable so A¢ is measurable because

AC = U{x € E | limsup fy(z) >r > h}?_l)g)lffk(ﬁ)}

reQ k—oo
= U{x €EF| hmsupfk( y>rin{zeE|r> lilgninffk(:v)}
T‘GQ — 00
So A is measurable. O

(Exercise 4) Let G C R be an open set. By the result in Chapter 1, we have
disjoint open intervals {(ag, bx)}x s.t

Uakabk
E, = {zeE| f(zx) e G}

_ { rE€E| f(z) € U(ak,bk)}

k=1

= J{z <€ E| f(x) € (arby)}

and
{zelb|flx)y>atn{ze | flz)2b}Nne ..
So E1 e M.
Next E\ Ey = {z € E| f(z) € F°} € 4 because F° is open. So E, is also
measurable. So the proof is complete. O
(Definition 3.2) Let N be a measure zero set. If P(x) holds for Vo € E'\ N,
we say that P(x) holds almost every x € E. (or P(z) aex € E.) O

(Theorem 3.8) Let N = {x € E|f(x) # g(x)}. N is a measure zero set, so
N e # and E\ N € #. First we divide { x € E'| g(x) > t} into two parts as below.

{zeE|gx)>1}
{zeBlgl@z)>ty}n{zec k]| [f(z)=g)}
U {zeE|gle)>tyn{ze k]| [f(x)#g(@)}
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Next,
{zeFlE|glx)y>t}n{zxecE| flx)y=9gx)}={xzeFE| flx) >t}NE\N € ..

and
{zeE|glx)>ttn{ze L] f(z)#g(x)} CN,

so this is also a measure zero set. € # .

(Extra Example) Since f,,(v) =% f(z) on E, we have

f(z) = limsup f,(x) (or linl)inf fo(z)) aex € E.

n—o0

By Theorem 3.6, Corollary 3.7, the right hand side is a measurable function. Furthermore,
we have the desired conclusion from Theorem 3.8. Now the proof is complete.

[l

20| (Example 6) LetAkdef{x€A| f(x) £k} Then A, /" {x €

A |0 < f(x) < oo }. By the assumption m({ x € A | 0 < f(z) < 00 }) =m(A). So
limy 00 m(Ag) = m(A). Hence V6 € (0,m(A)), we have kg s.t m(Ay ) m(A) — 9. Let
B Ap,. This is the desired set. []

(Exercise 6)

STEP 1. In Chapter 2, we have already shown that m*({z}) = 0. Therefore a
countable set such as Q (collection of all rational numbers) has measure zero.

STEP 2. Let f(z) 0 and let 9(z) = Xon[ap(z) where Q is a collection of all
rational numbers. Then f(z) = g(x) a.e = € [a, b] because m(Q N [a,b]) = 0 thus g(z) =0
a.e x € [a,b]. However g(x) is not continuous for all z € [a,b]. (Let us pick arbitrary
x € [a,b] and arbitrary § > 0. We can always find 1,25 € B(z,9) s.t 21 € Q and x5 ¢ Q.
f(x1) =0, f(z2) = 1. So f(x) can not be continuous at z.)

(Exercise 7) Let

Then f(x) is continuous a.e z € R. Let g(z) be a continuous function on R.

case 1. (g(0) > 0) Since g is continuous, we have § > 0 s.t Vo € (—4,0) g(z) > 0.
However f(z) =0 when = € (—6,0). So f(z) = g(z) a.e x € R can not hold.

)
case 2. (g(0) = 0) Since g is continuous, we have 6 > 0 s.t Vz € (0,9) g(z) < 0.
However f(z) =1 when z € (0,9). So f(z) = g(z) a.e € R can not hold.
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(Definition 3.3) Different books may have different definitions. However, we
define the items in the following way. When we talk about the following items, we assume
that f(z): E — R. (real-valued not extended real-valued)

(1)  f(x) is a simple function on E € .# means that { f(z) | x € E'} is a finite set.

(2) f(x) is a (Lebesgue) measurable simple function means that f(z) is a simple
function and at the same time f(z) is (Lebesgue) measurable. Suppose that { f(z) | x €
E} ={a1,as---a,} where a; # a; if i # j. Let E; déf{:z: €EE| flx)=a} (1 =1---p).
(Then FE; is measurable and disjoint with each other.) So without loss of generarility a
measurable simple function f(z) is written as

p
where E=|JE, Eic s, ENE; =0 (i # )

i=1
(3) Suppose that f(x) is a measurable simple function. Moreover each E; is an
iterval. Then f(x) is called a step function.

(Theorem 3.9)

(1) We define { - )}}
Ful) % min nQ—f .

In this book, [r] means the largest integer that is not greater than x. Then f,(x) is the
desired non-negative measurable simple function. We also define

gu () < —[Qn;f‘””-

STEP 1. (proof of f,(z) is simple) Let us pay attention to the fact that

ko ik k n

fa) =7 ?f 2 < flr) <& k=0,1,--n-2"—1
n if f(z) 2n

From this fact, we find out that f,(z) only takes {3 | k=0,1,2---n2" —1} U{n}. And
we also find out that f,(x) is written as

n2™—1 k

al) = g X =)<} (T) + X (p@zny () (%)

k=0

STEP 2. (proof of f,,(z) = f(x)) Since f,(z) = min{n, g,(z)}, it is enough for us
to show that g,(z) — f(z). Since

0 ()~ oulr) < 5.,

gn(x) = f(x) as n — oc.
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STEP 3. (f.(z) £ faor1(z)) Let us recall that f,(z) = min{n,g,(x)}. Since
n < n+ 1, it is enough for us to show that g,(z) < gny1(x). Since 2[a] < [2a], so

2[2" f(x)] < [2"1f(x)]. Therefore 2@ < 2 (@)

STEP 4. (proof of f,(z) is Lebesgue measurable) First we prove some facts.
Let hy(x), ho(x) be measurable functions. Then min{h;(x), ha(x)} is also a measurable
function because

{z e E| min{h(x),he(z) >t }={2xeE|hx)>t}n{zecE|h(z)>t}

(Similarly, max{h;(z), ha(z)} is also measurable.)
Let h(z) be a measurable function. Then [h(z)] is also a measurable function because

(2€E|[h@)]>ty={z€E|h(z)>[t+1]}).

Now we prove that f,(z) is Lebesgue measurable. Let ¢ = 2". cf(z) = 2"f(x)
is measurable. By the previous result, [cf(z)] = [2"f(z)] is measurable. [cf(x)]/c =
[2"f(x)]/2" is measurable. Obviously, n (a constant function) is measurable. Again by
the previous result, we conclude that min{n, [cf(z)]/c} = min{n, [2"f(2)]/2"} = fu(x) is
measurable. Of course, you can also prove using (x).

(2) Let
vy det Jf(x) flz)20
fHle) = {0 flx) <0
oy [0 f@) 20
F {—f(:v) fr) <0

This is equivalent to f*(z) oo max{ f(x),0}, f~(z) oo max{0, —f(z)}. Then f(x) =

fH(z) — f(x) and |f(z)] = fT(x) + f~(x). Of course, fT(x) and f~(z) are Lebesgue
measurable functions. Since fT(x) and f~(x) are non negative measurable functions,
we may find sequences of non negative measurable simple functions f;(z) and f, ()
st 0 < fi() 2 ff(x) and 0 £ fr(x) 2 f(2). Then let f,(z) € fH(z) — fi ().
|fu(@)] = |f(2)| and f,(z) = f(x). (Note. f(z) — oo and f, (z) — oo does not occur
at the same time because one of f*(z), f~(z) is always 0.)

(3) Suppose that |f(zx)] £ M,M < co. When n > M, f*( ) — f(z) £ L and

n

[~ (x) = f,;(x) £ 5= because f(x) o min{n, [an+ @l — [an+ U (- |f(@)] £ M) hence
§f() ()fl.Slnce
[f(2) = ful@)] = [fT(@) = f7(2) = £ (2) + f7 (2)]
< |ff @) = S @)+ 1 (@) = £ (@)
< - (Vz € E),

we have

lim sup|f(x) — fu(z)] = 0

n—oo z€FE
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(Definition 3.4) In this book we define in the following way.

supp(f) € {z € E [ f(x) # 0}
]

(Corollary 3.10) Let f,(z) = >0, f")xE(n)( ). Since xpon)(x) — 1 for every
€ R as n — 00, f,(x) - Xpon(r) = flz )asn—>oo

Fal@) S fal@) - Xpom(@) = 00X o o (@) and fu = f(2). supp(fu(x)) C

P Ez( e B(0,n) C B(0,n). So the support is bounded. Therefore the support is a
compact set. O

§ 3.2

(Definition 3.5) If there exists a measure zero set N : m(N) = 0 and Va €
E\ N, limy_, fe(x) = f(x), then we say that {fi}x>1 converges to f almost everywhere

on E. We denote f, =5 fon For f, » facx € E. O
(Lemma 3.11) Let € > 0 be an arbitrary positive number.
STEP 1. Suppose that fi(z) =% f(z) on E. Then we have

#{k||fr(z) — f(x)] 2 €} <0 aex € E.
Equivalently,
#{k |z € Exle) } <ocaexekFE.
In other words, there is a measure zero set N, and if z € R?\ N , then the number of &
s.t x € Ei(e) is finite. So
RINNC{zcE|#{k|x€Exe)} <00}

Therefore
limsup Ex(e) = {x € E | #{ k | v € Ex(¢e)} = 00} C N.

k—o0

e (x) Let us recall that limsup,,_,., Ax = {z | © € Ay, for inifinitely many & € N}

Now we conclude that
m(lim sup Ex(€)) = 0.

k—o0

STEP 2. By definition of lim sup for point sets, we have

m (lim sup Fy (e (ﬂ L Ex(e )

k—o0 j=1k=j
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Furthermore,

m (ﬂ U Ex(e )) = Jlg&m U Ex(€)) (=0),

because .
U Ek (6)
k=j

is a decreasing sequence of sets with respect to j and
U Ex(e) C E, m(E) < oc.
So we are allowed to swap m(-) and lim by Corollary 2.8.

[]

(Theorem 3.12: Egorov) fi =% f = fi =5 f always holds. However if

m(E) < oo, fr =% f = fr =% f holds. This is called Egorov’s theorem. (Hence
e on Eif m(E) < 00.) We will explain it again in extra theorem.

STEP 1. In the previous lemma, let € = % where m € N. Since

Jm (U B (%)) -0

we can find a sufficiently large natural number j(m) s.t
= 1 s
E, | — —
" U ‘ (m) < om
k=3(m)
By sub-additivity of a measure,
S
(U U (L)) <X
m=1 k= j m=1

Let

20,0 5(3)

m=1k=j(m)

STEP 2. Finally, we show that f; — f on E\ Es5. (-%: converge uniformly).

p\E=) N {rerlinm-swi<1}

m=1k=j(m)
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Let € be an arbitrary positive number. If we take a sufficiently large mg € N s.t mio < €,
then

0

Ve E\Esc () {er\|fk(x)—f(x)|<mi}.
)

k=3j(mo

So,

1 .
sup | fi(z) — f(z)] = — <€, VEk 2 j(mo)
z€E\Es mo

In other words,

Ve >0,dN € Ns.t Vk =2 N, sup |fu(z) — f(2)] <e.

xEE\E(;

SofkgfonE\Eg.

[
(Example 1)
" 0 z€l0,1)
" — ,a8 M — 00.
1 z=1
So x™ — f(x) for all z € [0, 1]. However, since f(z) =0 for all z < 1,
lim(2" — f(z)) = 1.

Therefore sup,¢(o 5 |2" — f(7)| = 1 and we have

lim sup |2" — f(z)|=1#0.

=0 2e0,1]
So 2™ does not uniformly converge to f(z). O

(Definition 3.6) Suppose that |f(z)] < oo a.e x € E. (If we discuss f, — f,
we may suppose that |f| < oo a.e z € E.) If Ve > 0,

timom ({ € B | |fule)  f)] Z ¢ }) =0
then we say that f, converges to f in measure on E. We denote it as f; — f on E.

]

(Theorem 3.13) Let f(x),g(xz) be measurable functions defined on £ € .Z.
If f(x) =g(x) a.e x € E, we say that f and g are equivalent on E.

Here we suppose that | f|, |g| < oo a.e x € E because we are talking about convergence
in measure. Let e >0. {z e B | |f—g|>e}={z€E||f-fe+fe—gl>e} C{xe
EIlf—fl+1fi—gl >t C{aeE[|f~fil>5}U{acF||fi—g>5} By
monotonicity and sub-additivity of a measure,

m(|f—gl > S imm({aeB||f~fil>5N+m{zeE|lfi—g >3} =0
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Therefore, Vn =1,2,-- -,

7n0x€E\U—ﬂ>%):0

And we have

m(U{r€E||f—g|>%>éZm({erHf—gb%):O-

The left hand sideis m ({ x € E | |f — g| > 0) = 0. This implies that f = gaecz € E. [

(Theorem 3.14) We use Lemma 3.11. We have already shown that if m(F) <
oo and fi(z) == f(z) then lim; m(Uyz; Ex(€)) = 0. Since

lim sup m(E;(€)) £ lim m [ | J Ex(e) | =0
j—)OO J—00 k:j
and the left hand side is

limsupm({ z € E | |fi(z) — f(z)| 2 € }),

J]—00

so we have fi(z) = f(z). O
(Extra Theorem: equivalent statements to =% and =)
(1)

STEP 1. (=) Let e > 0 be an arbitrary positive number. Since fi(z) — f(z) a.e
r € E, |fr(z) — f(x)] 2 € occurs only for finite k a.e x € E. This implies that

m (“Sli‘ip{f” e B |fulx) - f2)] = e})
_ m<ﬂ U{erllfk(x)—f(I)|Z€}>=0

n=1k=n

STEP 2. (<) Let € > 0 be an arbitrary positive number. Similarly,

m (ﬂ Ulz € E|Ifi(a) — f(2)] 2 e}) =0

n=1k=n

implies that | f(z)— f(x)| 2 € occurs only for finite k a.e x € E. In other words, at almost
every v € E, |fi(x) — f(x)| < € for sufficiently large k. This means that fi.(z) =% f(z).

(2) Let usrecall that fi(z) =% f(z) means that V6 > 0, 3Es C E; E5 € .4 ;m(Es) <
§ 5. iy 50D, 4 i) — F(2)] } = 0.
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STEP 1. (=) Let e > 0bean arbitrary positive number. Since sup,¢p\ g, { | fx(2)—
f(x)] } — 0 as k — oo, there exists mes € N s.t

sup { |fi(z) — f(z)] } < €,VE = mes.

CEEE\E(;

Soifr € E\E; = v € (2, 1 2€E]||fulr) = f(x)| <e}. Therefore £\ E; C
Nizm, ;1 € E| [fe(x) — f(z)| < € }. By taking complement of the both sides, we have

U {zeE|Ifilz) - f@)| 2 e} C B,

kzme,é
by monotonicity of an measure, we have

[e.e]

m| U {zeB|filz) = fl@)|Ze} | =m(Es) <.

kzme,a

Therefore,

lim sup m U{xEEka() fl)|z2e}t | =--- <m(Es) <o.

]%OO k’>]

Let us pay attention to the fact that |, j(- -+ ) decreases as j increases. And also let us
pay attention to the fact that the left hand side is not related to §. Since we may take
arbitrary small 6 > 0, so the left hand side is 0.

STEP 2. (<) Lete= ;. Fist,

Jim LHxEEHh@%ﬁKNz%} 0.
k=2m

This implies that we may find sufficiently large m; € N, s.t

m| UteeB @ -f@izty] <2

kzm]'

.|

for each 7 =1,2---. By sub-additivity of an measure,

LJU{erHﬁuwwunzﬁ}

=1 k2m;
< S| Utrer a@-r@lz-)
Jj=1 kzm;
=5
< Zg

j=1

<.
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Let
I 1
B U zeE|fila) - f@)]Z =}
Jj=1kz2m; J
Then its complement is
o0 [ee] 1
ENEs=() [{z€E||fi(z) - f(z)| <3}-
J=1k=m;

Let ¢ > 0 be an arbitrary positive number. Pick jo'@ € N s.t jio <e Ifze
E\Es = v € V2w, 1 © € B Ifi(z) = f(@)] < 3} So supep g, [fu(@) — f(z)] =
jlo < ¢ for all k = mj,. In other words, Ve > 0, there exists m(¢) o mg? st Vk = mld
SUP,ep\ g, | fr(T) — f(z)| < €. Therefore fi(z) = f(z) on E\ E;.

]

(Theorem 3.15) By using the extra theorem, the relationshop between %
25 I will be very clear.

(1) Since
filz) = f(x)
& limm Uf{zeE||filx) - f@)Z€} | =0, Ve>0,
k>m

by monotonicity, we have

Jim m({ze B ||fm(z) - f2)] 2 €})

< dmm | (J{zeE||filx)-fl@)Ze}| =0

m— o0
kzm
(2) Since
filz) = f(=)
e m| [ UlzeE|Ifilx) - flx)|Ze} | =0, Ve >0,
m=1k>m
by monotonicity, we have

m | Ulee Bl o) - f@) 2 e}

m=1k=m

< m| J{zeE||file)=f@)Ze} | =0 VmeN

k=m

By taking m " oo in the right hand side, we have the desired result.
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]

(Alternative Proof of Theorem 3.12) We give an alternative proof of Theorem
3.12 (Egorov). Suppose m(F) < oco. Let

A J{z € B |fula) - f(2)] Z € }.

k=m

Note that m(A;) < oo (.- Ay C E) and {A,,}2°_, is a decreasing sequence of point sets.
By Corollary 2.8 we may swap lim,, .o, and m(-). So we have

nll_lgo m(A,) =m (r]l Am> :

Therefore,

m<ﬂ Utrek] Ifk(w)—f(x)!2€}>

m=1k=m

mM— 00

= lim m (U{er | fe(x) = f(2)] 2 €}> :

k=m

And by Theorem 3.15, we conclude that

fo(z) = f(2) & fule) = f(z), if m(E) < co.

]

(Definition 3.7) We say that {f;}r>1 is a Cauchy sequence in measure if the
following formula holds for all € > 0.

Jm m ({ z € B[ |fu(x) = fi(z)] 2 €}) =0.

In other words, Ve > 0,V§ > 0, AN € N s.t Vj, k = N,
m{{zekl | |fulz) - fi(z) 2€}) <o

(Theorem 3.16) First, let e = § = - in Definition 3.7.

STEP 1. By definition of a Cauchy sequence in measure, there exists n; € N s.t

\V/j,k 2 Ny,
m({oeBlIh@ - £ 2 5 }) <5

So let £ =n;,j = n;y1. Then

w({oe Bl - fun@l 2 5 ) < 5
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Let g;(z) def fn,(z) and let E; def {x € E||gi(z) — gir1(z)] 2 21} Then,

E; —.
m (E;) < 5

m <G E,) <1< 0.
i=1

By Borel-Cantelli’'s Lemma (I) (See Chapter 2), this implies that

m (lim sup EZ> =0.
i—00
Let N = limsup,_, . E;. E; occurs only finite times at € £\ N. In other words, if

i is sufficiently large, |g;(z) — giv1(2)| < - at o € E\ N. (We may say that there exists
me € N st Vi 2 my, |gi(z) — giv1(2)| < 5 1f x € E\ N.) Therefore,

Z|gz — gin(2)] < 00, Yz € E\ N.

Absolute convergence Y 2, |---| < oo implies
Z(giﬂ(x) — gi(x)) converges Vo € E'\ N.
i=1
Since
k—1

gi(z) = g1(z) + Z(giﬂ(iﬂ) — gi(v)),

=1

gr(x) converges if z € E'\ N. Now we let

f(z) def limg oo gp(z) =€ E\ N
0 z € N.

Then f(z) is a measurable function. Recall that /N is a measurable set, and lim sup,,_, ., gx(2)
and lim inf,_,. gx(2) are measurable functions. Since f(z) = (limsup,_,, gx(2)) X\~ (),
f(z) is measurable. (Theorem 3.8 also can explain the measurability of f(z).)

STEP 2. We show that gi(z) =% f(z). Let § > 0 be an arabitrary positive
number. We may find j € Ns.t ;4 < 0. Recall that m(E;) < 2. By sub-additivity of an

measure,
m (U EZ> Zm § — < 4.
i=j

def o0 . o0
Let B5 = U, E;. We may find j € N st 507 < 0. Then m (Ui:j EZ) < >, m(E) <
51 < 0.
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Since E5 D limsup,_, ., E;, we have E\ Es C E'\ N by taking complement of the both
sides. By the result of Stepl, limy_, gr(z) converges on E\ Es(C E\N). Let z € E'\ E.
Since limy_,+, g¢(x) converges,

lg(2) = (@) =lgr(x) = Jlim go()] = Tim |gp(z) = ge()].
In the formula above,
o gr(2) = g(2) + 35 (gia(2) — gi(w)).
o 9u(2) = g1(2) + 3103 (g1 (2) = gi(2))

Also let us recall that |g;1 () — gi(z)| < 5,Vi 2 j because z € E\ E; = [;5; Ef. So if
k = j, we have

(e \<Z!91+1 ~a@I =Y 5 = 5
i=k

This inequality holds for all z € E'\ Es. Therefore,

lim sup |gy(z) — ()] = 0.
—0 rcE\E;

STEP 3. Finally, we show that fy(z) = f(z). m({z € E | |fi(z) — f(z)] =

e}) = m({x € E[ [fi(x) = fu(@)] 2 €/2}) + m({z € E | |fn.(2) = f(z)] = €/2}). Since
{fx(z)}x=1 is a Cauchy sequence in measure, we can let m({x € E | | fe(x)— fn, ()| = €/2})

be arbitrarily small by taking large k and i. Moreover, g;(z) = f,.(z) = f(z) (by Step
2) 50 fo,(x) = f(x), so we can also let m({x € E | |f.,(z) — f(z)| 2 €/2}) be arbitrarily
small by taking large i. Now the proof is complete.

(Theorem 3.17)

STEP 1. (=) Let ¢ > 0 be a arbitrary positive number. Suppose fi(z) =
f(z). For any subsequence k;, fi,(r) 2> f(z). It is enough to show that we can find a
subsequence k; s.t fi,(z) =% f(x). Since

Jim m ({2 € B[ [fi(z) = f(z)] 2 €}) =0,

we can find a subsequence k; s.t

m(r € B | |fu(e) ~ @) Ze}) < o

Therefore

m (U {z € E||fu(x) - f(x)| 2 e}) < 2ml_1.

Finally,

lim m (U{w € E||fe,(x)— f(x)| 2 e}) —

By the extra theorem, this implies that f,(z) = f(z).
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STEP 2. (<) We show the contraposition. We show if fi(z) 2% f(z) = Jk; s.t
ki fro,, (@) > f ().

First, let us recall that fi(z) = f(x) means that

V6 > 0,Ve > 0,3N;s, st Vb =2 Nym({x € E | |fr(z) — f(z)| = €}) <.

So its negation f(z) 2 f(z) is
30 > 0,3 > 0,YN, 3k 2 N st m({x € E | |fe(x) — f(x)] 2 €) 2 0.

(Replace V. — 3 and 3 — V and change the last part to the negation of the original
statement.) Therefore we may find a subsequence k; s.t m({z € E | |fx,(x) — f(z)| 2
€) =9 foralli=1.

Next, let {k;,, }m>1 be an arbitrary further subsequence of {k;};>1. Since

o Unew iz € Elfu, (@)= f(@)| 2 e} D{z € E||fi, ,(x) — f(x)] Z €} and
o {ki, }me1 C {k‘z‘}igl

we have

m( U (&€ Ellfi, (@) - f(2)] 36}) 2 4.

m=m’

By taking lim inf,,, .., we have

1\

J.

m/—o0

lim inf m ( U {z e Ellf0,, (@) - f)] 2 e}>

Therefore, fi, () 28 f(x). Now the proof is complete.

]

(Exercise 1) Let us recall Theorem 3.17. Since fy(z) = g(x) on E, there
exists a subsequence {k;}sen C Ns.t fi,(z) = g(x) on E. There exists two measure zero
sets N1, Ny s.t

fr(z) = f(z) YV € E\ Ny, fi,(x) — g(z) Vo € E\ No.
Since a convergent sequence has a unique limit,
f(z)=g(x) Ve € E\ (N1 UN>).

Since m(Ny U Ny) = 0, we conclude that f(z) = g(z) a.e z € E. O

(Exercise 2) By Theorem 3.17, fi(z) = f(z) = Vk;, 3k;,, st fr, () =
f(@) = fr (@) = f(z) = fr, (2) 2% fP(z). Since m(E) < oo, 25&2% . So
P (z) =5 fP(2) = fr, (2) 2% fP(z). Again by Theorem 3.17, Vk;, 3k;,, s.t fr. (2) 2%

im

@)= ff, (@) = fu, (2). O
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(Exercise 3) For example let £ = R, let fy(z) = 1, and let g(z) = z. Let
e > 0 be a arbitrary positive number. For sufficiently large k, % < €, 50 limy oo m({z €
R | |fe(x) = 0] 2 €}) = 0 However, m({z € R | |fe(x)g(2)| 2 €}) = m({z € R | |g(z)| 2
ke}) = m((—o0, ke] U [ke,00)) = oo for all k = 1,2---. So fi(z)g(z) 2 0. O

(Exercise 4) Vz € (0,7), cos"(z) — 0 and m([0, 7] \ (0,7)) = m({0,7}) = 0.
So cos™(z) == 0 on [0,7]. Since m([0,7]) < oo, cos™(x) =% 0 < cos”(z) —» 0 =
cos™(x) =5 0. So we conclude that cos™(x) ~» 0 on [0, 7). O

(Exercise 5) Let f,(z) = %. Then lim,Hoo m({z € E | [fu(x)] 2 €}) =0
because for any ¢ > 0, when n is large enough = < €. However = >0foralln =1so

m({x € B | |fu(2)] > 0) = m(E). So lim, oo m({e € E | |fa(a)] > 0}) = m(E) > 0. O

(Exercise 6) By Theorem 3.17, since fy(x) = 0, we can find a subsequence
ki st fi, (1) =5 0. Z5="5% 50 fi,(z) =5 0. There exists a measure zero set N s.t
Ve € E\ N, fg,(x) — 0. Since fri1(z) = fi(x), fr,(x) — 0 implies that fp(z) — 0.
Therefore fi(z) — 0 on E\ N. So we conclude that f,(z) =% 0. O

(Exercise 7) We may suppose that an arbitrary positive number € is in (0, 1)
without loss of generality. So let € € (0, 1).

(1)
m({z € R | |fo(z) =0 2 ¢}) = m({z € R!| |xp,(2)] 2

( €})

= m({z €R!| xp,(2) 2 })
( )=1})
(E

= m

{z €R!| xp,(2) =1}
k)

m

o (+1) yi, (1) 2 0.
o (x2) xp, (x) takes only 0 or 1. xp, () > € (0 < e < 1) occurs only xg, (z) = 1.
From this relationship, we can conclude that fi(z) = 0 if and only if m(Ey) — 0.

(2)  We use the extra theorem. f.(x) =% 0 on R? if and only if

m<ﬂ U{xeRdkam—orze}) - m ﬂU{xeR (o >|ze})

n=1k=n

U{xGR | XE, (z )—1}>
Us)

= m (lim sup Ek) )
k—o00

A
N

Now the proof is complete.
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]

(Exercise 8) Similar to last previous exercise, we may suppose that € € (0, 1)
without loss of generality.

Jim m({e € R? | [xg,(2) — xg,(x)] > €})
- Jim m({z € R | |z, () — x5, (2)] = 1})
= lim m({z e R? | xg, () =1, x5, (z) = 0} U {z € R | xg,(2) = 0, xg,(x) = 1})
= lm L m((Ex \ Ej) U (E; \ Ey))
_ llm m(E,AE;)

k,j—o0

® (*) [xg,(z) — xg,(z)| can only take 0,1 and € € (0,1). So |xg,(z) — xg,(7)] > €
occurs when |xg, (z) — xg,(2)| = 1.

Now the proof is complete. O]

(Exercise 9) First fix an arbitrary positive number ¢ > 0. Let E o {z €
R! | F(z) > €¢}. Then m(E) < co. Since f,(z) =% 0 on R, f,(z) =% 0 on E. Since
m(E) < 00, fu(r) % 0 on E implies f,(z) 2% 0 on E. fu(z) 2% 0 on E implies
fulz) 5 0on E.

m({z €R' | [fulz) = 0| > ¢}) = m({z €R'||fu(2)] > ¢} N E)
= m({z € E|[fu(x)] > €})

o (>x}<) sigce |fu(@)] £ F(z) aex € R {z € R | |fu(z)| > ¢} C{z e R' | F(x) >

From the equality above, we conclude that f,(z) = 0 on R!. O

(Exercise 10) Let us recall Theorem 3.17. f,(z) = f(z) on E implies that

we can find a subsequence {ny}ren C N s.t fo, (v) = f(x) on E. f, (z) = f(z) on E

implies that f,, (z) =% f(x) on E. So there exists a measure zero set N s.t f,, (r) — f(z)
for all z € £\ N.

For every fixed x € E, f,(x) £ for1(x) so f,(z) has a limit and the limit is unique.

So especially when z € E\ N, f,(x) has the same limit with f, (z) (i.e f(x)). Therefore

we conclude that f,(z) — f(x) for all z € E\ N. In other words, f,(z) =% f(z) on E.
Now the proof is complete. O

§ 3.3
(Theorem 3.18 Lusin) First we explain that we may suppose that f(z) is
real-valued (finite) without loss of generality. Let N = o {z € E| |f(z)] = c0}. By
assumption m(N) = 0. Let £ = ©E \N € . f(x) is a real-valued measurable function
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on E We find a closed set F' C E on which f(z) is continuous and m(FE \ F) < 8. Then
m(E\ F)=m(E\ F) < 6. Therefore F is the desired closed set. In conclusion, we may
suppose that f(x) is real-valued.

STEP 1. (simple measurable function) Let § > 0 be the given positive number.
Let f(x) be a measurable simple function on E. By the definition of measurable simple
function,

where E = J0_| E; and E;NE; =0 if i # j.
By Theorem 2.13, we have a closed set F; C E; for each i s.t m(E; \ F;) < g. Let

of P F;. Then F is also closed. (. finite union) m(E \ F') = m(U/_, Ei \ Fi) =
i m(E\ Fi) < 3200 % = 0.

Next we show that f(z) is continuous on F. Let {z,} C F = J/_, F;. (F; : disjoint)
and z,, — xo. Since F is closed, xo € F. There exists ig € {1,2,--+ ,p} s.t &g € F},. For
sufficiently large n, x,, € F;,. (Otherwise, if z,, is contained by Fj,, (iy # io) for infinitely
many times, then we can find a subsequence z,, s.t z,, — zo € F;,. = contradiction!!)
So f(x,) = a;, for sufficiently large n. Hence lim, o f(2,) = a;, = f(z0). So f(x) is
continuous on F'.

F

STEP 2. (f(x) is bounded measurable) By Theorem 3.9, we can find a subsequence

of simple measurable functions {f.(z)}r>1 s.t fi(x) = f(x) on E. fy(z) is continuous

on a closed set Fy C Eym(E\ Fy) < . Let F = Mrey Fx. (F is an intersection of

closed sets. So F'is closed.) Then fy(x) is continuous on F' (" F C Fy.) m(E\ F) =
m(Use, E\ Fr) £ 00 m(E\ Fy,) < 6. Since fi(x) = f(z) on E hence fix(z) = f(z) on
F. A sequence of continuous function uniformly converges to f(z), so f(x) is continuous
on F.

STEP 3. (general case) Let g(x) o _Jo)_ ¢ (—1,1). Since g(z) is bounded,

1+ [f ()]
we can find a closed set ' C E;m(E \ F) < § s.t g(x) is continuous on F. Since
f(z) = %, f(z) is also continuous on F.

(Corollary 3.19)

(1) By Theorem 3.18 Lusin’s theorem, we can find a closed set F' C E;m(E\F) < §
s.t f(x) is continuous on F. By Theorem 1.27 (or Tieze Extension theorem), there exists
a continuous function g(z) € C(R?) s.t f(z) = g(z) on F. So we have

m({z € E|[f(x) —g(x)| > 0}) = m(E\ F) <.

In Theorem 1.27, we proved that if | f(x)| £ M on F (F : closed set) and f(z) is continuous
on F then we can find g(x) € C(RY) s.t g(z) = f(z) on F and |g(x)| £ M on R?. So if
f(x) is bounded, then g(x) is also bounded.
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(2) By the previous result, we have g(z) € C(R?) s.t

m({z € E| f(x) # g(z)}) <.

(There is a closed set F' C {x € E | f(x) = g(x)} with m(E\ F) < d.) However g(x) does
not necessarily have a compact support. So let us find a continuous function ¢(z) € C(R%)
with
df |0 ¢ BO,r) DFE
o)} TEBONSE
1 ze€F

Then g(z) o g(x) - ¢(x) is a desired function.
Since E is bounded, we can find n € Ns.t F C B(0,n) and let r = n+ 1. For example,

o(z) ¥ max{0,1 — dist(z, F)}.

By Theorem 1.25, dist(x, F) is continuous on R?. So ¢(z) is also continuous on R?.
dist(z, F) = 0if x € F. Let x ¢ B(0,7). There exists y € F s.t |x — y| = dist(z, F).
By triangular inequality, |z — y| 2 |z| — |y|. Note that |z| 2 r =n+1 and |y| £ n. So
|z —y| 2 1. So ¢(x) = 0.

]

(Corollary 3.20) Let {0y }r>1 be a sequence of positive numbers s.t  \, 0 as
k — oo. We can find a closed set Fy, C E;m(E \ Fi) < 0 s.t f(x) is continuous on F.
By Tieze Extension theorem, we can find gi(x) € C(R") s.t f(x) = gr(x) on Fy. (gr(2)
is continuous so gi(x) is measurable.) Let € > 0 be an arbitrary positive number. Since

m({z € E[|f(z) —gr(z)]| 2 €}) = m({z € E||f(z) - gu(z)] > 0})
é m(E \ Fk) < (Sk,

g(x) 5 f(2). gu(x) B f(@) = Hkmbmz1 st gr,(2) =5 f(@) = g, () 2> f(2).
Gm () o Gk, () is the desired sequence of continuous functions on R™.

(Example 1)

STEP 1. f(x+vy) = f(x)+ f(y) implies that f(xz + h) — f(x) = f(h). If f(x) is
continuous at x = 0, then |f(z + h) — f(z)| = |f(h)| — 0 as h — 0, so we can conclude
that f(x) is continuous on R. So we prove that f(x) is continuous at x = 0.

STEP 2. f(z) is Lebesgue measurable on R so f(x) is measurable on [—M, M].
(M > 0). This is because {x € [-M,M] | f(z) >t} ={z e R | f(z) >t} N[-M,M] €
A . By Lusin’s theorem, we can find a closed set F' C [-M, M];m([—M, M|\ F) < s.t
f(x) is continuous on F'. We suppose 6 < 2M then m(F) > 0.
Since F'is a compact set and f(x) is continuous on F', so f(z) is uniformly continuous.
Therefore, Ve > 0, 30, > 0 s.t. Va,y € F;|x — y| < we have |f(z) — f(y)| <e.
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STEP 3. By Steinhaus’ theorem, F' — F' contains an interval [—dz,d2] because
m(F) > 0. Let 50 = min{51752}. Let h € (—60,(50). Since (—50,(5()) C [—62,(52] C F— F,

we can find z,y € Fsth=z—y. [f(h)] =|flz —y)|=[f(z) - fY)] <e (. |z -yl =
|h| < do < d1). In conclusion, Ve > 0, 34y s.t Vh € (—do,d0), |f(h)] < € & f(x) is
continuous at z = 0.

O

def

(Exercise 1) (This is similar to §3.1 Exercise 7.) Let f(x) = X[o,00)(2). Sup-

pose g(z) is continuous on R.

case 1. (g(0) > 0) There exists (—09,0),(d > 0) s.t Vo € (—0,0), g(x) < 0. So
n({ € R[1f(z) - g(x)] > 0}) 2 m((~5,0)) = & >

0.
case 2. (g(0) £0) g¢(0) < 1. There exists (0,0), (0 > 0) s.t Vz € (0,9), g(z) < 1.
Som({z € R[|f(z) — g(x)[ > 0}) 2 m((0,6)) =6 > 0.

So we conclude that there does not exist ¢ € C(R) s.t m({x € R | |f(z) — g(x)| >
0}) =0.

(Exercise 2) Let € > 0 be an arbitrary positive number and let us fix e.
STEP 1. By Corollary 3.19, we have a sequence of g,(z) € C(R') s.t

m({e € [a,b] ] f(2) # gala)}) <

STEP 2. Since g,(z) € C(RY), g,,(z) € C([a,b]). We apply Weierstrass’s approxi-
mation theorem. There exists a polynomial P,(x) s.t

lgn(z) — Po(x)| < €, YV € [a,b)].

STEP 3
m({z € [a,0] | [f(z) — Pa(z)| > €})
= m({z € [0,8] | |f(2) — gu(x) + gu(x) + Pu()] > €}
s m({z € [a, 0] | |f(z) = gn(2)] > 0} U{z € [a,b] | |gn(z) — Pu(2)] > €})
s m({z € a,b] | [f(2) = gu(z)| > 0}) + m({z € [a,0] | [gn(2) — Pru(z)| > €})
= m({z € [a,b] | f(2) # gu(2)}) +0 < .
So we have

Pu(z) & f(z) on [a,b].

By Theorem 3.17, we have a subsequence ny s.t
P, (z) =% f(x) on [a,b].

Since P, () =% f(x) on [a,b] implies that P, (z) =% f(x) on [a,b] (Theorem 3.15),
{P,, () }r>1 is the desired sequence of polynomial.
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(Lemma 3.21)

STEP 1. (<) Let G = (t,00). Since f(z) is real-valued (not extend real-valued),
so{r eRY| flx) >ty ={z eR" |t < f(x) < oo} = fYG) e .#. So f(x) is Lebesgue

measurable.

STEP 2. (=) G C R,G € 0, so 3(a;, b,

) 8.
Theorem 1.19.) So f~1(G) = f‘l(Ufol(al, b)) = Ul
fl@) <bi} =UZ{z eRY| f(z) > a;} \ {w € R

= U2, (ai, b;). (See Chapterl:
- ( i bi):U?i1{x€Rd|ai<

8

0
-+
“"Q

v
v
S~
&
— Q

(Supplement to Lemma 3.21)

STEP 1. (<) Let B = (t,00) € #(R'). Since f(r) is real-valued (not extend
real-valued), so {x € R" | f(x) >t} = {z € R |t < f(x) < o0} = fHB) € 4. So f(x)
is Lebesgue measurable.

STEP 2. (=) Suppose that f(z) is Legbesgue measurable. Let us consider the
following family of sets. (. : the family of Lebesgue measurable sets.)

o C{ACR]| [YA) €. 4.

It is easy to verify that & is a o-algebra. By Lemma 3.21, VG € 0, [~YG) € 4 so

G € /. This means that 0! C . Since B(R!) & 5[6"] is the smallest o— algebra
which contains 01, B(R!) C &/. VB € B(R!'), B € &/. In other words, f~Y(B) € .#
holds for all B € Z(R').

]

8] (Theorem 3.22) Let G % (t,00). (G € 6'.) Then h™"(G) = g1 o f~1(G) €
A . f(z)is a continuous function, so f~'(G) € O'. Since g(z) is Lebesgue measurable,
g ' (f1Q)) € # by Lemma 3.21. O

H

59| (Lemma 3.23, Corollary 3.24) By Lemma 3.21, we show that VG € &%, T"'o
fHG) € A. Since f( ) is Lebesgue measurable, by Lemma 3.21, f~%(G) € 4. Let

E Y f- (@). By Theorem 2.14, E = H \ Z where H is a Gs set and Z is a measure
zero set. T-YE) =T H\ Z) =T'YH)\ T '(Z). By assumption, T-(7) is also
a measure zero set, so T'(Z) is measurable. Let H = (-, Gy. Then T7Y(H) =

Meey Gk) = NMiey T7Y(Gy). By the definition of continuous transformation (See
Chapter 2), T~ (Gy) € 0% C A, therefore (-, T (Gy) € A . O

(Exercise 1) f(2)9® = exp(In(f(z)?®)) = exp(g(x) In(f(z))). Since In(-) is a
continuous function, In(f(x)) is Lebesgue measurable. And g(x) In(f(z)) is Lebesgue mea-
surable. Since exp(-) is a continuous function, exp(g(z) In(f(z))) is Lebesgue measurable.

[l
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(Exercise 2) Since g(z) is monotone increasing, {z € [a,b] | go f(x) > t} =
{z € [a,b] | f(x) 2 u} or = {z € [a,b] | f(x) > u} for some u. Since f(z) is Lebesgue
measurable, {z € [a,b] | f(x) 2 u}, {x € [a,b] | f(z) >u} € A O

(Exercise 3) Let f: R* — R and f(z,y) & f(z). Since {(z,y) € R* |
flzy) >ty = {z € R" | f(z) > t} x R* € Moy, f(z,y) is a Lebesgue measurable
function on R??. (In Chapter 2, we show that A, B € .#, then A x B € .#,. Similarly,
A, B € #;then Ax B € jfgd)

Let T(z,y) : R% s R and T(z,y) € (z — y,2 +y). Then T(z,y) is a linear
transformation. (" T'(az,ay) = aT'(z,y) and T'((z1,y1)+ (22, y2)) = T(x1,y1)+T (22, y2).)
So T'(w,y) is a continuous transformation. (See §2.6 Example 1)

Finally, since f(z —y) = f(T(x,y)) and by Lemma 3.23, we conclude that f(x —y) is
a Lebesgue measurable function on R?9, O]

(Exercise 4)

STEP 1. We define

o (2 ) () o (e ) (),

if z € [, ™) (m € Z). An equivalent definition is

) S (n (%) 1 (M)

mEZ

+ n (m — m; 1) f <%,y)) 'X[mT—l,%)(JE)-

STEP 2. We prove that f,(z,y) — f(z,y) as n — oo. For each n and =z € R,

there exists my, , 8.t € [2=%, ). (Note that m is related to n and ). Then we have

1
x — ——x’§——>0&sn—>oo.
n

n n

m—1 ‘ m
Since f(x,y) is a continuous function of x (if y is fixed), we have

f(mT_l,y) ,f(%,y> — f(z,y) as n — 0.

Also let us note that

Finally,
|fn($7y) - f(l','y)|

o (22 (r(2) ~ stwa) o (o ) (7 (20) - 600
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STEP 3. f.(9(v),y) — f(9(y),y) as n — oo by the previous result. It is easy
to find out that f,(g(y),y) is Lebesgue measurable. So we conclude that f(g(y),y) is
Lebesgue measurable because it is a limit of a Lebesuge measurable function.

]

(Exercise 5) Let us recall that we constructed a Lebesgue measurable set

which is not Borel measurable in Chapter2. Let U(x) o %m,a: € [0,1] where ®(x) is
Cantor function defined on [0, 1].
Let us recall that m(¥(C)) = 1/2 hence IW ¢ .#; W C ¥(C) C [0,1] (C : Cantor

set). Since W~1(W) C C and C' is a measure zero set, so W~ (W) is also a measure zero
set. (Hence U1 (W) is Lebesgue measurable.) Let f(x) o Xw-1w)(z). Then f(x) is a

Lebesgue measurabe function. Let g(z) o U~1(x). Let us recall that g(z) is a continuous
function . Let us consider fo g(z) = xu—1) (¥~ (x)). Since {z € [0,1] | fog(z) >0} =
W ¢ 4, fog(x)isnot Lebesgue measurable.

§ 3.4

(Exercise 1)  When I is not countable, S(z) is not necessarily measurable. For

example, let I be a non Lebesgue measurable set on R'. We define f,(z) o Xa(z). Then
fa(2) is a Lebesgue measurable function for each a € I because {a} is a measure zero set.
However S(z) = xs(z) and {z e R | S(z) >t} =1 ¢ 4 ,if 0t < 1. O

(Exercise 2)

STEP 1. Let us recall that if G is an open set on R (especially d = 2), there exist
a countable number of (disjoint) half open rectangles s.t

G = U (an,la bn,l] X X (an,da bn,d]‘
neN
(See Chapter 1. Theorem 1.19)
STEP 2.
{z €la,b] | F(x) >t} = {z¢€]a,
= {z€la,

[ fo(g(@),0(x)) >t}
I (91(x), g2(2)) € £t 00)}-

Let G = f~1(t,00) C R2. Since f(z1,2) is a continuous function on R?, G is an open set

b
b
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on R%. So
{z €[a,0] | (91(x), ga()) € f7H(t,00)}
|

= {zela,b] | (91(2), 92(x)) € G)}
= {r€a,0]] (91(2), 92(2)) € | (@n1, bua] X (an2, bua]}
= |Jlz €la.t] | (91(2), 92(2)) € (an1,bu] X (an2,bo]}

= Ulz el t] | g1(@) € (an, bual} N {z € [a,5] | ga(x) € (ans, buo]} € A

In the last part, note that
{z €a,b] [ 91(2) € (an1,bna]} = {2 € [a,b] | gi(2) > ana} \ {z € [a,0] | g1(x) > bnn})

So the proof is complete.

(Exercise 3) Note that
7.(2) < tim fle+h) - f@) _ . flat+1/n) = flz)

h\0 h n—00 ]_/n

fe+1/n)—f(z)
N, =7 —

T is Lebesgue measurable. By assumption, the limit exists.

For each n €

fa+1/n)—f(x)
1/n

(Exercise 4) Let

(@) & F(@)X1150)2n) (2)-

So lim,, is Lebesgue measurable. O

Note that
|f(z) = gu(@)] = | (@)X f@)5n} (),
and hence

{z e El[f(z) —gn(z)] >0} = {z € E|[f(@)|xyswmsn >0}
= {z e E||f(z)| >n}.

Let A, & {z € E'||f(z)| > n}. Since |f(z)| < 0 a.e x € E,

m (ﬂ An) —m (ﬂ{x € B |f() > n}> —m({z € B ||f(x) = 00}) = 0.

Moreover, {A,},>1 is a decreasing sequence of point sets and m(E) < oo hence m(A;) <

oo. Therefore
nh_)rglo m(A,) =m (Q An> = 0.
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This implies that there exists a sufficiently large ny € N s.t m(4,,) < e. So m(A,,) =
m({z € E||f(x)| >no}) =m{z € E||f(x) = gn,(z)| > 0}) < €. gn,(z) is bounded. So
this is the desired function.

We can also answer the question using Lusin’s Theorem. There exists a closed set
FCEstm(E\F)<est f(r)is continuous on F. Let us define

det | f(x) w€F
gg(x)_{o r€E\F

Note that F' is also bounded, so F' is compact. Since f(z) is continuous on a compact
set F', f(x) is bounded on F. Therefore g.(z) is also bounded on E. It is not difficult to
verify that g.(x) is Lebesgue measurable on E. Finally,

m({x € E|[f(x) = ge(x)] > 0}) = m{z e E|f(z) # ge(r)})
m(E\F) <e

A

]

(Exercise 5) By the assumption, fi(z) 2= f(z). Let us recall that f(z) =%
f(z) always implies fy(z) == f(x). (See Theorem 3.15, Extra Theorem.) So we conclude
that fi(z) =5 f(x). O

(Exercise 6)

STEP 1. Note that

lim m ({x SN sklip{fk(x)} > e}) =0, Ve >0, --- (i)

Jj—0o0

if and only if

lim m ({x €FE| sklip{fk(x)} > e’}) =0, Ve >0, -+ (ii)

J—00

First we prove (i) = (ii). Suppose that (¢) holds. For all ¢ > 0, we can always take € > 0
s.t 0 < € < €. By monotonicity of measure, (i) = (ii). By a similar argument, we can
prove that (i) = (i) also holds.

STEP 2. Note that

m ({fc €L igp{fk(x)} > 6’}> =m | (J{z € B {f(x)} > ¢}

kzj

So we have

I
e

lim m ({x € E | sup{fi(z)} > e'}) = lim m U{x e E|{fi(x)} >€}

Jj—00 > Jj—00
= k>j
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By the Extra Theorem,

lim m (U{:L‘ € E|{fr(x)} > e'}) =0% fi(z) =5 f(x) on E.

j—00
k2j

Let us recall that fi(z) % f(x) always implies fi(z) == f(x). By Egorov’s theorem,
when m(E) < oo, fi(r) =% f(z) on E implies fi(z) == f(z) on E. So if m(E) < oo,

x
fe(z) 25 f(2) & filz) 25 f(x). Now the proof is complete.

]

(Exercise 7) Since m([a,b]) = b —a < oo, by Egorov’s theorem, there exists
E, € M ;m([a,b]\E,) < st fy(z) = f(z) on E,. m([a,b]\U;=, En) < m([a,b\E,) < L
for all n € N so m([a,b] \ U,—, E,) = 0. Now the proof is complete. O

(Exercise 8) We may suppose |f(z)],|g(z)| < oo a.e x € E. By triangular
inequality, we have

\fi+ag—f—glZe€
= |fo—fl+1lgr—gl 2 e

And then |f, — f| = § or [gx — g] 2 §. So we have

m({z € B[ |f(x) + gu(@) = f(x) = g(a)| Z €})
< m({reBlIfi@) - @)z u{reBllge) -g@) 2 5})
< m({reB|1n@ - @2 5}) +m({re 2llaw) - g@) 2 ) So

e (x1) By sub-additivity

o (+2) fula) D f(x), gule) S gla) on E.

(Exercise 9)

STEP 1. (=) Suppose that fy(z) = f(z). Let € > 0 be an arbitrary positive
number. Note that

1imsup(ilr>1g{a +m({x € E||fi(x) — f(z)| > a})}

Jim (e +m({z € E|fi(z) = f(z)] > €}))

€

AL

1%

e (x1) Since it takes inf,~o(- - - ), the value is less than or equal to the case of a = e.
o (x2) fu(z) = f(2).
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The left hand side is less than an arbitrary positive number € > 0. So we conclude that

lim inf{a +m({zx € E | |fu(z) — f(z)| > a})} =

k—o00 a>0

STEP 2. («) Suppose that

lim inf{a+m({z € B | |fu(x) — f(z)| Z a})} = 0.

k—o00a>0

Let €,6 > 0 be an arbitrary positive number. Let €* oo min{e, 6}. We have K 5 s.t
Vk 2 K,
inf{a +m({z € E||fe() = f(x)] 2 a})} <€

For each k 2 K, we can find at least one ay, s.t

ar, +m({x € E|[fi(r) — f(2)] 2 a}) <e

From this inequality, it is easy to find out that a, < €* because m(---) = 0. Therefore
a, < €. So we have

m({z € E||fi(z) - f(z)| 2
s m({z € E||fi(z) = f(2)] Z ax})
< a+m({z € E|[fi(z) - f(2)] 2 a

for all k > K. This implies that fi,(x) = f(z).

]

(Exercise 10) In this question we want to show f,(z) - f(z) on [0,1] =
Vag € C(f), fu(xo) = f(zo). We show the contraposition. (If we want to prove A = B,
we may also prove =B = —A)

In other words, we show that Jz¢ € CO(f) s.t fu(zo) A f(x0) = fulz) & flx
[0,1]. Note that f,(zo) = f(zo) means that

Ve > 0,3N, € Nsit Vn = N, |fn(xo) — f(z0)] < €.
So fn(zo) 4 f(xo) means that
de > 0,VN € N,3In 2 N s.t |fu(zo) — f(xo)] 2 €.

Hint: First, swap V and 3. Then take the negation of the final part of the statement.

STEP 1. Since 3¢ > 0,YN € N,3In = N s.t |fn.(x9) — f(z0)| = €, we can find a
subsequence {ny}r>1 s.t |fn, (o) — f(x)| = € for all k =2 1. So f,, (o) — f(xo) = € or
fni(@0) — f(zg) = —e for all k = 1. At least one of the following statements holds.

e There exist infinitely many k s.t f,, (z0) — f(z0) = €.

e There exist infinitely many & s.t f, (zo) — f(x9) £ —e.
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First suppose there exist infinitely many & s.t f,,, (zo) — f(xo) 2 €. (Even if we assume
the second case, the proof is similar. So we only assume the first case.) So we can find a
further subsequence ny,, s.t f,, (o) — f(w0) 2 €.

STEP 2. Let us recall that o € C(f). Therefore 30 > 0 s.t Vo € (xg — §, 20 + 9),

|f(z) = f(zo)] < 5. So Va € (20,20 +9), —5 < f(x) — f(xo) < §. This implies that

f(xo) + 5 > f(x). Moreover, we have f(xq) +¢€ > f(x)+ § by adding § to the both sides.

STEP 3. Since for each n, f,(x) is a monotone increasing function. (i.e x < 2’ =

f('x) é f(.flj,)) SO vm € (:C07x0+5)7 fnkm (:C> 2 fnkm (:EO) By Stepl? fnkm (x) i fnkm ('TO) z
f(zo) + €. By Step2, f(zo) +€ > f(x) + 5. Therefore, we have x € (29,29 + ) =
> £
p— 2'

fo, (@) = f(x) > § = |fnkm () — f(2)] So we have

m({z € B fu, @ - f@)]25}) 26>0

By taking lim inf,

o €
lim inf m ({x € E | |fu (@) — f(2)| 5}) > 5> 0.
This implies that f,, (z) 2 f(z). However, if f,(z) 5 f(z), then for any subsequence
n'(k), fuway(x) = f(z). So from the discussion above, we conclude that f,(z) 2 f(z).

]

(Exercise 11)  We can find G, € 0% s.t m(G,) < < and f(z) € C(R*\ G,).

Let H Y (Y2, G,. Then {z e R\ H | f(z) >t} = U {z e RI\ G, | flz) >t} € 4.
This is because f(x) is continuous on R? \ G, hence there exists an open set A, s.t
{x e RI\G, | f(z) >t} = (RI\ G,) N A,.

Finally, {zx € R? | f(z) >t} = {z e R\ H | f(z) >t} U{z € H | f(z) >t} € M
because H and its subset are measure zero sets. O

(Exercise 12) {2 € E| |fu(z)gi(2)| 2 ¢} C{z € E||fi(2)| 2 Vel U{z € E |
lgr(x)| 2 V/€}. By sub-additivity,

Jim m({z € B [fi(x)gi(2)] 2 €})

< lmm({z € B [fi(@)] 2 VA U{r € B| |a(x)| Z V&)
< Jim {m({z € B | |fe(e)| 2 V&) + m({z € B | [gs(x)] Z Ve})} =0.

[]

(Exercise 13) Let us recall that fi(x) *> f(z) if and only if Vk; (a subse-
quence), Jk;,, (a further subsequence) s.t f, (z) == f(z).

STEP 1. Let k; be an arbitrary subsequence. Since fi(z) —> f(x) on [a,b], there
exists k;, (a further subsequence) s.t fy, (z) == f(z) on [a,b]. Let us recall that

m([a,b]) < 0o hence == if and only if =%. So fi, (z) == f(x) on [a,b).
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STEP 2. By assumption g(z) is continuous on [a,b], g o fy, (z) = go f(z) on
[a,b]. Again, =5 if and only if =% so go fy, () => go f(z) on [a,b]. Therefore we
may say that VA; (a subsequence) 3k, (a further subsequence) s.t go fi, 2% go f(x)
on [a,b]. This implies g o fiy(z) = go f(x) on [a,b].

(Notice) In the future, we will provide a counterexample in the case of [a, 00).

(Exercise 14)

STEP 1. Let {F,},>1 be a sequence of closed sets with m(E \ F,) < =; f(z) €
C(F,). Then m(E\ U2, F,,) < £ for all n € N hence m(E\ U=, F,,) = 0.

STEP 2. {z eRY| f(z)>t}={z e R\, F. | f(z) >t} U{z e U, F, |
fl) >t} ={x e RAI\U_, F, | flx) > tyulU{z € F, | f(z) > t}. Since
{z e RI\NU, F, | f(z) >t} C R\ U2, F,, so this is a measure zero set. Moreover
since f(x) € C(F,) for each n € N, we have {z € F, | f(x) > t} € .# and hence
U._{z € F, | f(z) >t} € 4 Now the proof is complete.

(Exercise 15)

STEP 1. In this question, we do not know if f(x) is a measurable function. We
define convergence in measure to a sequence of measurable functions {fx(z)}r>1 and a
measurable function f(x). Therefore we should not say f,(z) > f(z) from the assump-
tion.

Let us look back on the equivalent statement on convergence a.e. Let {fi(z)}r>1 be
a sequence of measurable functions. (We do not suppose measurability of f(x).) Then
fe(z) 25 f(x) on E if and only if for all € > 0, we have

m| () UlzeElfi) - f@) 2} | =0.

m=1k>m

STEP 2. We pick a subsequence {ny}r>; s.t

m*({z € [a, 8] | |fu(2) = f(2)] > €}) = 5

We still do not know if the set is measurable or not so use m*(-). Though we do not know
measurability, an outer measure m* has sub-additivity. So

1

m | \J{z € [a,0] | fun(2) = f(@)| Z €} | < S

k>m

Moreover,

wr | () Ut € [08] | 1) — F(@)] 2 €} §2im, m € N.
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This implies that

w [ () Ut € 8] 1) — 1@ 2 | =0

m=1k>m

A measure zero set is measurable, so (_; Upz,n {2 € [@,0] | [fn,(v) — f(2)] 2 €} € A
Let us recall the extra theorem. f, (z) =% f(x) on [a,b] if and only if

m | () ULz €la,b] | |fu(2) = f@)| Z €} | =0, Ve >0

m=1k=2m

Since f,, (z) =% f(z), so f(z) is measurable.

(Exercise 16) See the extra theorem. O
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CHAPTER 4

Solutions

§ 4.1

(Definition 4.1)
/ x)dx o Z em(ENA;)

(Theorem 4.1)
(1) By definition,

p p

/E(cf(x))dx = Z(cai)m(E NA;) = cZaZm EnNA,) / f(z

i=1 i=1
(2) Since R =J_ A, = Ui B

p

= Z Z:(CLz + bj)XAimBj (z).

i=1 j=1

_Q

This is also a non-negative Lebesgue measurable simple function. By definition,
/(f( dx—ZZaZ+b (EN AN B)).
E i=1 j=1
Again, since R = JI_| A, = Uj-, B
P q o) &
Z Zaim(E NANB;) = Z am(ENA;) = / f(z)dz
E

i=1 j=1 i=1
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o (x1) is because { ENA;N B;}]_; are disjoint with each other, and Jj_, ENA;NB; =
E N A; because JI_; B; = R”.

Simlarly,
P q q

Y bm(ENANB;) =Y bm(ENB)) = / g(z)dz,

i=1 j=1 j=1

so the right hand side becomes [, f i f(x)dr + | p9(x

(3)

P P q
/ f(z)dx = Zaim(E NA4;) = Z Z a;m(ENA;NBj)
E i=1 i=1 j=1
(%2) p_4q
i=1 j=1
¢ P
= > ) bm(ENANB;)
j=1 i=1
q
= ijm(E NB;) = / g(x)dx
=1 E

o (x2) If x € A;N B; # 0, then f(x) < g(x), hence a; < b;. For a given pair of A;, B;
with A; N Bj # 0, a; < b;. Therefore a; - m(ENA; N B;) Sb;-m(ENA;NDBy) if
A; N Bj # 0. And since m()) = 0, when A; N B; = 0, the equality still holds.

]

(Theorem 4.2) Let f(z) & P cixa,(z) where R? = |JI_| A; and 4; €
M, ANA=0i0f 0 # 5.

p

lim em(EyNA;) = Z lim ¢;m(Ex N A;)

k—o00 —
ch-m(E NA;) = / f(z)dz

—~
*
~

o (x) ExNA, SfENA ask — oo, so m(Ey,NA;) " m(ENA;) as k — oo. (See
Theorem 2.7)

]

(Definition 4.2) Let ¢ be a collection of non-negative Lebesgue measurable
simple functions defined on R%. (If we regard E as a universal set, we may also consider
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that simple functions in ¢ are defined on E.) Let f(z) be a non-negative measurable
function defined on £ € ..

def

Y ={9€9|g(x) = f(z), Vo € E}.

o m{ oo}

If fE x)dxr < 0o, we say that f is integrable on E. O]

Then we define

(Extra Theorem) Let f(z ) be a non-negative Lebesgue measurable simple

function defined on RY. TLet S, [ f(z)dz by Definition 4.1, and let Sy = def [ [(z)da
by Definition 4.2.

STEP 1. (S, £ S,) Since f(z) €%}, Sy € { [y 9(x)dx | g € 9}, hence Sy < S, &

sup{ [, g(x)dz | g € %},

STEP 2. (S; = S3) Let us recall Theorem 4.1. (In definition 4.1, if f < g, then
[ f < [g.) Since Vg(z) € 4, g(x) < f(x) holds. And VS € {[, g(x)dz | g € ¥4}, we
have S < S). By taking sup of the left hand side, we have S, < 5.

]

[ 6 ] (Some Properties derived from Definition 4.2) Let ¢ be a collection of non-
negative measurable simple function defined on R¢ (or E).

(1) Let%déf{hE%M( ) < f(a), ver} Let%déf{hegm( ) < gla),Va €
E}. Since f(z) < g(z), % C %. So { [, h(z dm}heg1 c {J,h( dx}he% Therefore

[Lr@ir= s { [ e < { [ i = [ o

(2) By the previous result, we have [, f(z)dz < [, g(z) < oo. So f(z) is also
integrable.

(3) Let % % {h € 4 | hi(z) < f(x),Vo € A}. Let % < {hy € 4 | hy(z) <
f(z)xa(z), Yz € E}. By definition,

s f(a:)dx = sup {/ hl(x)da:}
h1€% A

S o /f x)xa(zr)dr = sup {/ hg(l’)dl’}.
ho €%y E

STEP 1. (S; = S3) We pick a function hy(z) € ¢ arbitrarily and suppose that
hi(z) = 3P aixa,(z) where RY = 1 A, where {A;}_, C . are mutually disjoint.
By assumption, hi(z) < f(z),Vz € A So hi(x) - xa(z) £ f(x) - xa(z),Yx € E. This
implies that hy(z) - xa(x) € %.
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Since )
/ hi(z) = Z am(ANA;),
A i=1

and
p

/E h(@)-xal@)de 2 Y am(ENANA)

=1

o (x1) hi(x) - xa(®) = 30 aixana, () = 201 aixana, () + 0 - Xga 4 is also a mea-
surable simple function.

o (x2) ACE.

hence

/A b (2)da = /E ha(@) - xa(2)dz < S».

o (+3) Let hy(z) € hy(2) - xa(2) € %. So [, ho(z)dx < suppeq,{ [, h(z)dz}.

By taking sup with respect to hi(x) on the left hand side in the above inequality, we have
S; < Ss.

STEP 2. (S; = S;) We pick a function ho(z) € %, arbitrarily, and suppose that
ho(z) = Y70 1alXA (z) where RY = | JV_, A;. ({Ai}f_, C A are mutually disjoint.) By
assumption, he(z) < f(x)xa(z). This 1mphes that if © ¢ A, ho(z) = 0. So it follows that
ho(z) = ho(x) - xa(x) = D0 aixana;(x), and ho(z) < f(x) for x € A, so hyo(x) € 94 if
we regard ho(x) as a function defined on A.

[ ra@ir = [ ha(@)

P
= Zaim(E NANA;)
i=1
P

=1
*4
A

o (x4) ho(x) € %, so [, ho(x)dx < supyeq, { [, h(x)da} = S;.
Finally, by taking sup with respect to hy on the left hand side, we have Sy < 5.
(4)

STEP 1. (=) We pick an arbitrary measurable simple function h(z) = Y7, a;x4,()
s.t h(z) = f(z) on E. Since f(z) =0 ae x € E, ifm(EﬂA) > 0 then a; = 0. This
implies that either a; or m(E N 4;) is 0. Therefore [, h(z)dx =37  am(ENA;) =0
Even if we take supy,cq{ [, h(x)dz}, it should still be 0.

220



4.1.

STEP 2. («) Since

0= [ 1@is 2 [ @) Npempz 2)ds

we have

Therefore, by sub-additivty

m({z e E| f(z)>0})

m (U{er | f(w)%}>

3 ;1({1:6 E| fz)2 %}) 0,

n=1

(5) Since E is a measure zero set, we may say that f(z) =0aexz € E. (- {zx €
E| f(x) >0} C E) So [, f(x)dz = 0.

]
(Theorem 4.3) Let Ej = {r € E| f(z) > k}. Then
Ek\,ﬂEk:{xEE|f($):oo}.
k=1
Next,
k() = / beds < [ fla)de < [ flapts <o,
Ey Ey E
hence
/ f(x)dx < oo.
This implies that m(FE;) < oo and limg_,o, m(FEy) = 0. Therefore,
hm m(Ey) = <ﬂ Ek) =m({x e E| f(x) =00}) =0.
k=1
So we have the desired conclusion. O

(Theorem 4.4) Let ¢ be a collection of non-neagative Lebesgue measurable
simple functions define on £ € .Z. And let ¥ o {ge¥|g= f}.
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STEP 1. (2) Flrst f & Jiu(x)da is increasing so the limit exists. Since [, fi(z)dz <

fE x)dx for all k = , SO hm;.c_>C>o fE fr(x)dz.
STEP 2. (=) Let us recall that

[ sz sup { [ oy

So it is enough for us to show that Vg € ¥,
lim / fr(z)dx 2 / g(x)dz.
k—oo J @ E

def

= {z e E| fi(z) > ag(z)}.
Since f, ' f and g £ f so we have

B /{z € E| f(zx) > ag(x)} = E.

Let o € (0,1) and we define

Finally,

k—o0 E

(+1)
lim/fk(x)dx > lim Jr(z)dz

By taking a * 1, we have the desired result. Hint.

o (x1) Let A/B € .#,A C B, and let f(x) be a non-negative Lebesuge measurable
function. Then [, f(z)dx = [, f(x) - xa(z) < [, f(z)dx

e (x2) When z € E,ga), fr(z) > ag(x)
o (x3) limy o fE(a) agdr = fE agdzx. This follows by Theorem 4.2.
k

e (x4) Theorem 4.1.

[]

@ (Theorem 4.5) According to the theorem in Chpter 3, we can find a sequence
of non-negative measurable simple functions s.t fi(z) ~ f(x) and gg(z) 7 g(z). So
{afi(z) + Bgr(x)}r>1 is also an increasing sequence of non-negatie measurable simple

functions s.t afx(z) + Bgx(z) / af(z) + Bg(x).
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By monotone convergence theorem (Theorem 4.4),

lim [ (afie) + Banla)de = [ (af(a) + Bota))da

k—o0 E

By Theorem 4.1, when the functions are measurable simple functions, integral has linear-
ity. So the left hand side is

lim [ (afe(x) + Bgr(z))dx = hm< /fk dx+ﬁ/gk dx)

k—o0 I

Again by monotone convergence theorem (Theorem 4.4), the right hand side is

tin (o [ oo+ 5 [ o) =a [ fade+ s [ oot

Now the proof is complete. O

(Example 2)

STEP 1. Let us pay attention to the fact that f(z) = 0 for all z € E because
fi(r) 2 0 and fi(z) — f(z) on E. Let gi(z) = fi(z) — fr(z). Then gi(z) = 0 so
gr() is non-negative so {gx(x)}x>1 is an increasing sequence of non-negative measurable
functions. gp(z) — fi(x) — f(z) on E. (fi(z) — f(x) 2 0 for all x € E.) By Theorem 4.4
(monotone convergence theorem), we have

i [ gu(a)de = / g(z)dz = /E (fi() — f@))de. - (1)

k—o0

STEP 2. We still can not say that [,(fi(z) — f(2))dz = [, fi(x)dx — [, f(z)dx
because Theorem 4.5 assumes that «, 5 > 0. However, according to linearity of integral
with regard to non-negative measurable funtions, we have

/E (@) = 1) + Fa)ds = [ (i) = f(@)do + / fa

Since [, f(z)dx < [, fe(x)dz < oo (finite), we may subtract [, f(z)dz from the both
sides. So we have

/E (Fi(2) — F(@)) + f(2))dx — /E f(2)dz = / (fi(2) — f(x))de.

Therefore we have

[ @ = [ f@yde = [ (5o = s - (2)

Similarly we have
z)dx = 1(x)dx — f.(x)dx. -+ (%
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STEP 3.

im [ gu(e)de 2 /E (fi(2) — f(2))de

i)/flxdx—/fxd:c
]}1_{{)10 gk ) hm (/ fi(z dx—/fk dx)
/Eflmdx—l}ggo/Eka x

Since [, fi(x) < co, we may subtract [, fi(z)dz from the both sides. By multiplying —1
to the both sides, we have the desired result.

(Example 3) Let N {z € B[ f(z) # g(x)} € 4. m(N) =0.
/E fa)de — /E (f(@)xw(@) + f(@)xmw(e))da

) [E f(@)xn (@)de + /E f@)xpw(z))ds
(+2) /f 2)XN x)dx+/ 9(x)xp~(z))dz
& / flada + [ gla)iv(@)ds

- + /Eg( z)xp\w (2))da

) /N g(z)dz + /E 9(x)xp\w(z))dz

:9) /E (@) xw (@)dz + /E g(@)x v (@))de

: / (9(2)xw (2)dx + gla)xpw(2))de

- /E g(x)da.

e (1), (%7) holds by Theorem 4.5.

o (x2) f(x) =g(x) on E\ N.
(

o (x3), ) ( 5), (%6) See the properties of integral derived from Definition 4.2. [, h(z)dx =
S h( z)dz and [, h(x)dr = 0 if m(A) = 0 where A C E, A € # and h(x) is

a non- negatlve Lebesgue measurable function.
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(Supplement to Theorem 4.5 and Example 2) Let f(z) C imy e f(x). Then
f(z) = f(z) a.e z € E. By Example 3, we have

[E Fla)de = /E Fa)da.

By Theorem 4.5 or Example 2, we also have

[E fla)de = lim /E fo(a)da.

Now the proof is complete. O

(Exercise 1)
(1) Since (ff+fi+-+f2)S(fi+ for -+ fm)?> when fi, fo-+ frn = 0, we have
F(x) £ fi(z) + fo(z) - - + fin(2).

The right hand side is integrable because f;(z) is integrable for each i = 1,2---m. There-
fore F'(x) is also integrable. (See the properties of integral derived from Definition 4.2.)

(2) It is enough for us to show that for every combination of (i, k), (fi(x)fr(x))"/?
is integrable.

case 1. (i = k) When i = k, then (f;(z)fx(z))"/? = f;(z) so it is integrable.

case 2. (i # k) When i # k, then (fi(2)fu(2))'? = V2(fi(2)fi(x))'/? £ fil2) +
fr(x). (Take the square of the both sides and you will find that the right hand side is
equal or greater than the left side.) The right hand side is integrable.

Now the proof is complete.

]

(Exercise 2)  According to the properties of integral derived from the Definition
4.2, the right hand side is

lim /E F()x, (2).

k—o00

Let gr(z) = f(z)xp,(z). Then {gr(r)}r>1 is an increasing sequence of non-negative
measurable functions and gi(x)  f(x). By monotone convergence theorem (Theorem

4.5), we have
fim [ f@e ) = jim [ o= [ 1)

So the proof is complete.

O
(Exercise 3) By the hint we have
lim sup/(l —exp(—fi(2)))dz < lim [ fp(x)dr = 0.
k—00 E k—oo |
So the proof is complete. ]
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(Exercise 4) Let g,(z) o f(@) X (zer|f@)>n} (®). Then {g,(x)}n21 is a decreas-

ing sequence of non-negative measurable functions. Moreover g,(x) is also integrable

because f(z) is integrable and 0 < g,(z) < f(z). gun(z) \ g(2) - X{wcE|f(z)=00} ().

Since f(x) is integrable, by Theorem 4.3, f(z) < oo a.e x € E. Hence m({z € E | f(z) =
o0}) = 0. So we may say that g(z) = 0 a.e z € E. By Example2 (and Example 3 in the
second equality), we have

lim gk(x)dx:/g(x)dx:/()dxzo.
k—oco | @ I E

This implies that Ve > 0, there exists N. € N s.t

/EgN(x)dx <€

So the proof is complete.

O
(Exercise 5) We use monotone convergence theorem (Theorem 4.4).
STEP 1. We show that a!” o (1 + %)n is increasing with respect to n for all
z20. (iea <al))). Let g,(t) = n (14 2)", (£ >0).. Then
T z
') =1 (1 —) — L
) = —— <0
’ (t+x)?

g..(t) is monotone decreasing in t € (0, 00) and limy_, ¢-(t) = 0. This implies thatg, (t) >

0. Therefore g, (t) is monotone increasing. So al)

to n for all x = 0.

is also monotone increasing with respect

STEP 2. By monotone convergence theorem (Theorem 4.4), we have

lim <1 + f) exp(—2z)dx

*1 . T\

= lim (1 + —> X[0,n) () exp(—2x)dx
n—oo [0700) n

2 / lim (1 + £>n X[0,n) () exp(—2x)dx
[0,00 n

) n—oo

= [ exp(@)xiom () exp(~20)do
[0,00)

= / exp(—x)dx
[0,00)

e (x1) We may consider that (1+ Z)" yjo () exp(—2z) is a non-negative Lebesgue
measurable function defined on £ = [0, 00).
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e (x2) We apply monotone convergence theorem here.

(Exercise 6)

def p 0 x€][0,1)
Jnlw) =@ _>{1 z=1

Since m({1}) = 0, f.(z) == 0 on [0,1]. Moreover, 0 < f,1(z) < fu(z) on [0,1]. By
Example2, we have

lim fo(z)de = / Odz = 0.
[0,1] (0,1]

n—o0

O

(Theorem 4.6) Let Si(x) o S | filx). Since fi(z) is non-negative mea-
surable functions. Hence Si(z) is also non-negative measurable functions and Si(z) <
Sk1(x), Se(z) 7 > -pe, Sk(x) holds. By monotone convergence theorem (Theorem 4.4)

we have
lengO Sk(x dx—/EZSk

E k=1

By Theorem 4.5 (integral has linearity), so the left hand side is

i, J, Sl dx_éﬂ?}oz/fl e =3 [ sty

E

(Corollary 4.7)

STEP 1. It is easy to verify that yg(z) = > .-, xg(x). First, suppose that
Xe(x) = 1. Then x € E so Jkg st © € Ey,. And {E}2, are mutually disjoint,
> i1 X, () = 1 for sufficiently large n. So "2 xg, () = lim, 00 Yy X5, (7) = 1.

Second, suppose that > ;- xg,(x) = 1. By the similar argument, we have yp(x) =
1. Since the both sides only take 0 or 1, the argument above explains that yg(z) =

2120:1 XEy, (x)
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STEP 2. Since x € E, we have
flx) = fl@)xe()

= @)Y xe ()
k=1
= f(2) lim Y xg(2)
k=1
= lim Zf(l’)xEk(ﬁ)

ﬁ Z f XEk
k=1

e (x1) By Stepl.
e (x2),(x4) By the definition of limit of summation.

e (x3) if {a,} converges, then « - lim, o a, = lim, o @ - ay,.

/f dw—/E;f e (@

Therefore,

By Theorem 4.6 we have,

/E )X Ey (2 df—Z/f )X Ey (2

Finally, by the properties of integral derived from Definition 4.2,

S [ ronn@ae =Y [ s

k=1

(Example 4) By assumption, Y., xg,(x) = k for all z € [0,1]. So

n

[ Yoxn@z [ ks = km(0,1) = .
[0,1] [0,1]

=1

The left hand side is . .
| Yoanl =Y mE
(0,1 ;= i=1

If m(E;) < £ foralli=1,2---n, then Y , m(E;) < k and this contradicts to the result
above. So there exists at least one i s.t m(E;)) = £
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(Theorem 4.8) Let gi(x) o inf,>p{fn(z)}. Then gi(z) = grr1(x) and
gr(x) /' liminf, ., fr(z). By monotone convergence theorem (Theorem 4.4) we have

./L lim gp(z) = lim [ gp(z)da

k—o0 k—o0 E

And since gx(z) £ fr(z) we have
/ gr(x)dx < / fr(x)dx

lim [ gp(z)de < hmmf/ fr(x

k—o0 E

This implies that

e Since gi(x) is increasing with respect to k, so [ 1 9k(7)dz is also increasing. Therefore
limy_,o0 [5 g(@)dx exists.

e We do not know if limy_, |’ 1 fr(z) exists or not. However the a,, < b, = liminf, . a, =
liminf, . b,. The left hand side is equal to lim,,_,, a,, if the limit exists.

O

(Example 5) This example explains that equality does not always hold in
Fatou’s lemma. First, f,,(z) — 0 for all z € [0, 1] because

o if t=0,1, f,(x) =0 for all n € N so lim,, ., f(z) =0,

e if z € (0,1), by taking suffiently large n s.t £ <z, f,(z) =0so f,(z) — 0.

So we have
/ lim f,(x)dx :/ Odx =0
[0,1] "7 [0,1]
However,
fu(x)dx = / nx(,1/m)(T)dr =nm((0,1/n)) =1, Vn € N.
[0,1] [0,1]
So

lim fo(z)dz = 1.
]

n—o0 [071

(Theorem 4.9)

STEP 1. Since f(z) < oo a.e z € F, we may suppose that f(z) < oo for all

rekl Wlthout loss of generarhty Let N¥ {z 6 E| f(z) = oo} and let £ E \ N.

Since m(N) = 0, [, f(z)dz = [z f(x)dx + [ f(x)dx = [z f(x)de. This explains that

the integral is determlned only on F Where f(x) < o0. Therefore we may suppose that
f(x) <ocon E.
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STEP 2. Pick a partition {y:}32, € P?. Since f(z) < oo for all x € E and
E = ;2 Ex and each Ej is mutually disjoint, by Theorem 4.6, we have

/Ef(a:)dxzz : f(x)dx

On each Ey, yx < f(2) < Ygt1, SO we have

Z/ ykd:cg/f(a:)d:c§2/ Ypgrd.
k=0 7 Er E k=0 v Ek

Hence

S wml(E) < [ f@de < Y pam(En),
k=0 E k=0

Let us take a look at the right hand side.

dim > (k1 — vk + ye)m(Ey)
k=0

AL

T}l_)rﬁlo 2(5 + yr)m(Ey)
Jl_)nglo <Z yem (L) + Z 5m(Ek)>
k=0 k=0

2 Z yem(Eg) + 6 Z m(Ey)
k=0 k=0

A

= yem(By) + om(E)

e (x1) Let us recall that ygy1 — yx < 0.

o (x2) lim,_yo0(a, +b,) = lim, o a, +1im, o b, because a,, b, are monotone increas-
ing so both limits exist.

e (x3) E} is mutually disjoint and E = {J,—, Ex.
In conclusion we have

S(I) < / f()dx < S(I) + om(E).

From this inequality, we find out that [, f(z) < oo if and only if S(I) < co. (.
Im(E) < 00)
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STEP 3. By the inequality in the previous step, we have

sup S(/ /f Ydz = inf S(I) + om(E).

Tep®) T IeP®

By taking limit we have

lim sup S(I /f Jdz < lim inf S(I)
ON\0 Iep®) N0 e P

This explains that

/Ef(x)dx = };H% 121]13[()) S(I) = (lslir(lnér;&) S(I)

(Example 6) In this question, we use Theorem 4.9 (1).

STEP 1. We pick {yi}p2, where y, = k in Theorem 4.9. By Theorem 4.9,
[ f(z)dx < coif and only if Y- Jypm(E)) < oo where Ej, = {z € E | k < f(z) < k+1}.

STEP 2.

Y m({zeE|fw)zn}) = D> m{ze Bk flx) <k+1})

n=0 k=n

E3 Y m{ze Bk f(z) <k+1})

k=0 n=0

— f:k:m({mGE|k3§f($)<k+1})

k=0

= Zykm(Ek) < 00
k=0

/Ef(x)dx < 00.

e (x1) by assumption f(z) <oo. {x € E| f(z) 2n}={x € F|n < f(x) < oo} =
U {z€eE kS f(z) <k+1}

o (%2) if app = 0 then Y 07 3% Gk =D poy Doney Ang- Let ang = Xn<k - m({z €
E k< f(z) <k+1}) where xn<x = 1 if n < k, otherwise = 0.

if and only if

(Example 7) In this question, we use Theorem 4.9 (1) again.
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STEP 1. We pick {y}2, where y, = k? in Theorem 4.9. By Theorem 4.9,
[ [P(x)dz < oo if and only if Y77 yum(E)) < oo where By, = {z € E | k* < f*(z) <
(k+1)*}.

STEP 2.

S um(fr € B| f()2n}) = S nm({e € B| f(z) 2 n})

= Y nm({z € B f(2)* 2 n*})

= Zan({xGE |k < () < (k+1)%})

n=0 k=n

A Zan({xEE | k? < f(l')2 < (k+1)%})

2 S (e B8 2 @) < (k4 1)

k=0

Z k(k+1
_ jg: ( é% )

k=0

m(Ey) < oo

if and only if

Z E*m(Ey) (: Zykm(Ek)> < 0
k=0 k=0
This is because k < k% so i k*m(Ey) < 0o = > ;- km(Eg) < oo.

e (x1) Since each term is positive, so we may swap »_and )_,.

o (+x2) Yk n=EER

(Exercise 7) Let

B Yz eB|0Z f(z) <1} and By € {z e E| f(z) > 1}.
By Corollary 4.7
[raras = [ fapdcs [ P
E Eq Eo
< / lde + | f(z)’dx
E1 E2

= m(E) + : f(x)’de

A

m(E) +/Ef(x)3dx < 0.
2
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e r € E = f(x) S 1.
o z € Fy,= f(z)? < f(x)® because f(z) > 1.

(Exercise 8) In this question, we use Theorem 4.9 (1) again.

STEP 1. We pick {yx}2, where yp = k* in Theorem 4.9. By Theorem 4.9,
fE [} (x)dr < oo if and only if Y ;7 ypm(Ey) < co where E, = {z € E | k* £ f3(z) <

(k +1)° }
STEP 2.

anm({x € B f(z) 2n})
= Y n’m({z € E| f(z) = n})
= Y wm({z € E| f(2)* = n?})

— ZZan({x cE |k < f(x)g < (k+1)})

n=0 k=n

= YN m(fr e B K < f(0)* < (k+1)%))

k=0 n=0

_ Z bk + 1>6(2k U e € BIF < f@) < (k+ 1))
)

_ ik(k+1 (2k +1)

5 m(Ey) < oo

k=0

if and only if

This is because k < k* < k% so D o k°m(Ey) < oo = > o km(Ey) < oo and
S oo E*m(Ey) < .

(Exercise 9) Use Fatou’s lemma.
STEP 1. By Fatou’s lemma

/lim inf fi(x)dx < lim inf/fk(x)dx
e k—o0 k—oo [,
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Since limg,o0 fr(z) = f(x), we have

/ef( z)dx <11m1nf/fk

STEP 2. Since fy(x f fr(x)de < f f(x)dx. Therefore we have

lilgls;lp / fr(@)dz = / f(x)dz

Now the proof is complete. n

(Exercise 10)

STEP 1. Let us recall that limsup,,_,. E, = {z € [0,1] | #{n | z € E,} = oo}.
In otherwords, limsup,,_,., £, is the set of x € E which is contained by infinitely many
E,,(n 2 1). m(limsup,,_, . E,) = 0 means that for almost every = € [0, 1], x is contained

by only finite number of E,,. Let f(z) = o > X, (x). We can say that f(x) is the
number of n s.t x € E,. By the argument, f(z) < co a.e xz € [0,1].

STEP 2. Let A, & {z €[0,1] | f(z) £ m}. Then A,, / {z € [0,1]] f(z) < oo}

Since A,, is an increasing sequence of point sets (i.e A, C Aps1), limy, oo m(A,) =
m({z € [0,1] | f(z) < oo}) = 1. This implies that we Ve > 0 we can find sufficiently large
M st m(Ap) > 1 — €. Therefore m([0,1] \ Anr) < e.

STEP 3. Let us consider the integral below.

f(x)dx

Am

By Theorem 4.6,

/ S = / > e (o

n=1

On the otherhand, f(z) < M on Ay, so we have

fz)dz = Mdz = Mm(Ay) £ M < co.
Anr Apm

So A% Ay, is the desired measurable set on [0,1].
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§ 4.2

(Definition: integral of general measurable functions) Let

@) = max{0, f(2)} = f(2) - Xqeeri@zor (@),
@) = max{0,—f(2)} = f(2)  Xqeenirw=o) (2)-

Then f(z) = f+(2) - /~(x) and | f(2)] = f+(2) + f~(2). Let

St déf/f”(x)da:, and S~ déf/f_(a:)dx
E E

Note that 0 < ST, 5 < co.

(1) [y f(x)da Yot 5. [.f s dx is defined when at least one of ST < oo
or ST < o holds Then we say that fE x)dx ex1sts If ST = 00,87 < oo, then
[ f(x)dx = oo, and if ST < 00, 5™ = o0, thenfE r)dr = —o0.

(2)  When both S*,5~ < oo, we say that f(z) is integrable.
(3) fE |f(z)|dx = fE [T (x)dr + fE x)dr = ST+ S~ by Corollary 4.7. So

/|f(:c)|da:<oo & ST+ 85 <
E

& STST < oo
< f(z) is integrable.

| [ f(2)dz| = |S* = S| £ S+ + 8 = [, |f(x)|d.

]

(Example 1) Let us recall that f is integrable if and only if | f| is integrable. If f
is bounded then |f| £ M < oo for some M > 0. [, |f(z)|dz < [, Mdz = M -m(E) < cc.
(- m(E) < oo by assumption.) O

(Some Properties)

(1) f(x) € L(F) means that f(z) is integrable < | f(x)] is integrable. If not |f(x)| <
oo a.e x € I, then m({x € E | |f(z)] = co}) > 0. Then, we have [, |f(x)|dz =
Jweniswizoe F@Nd 2 [ payimoey 00dz = 00 -m({z € B | |f(2)] = o0}) = oo.
(contradiction!!) So |f(x)| < 0o a.e z € E holds.

(2) f(@) =0aex e E & |f(zx))] =0aex e E= [ |f(x)dr =0 (See §4.1
Properties of integral of non-negative measurable functions). And 0 = [, |f(z)|dz =
| [, f(@)dz|. So [, f(x)dz = 0.

(3) See §4.1 Properties of integral of non-negative measurable functions. From the
assumption, we find out that | f(z)| is integrable. So f(z) is integrable.
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(4) Let B R? and let fi(x) © |£(2)] - Xgaenjeizi- Then 0 £ fi(z) < [f(2)] so
fr(z) is integrable. And {fi(x)}r>1 is a decreasing sequence of integrable functions (i.e

Jer1(x) = fr(x)), and
fe(x) = 0,Vx € F,

because Vx € E, by taking sufficiently large k € N, we have |z| < k. By §4.1 Example 2,

we have
lim / | fr(z)|dx = / 0 dx =0.
k—o0 E E

By §4.1 properties of integral,

x)|ldx = x)|dzx.
[E (@) /{erszk}lf( )|

Now the proof is comlete.

O
(Theorem 4.10 Linearity of Lebesgue Integral)
(1)
case 1. (C' > 0)
[ ctwan 2 [y [ € @
E E B
2 /Cf*(:v)d:v—/Cf(w)dw
B E
2 C/f+(x)da:—C'/f_(a:)dx:C/f(x)dx
E E E
e (x1) By definition.
e (x2) C' > 0. So (Cf)yt =C(fT).
e (x3) See Theorem 4.5.
case 2. (C'=0) Obvious.
case 3. (C' < 0) Repeat the similar argument. But note that (Cf)" = —Cf~,
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(Cf) = —Cf*.
[crwir = [crr@i— [ )@
- [0 1 @in = [ (O @y

2 (=0)- [ Flada = (=C) [ 1 (@)ia
— —C-/Ef_(m)derC’-/Ef*(x)dx

- C( /E FH@)de — /E f‘(x)dx)

- C. / fl@)dz

o (¥4) Recall that [, af(z)dz = o [, f(z)dz if & > 0 and f(z) is a non-negative
measurable function.

(2) flz) € L(E ) and [, g(x)dx exists. So [, f*(x)dx, [, f~(z)dz < oo, and at
least one of [, ¢g"(z)dx < oo or ng x)dzx < oo holds. Let

h(z) € f(z) + g().

By separating each function to a positive part and a negative part, we have
Wt —h=f"—f"+g"—g,

hence
WP+ f +g =h +fT+g"

So we have

/ (W 4 [+ g )da = / (h+ f* + g*)d,
E FE

and by Theorem 4.5, (we sometimes omit dz)

oo fore o= e fre for

case 1. ([,9~ <o0) h™ < f-4g so [,h™ < oco. Since we may subtract finite
terms (fE h™, fE f, fE g~ ) from both sides, we have

R K L R
AR R Ey Ky Ky K
and this implies that
/Em_/Eh—

Jor e o
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so we have

fr=[1+[a

case 2. ([, 9" < oo) Similarly, h* < f* + g% so [, hT < o0, and by subtracting
them from the both sides like the previous step, we obtain

R R N
AR S Ey Ky KAy K

= /Ef‘+/Eg‘—/Ef+—/Eg+,
A AR

and we have the desired result by multiplying —1 to the both sides.

so we have

]

(Example 2) We separate [0,1] into By = {z € [0,1] | |f(z)| > e — 1} and

B {ze0,1]||f(x)] € e—1}. |f(2)|In(1+ |f(z)]) is non-negative.

/[0 Wt = [ g [ (4.1)
< [ F@m @) de+ / (e — 1)z (42)

< /[0’1] |f(z)|In (1 + \f(x)|)da:+/[()’l](e —1)dzx < 0 (4.3)

(4.4)

]

(Example 3) Let g,(x) o fo(x) — fi(x) 2 0. {gn(2)},>1 is an increasing
sequence of non-negative measurable functions. By monotone convergence theorem, we
have

tim [ g(e)de = /E (f(2) - file))de

n—o0 E
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Since f; € L(E),

i [ guwte =t ([ fwde- [ 50)d
= lim n(x)der — 1(z)dx
e / fi(x)

n—o0

and

[ @) = fi@nde = [ sayie - [ pas

[z f1(z)dz is finite, so we may add [, fi(z)dx to the both sides. Then we have the desired
result. (Notice) The original textbook gives an assumption f € L(E) however we do not
need to assume that f € L(E). O

(Example 4) Let g,(z) o fn(x) —g(x) 2 0. Since {g,(x)}n>1 is a sequence of
non-negative measurable function, so we can apply Fatou’s lemma to g,.

n—0o0 n—oo

/liminfgn(x)dx < liminf/ gn(z)dz
E E
And

[E lim inf g, (z)dz = [E lim inf(f, (z) — g(x))dz

n—o0 n—oo

= /E (liminf f,(x) — g(z))dz

n—oo

x /E lim inf f,, (z)dz — /E g(z)dx

n—oo

n—oo n—o0

liminf/gn(w)dx = liminf/fn(m)dx—/g(m)dm
E E E

e () g(x) is integrable. See Theorem 4.10.

e Finally, since [, g(z)dz is finite, we can add it to the both sides.

[
(Example 5) O
(Exercise 1)
—(f"+97) = min{f(z),g(x)}
< max{f(z),g(x)} = f"(2) + 9" (x).
So [m(x)], [M(z)| = | f(z)| + |g(x)| € L(E). O
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(Exercise 2)

STEP 1. Since zy ¢ Q a.e (z,y) € [0,1] x [0,1], (%),

/ flz)dz = 1.
[0,1]x[0,1]
STEP 2. (proof of (%)) We prove that

m({(z,y) € [0,1] x 0,1} | zy € Q}) = 0.

Let us consider a curve (or a line if r = 0) C, o {(z,y) € [0,1] x [0,1] | zy = r} where
r € QnNJ0,1]. It is enough for us to show that m(C,) = 0.

case 1. (r=0) Lines {0} x [0,1] and [0, 1] x {0} have measure zero. For all € > 0,
{0} < [0,1] € (=5, 5) x [0,1). m((=3,3) x[0,1]) =

case 2. (r > 0) We cover a curve C, by n rectangles. Let us pick n+1 points {x;}I

where r =g <11 <220 < - <z, = l,0;, — ;1 = % Let us consider rectangles
def ‘ —z)?
I = [wiq, 23] ¥ [x%’ m:’_l], i=1---n. Then m([;) = m([x;_1, x;] X [z%’ z:"—_l]) = %

Since C, C UL, I;, we have
)2
< 2 : - T— 1
Ti—1%;4

Moreover (x; —x;—1) = =L and r < g < -+ - < z,, therefore,

r( — ;1) r(l—-r)* (1- r)
“(Cy S < E
m(Cr) = — n2r? nr
This holds for all n € N; so by taking n — oo, we have

m*(C,) = 0.

(Exercise 3) We show that

o iz B 1@ > k)

k—o0

el

So, we prove that
klim k-m{zeFE||f(x)]>k})—0
—00

First,

m({z € E||f(x)] > k}) lékﬂmmmm%wmﬁ

/E|f(37)|X{er||f(x)>k}(x)da:.

A *
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o () k <|f(@)]if Xgzem||s@)>r(z) = 1.

Let

Fil@) £ (@) X paemis oo (2)-

Then fi(x) is a decreasning sequence of integrable functions. (i.e fry1(z) < fe(z).)
Moreover fi(x) — 00 X{zeE||f(z)|=c} = 0 a.¢ x € E because f(x) is integrable so |f(z)| <
oo a.e v € IJ. So we conclude that

fe(z) 25 0on E.

By §4.1,Example 2, we have

(Exercise 4)

STEP 1.

STEP 2.

lim [ fy(z)dx = / 0 dx = 0.
k—oo | g E

Let € > 0. lim,com({z € E | |fu(z) — f(x)] > €}) = 0 if and only if
lim, oo em({x € E | |fu(z) — f(x)] > €}) =0

A

A&

limsup em ({z € (0,00) | | fu(z) = f(z)[ > €})

limsupem ({z € (0,00) | £(2)] Xpnow (@) > €})

limsupem ({x € [n,00) | |f(z)]| > €})

n—o0

limsup/( )6-X{xe[n,oo)||f(x)\>e}($)dﬂf
0,00

n—o0

thllP/( )|f($)| * X {z€ln,o0)||f(2)|>e} (T)dT
0,00

n—oo

lim sup /( @) Xieenooy (e 20
0,00

n—oo

o (x1) We get rid of |f(z)| > € from the indicator function xy..y. This means that we
give a weaker condition for the indicator function to be 1. (Hence greater.)

def

e (¥2) This is similar to the previous question. f,(x) = |f(2)|X{zem,c0)}(2) is inte-
grable for all n € N, f,11(z) £ fu(x) and f,(z) — 0 for all x € (0,00). So By §4.1
Example 2 we have the desired conclusion.

(Exercise 5)
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STEP 1. Let us recall that if f(x) is a non negative measurable function with
[ f(z)dz =0 then f(z) =0aex € E.

STEP 2. C = f[o 1 f(z)dz. By the hint,
e“(f(x) —O) + e e/ = /@ —eO(f(x) — C) — e 2 0,

and the equality holds if f(z) = C. Since ef® — e“(f(z) — C) — €% is a non-negative
measurable function, we have

/ (/) —e(f(x) = O) - e“) 2 0.
[0,1]
By assumption, f(x) is integrable,

[ =@ -0 =) =

/|

4 / f@dr —C e +C - e€ — ¢
[0
/|

e’ @ dx — e f(x)dz + C - € — e
] [0,1]

o (x1) recall that C' = [, | f(z)dz
e (x2) by assumption
By the statement in Step 1, we conclude that
@ — Y (f(x) = C)—e® =0a.eczel0,1].
The equality holds f(z) = C. So f(z) = C a.e z € [0,1].

(Exercise 6) We use Theorem 4.11. (Please see Theorem 4.11.)
STEP 1. Since [ = E; U1\ Ey, by Theorem 4.6,

/I|f(9€)—f1|d90= ; |f(37)—f1|dx+/l |f(z) — fr|dz.

\Ep

And if x € Ey, f(x) — fr >0, so

[ \t@) = plde = [ (@) = s
Therefore,
) = frlde = x) — fr)dx x) — frldz.
1 —side= [ (1@ = gote [ 15—

It is enough for us to show that

[ = st = [ 1) - gy

E;
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STEP 2. Since f(z) — fr = 0, we have

/I\E, |f(z) = filde = /I\EI(fI — f(z))dx.

Next, f; — f(z) is integrable on I because f(x) € L(R'), so f(z) € L(I) and |f; —
f@)| £ \|fil+|f(x)| € L(I). (I is bounded.) By Theorem 4.11,

/E,(fl — f(x))dx + /I\Ez(fl — f(z))dx = /I(fl ~ f(2))da.

(Let us pay attention to the fact that the both terms on the left side are also integrable
because 1,1\ E; are the subsets of I.) And

[t taniz = - fi= [ sy
:‘HT%Z}@Mx_Zj@Mx:

[ - sena+ | Ui fa)de=0.

Therefore, (Theorem 4.10)

/1 U= (e = = /E i fo)e - /E (F@) - £,

Now the proof is complete.

(Theorem 4.11) By definition,

/f m—/j+¢m—/f

Note that [}, f(x)dx exists implies that [, fT(z)dz < oo or [, f~(x)dz < oo holds. By
Corollary 4.7, we have

[E P = 3

Similarly,

/Ef(x)dx = Z [ (z)dz
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Let

, Z fJr Ydz and b, aef Z r)dx,

Ek

then a,,, b, are monotone increasing, and a,, /> -, fEk [H(x)dx, by /Y 0, fEk f(z)dz
Since lim,, . a, < oo or lim,,_,,, b, < 00,

lim a, — lim b, = lim (a, — b,).
n—oo n—oo n—oo

Therefore
/f(:E)d:L' = /fJr dx—/f
E
= Z x)dr — Z
= hm a, — lim b,
n—oo n—o0
= lim (a, — b,)
n—oo
:Jﬂ(ZI W—XI )
= lim fr(@)dx— | f >
i S (f (@
=t Y ([ (e o)
n—o0 — o
= lim / f >
ESNIREDENY
O
(Example 6) We can easily find out that Va;, b; € [a, b], we have f(ai b f(z)dx =
0. By assumptlon f f =0, f[a ol f(z)dz = 0. Since they are integrable, we have

Jiap f(@)dz — f[a,ai] f fai,bi] f@)de = [, f@)de. (- m{bi}) =0)

STEP 1. In this question, we consider the contraposition. Suppose m({z € [a,b] |
f(z) # 0}) > 0. Since m({a}),m({b}) = 0, m({x € (a,b) | f(z) # 0}) > 0. At least
m({z € (a,b) | f(z) > 0}) >0 or m({z € (a,b) | f(z) < 0}) > 0 holds. We suppose that
m({r € (a.b) | f(z) > 0}) >0

def

Let A = {z € (a,b) | f(z) > 0}.
F : a closed set, s.t FF C A;m(A\
m(A) — m(F) < m(A), m(F) > 0.

STEP 2. Suppose [, f(z)dz = 0. Since f(x) is non-negative on F, f(x) =0 a.e
x € F by properties of integral of non-negative measurable functions. However, f(z) > 0
on F' and m(F) > 0, so f(z) = 0 a.e x € F does not hold. (contradiction!!) Therefore
[ f(z)dz > 0. (Moreover f(x) € L([a,b]) so [, f(z) < o0.)

0<m(A) £b—aand A € .#. So there exists
F) < e =m(A). Since m(A) < oo, m(A\ F) =
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LetG—(ab)\F.Then(a,b):FUG.f(ab) z)de = [, f(x)dx + [, f(x)dr = 0.
So [, f(x)dx < 0.

STEP 3. Since G is an open set, there exist disjoint open intervals {(an, b,)}22

n=1

st G = Unly(an,bn). [ flo)de = 3202, [, ) f(z)dz = 0. This contradicts to the
conclusion of Step 2

[]

(Example 7) g(z) is bounded a.e x € E means that 3k < oo s.t m({z € E |
lg(x)| > k}) = 0. We suppose that g(x) is bounded a.e x € E does NOT hold, and derive
a contradiction. In other words, we suppose that

Vke NNm({x € E| |g(x)] > k}) >0

STEP 1. We claim that there exists a subsequence {k;}ien C N st m({zx € E |
ki <|g(x)| £ kiyq}) > 0. By assumption,

m({z € Ellg)| >k} = m{zeE|k<|gx) <oo})
= m(U{mEE\k<|g(ﬂf)‘§k+z}>

i=1

Z limm{zeE|k<l|g)|<k+i})>0
1—00

e (x1) g(x) : F+— R by assumption.

o (x2){z € E|k<|g(z)| £ k+i} is increasing with respect to i. So we can swap m
and lim.

This means that there exists ig s.t m({x € E' | k < |g(x)| £ k +1i0}) > 0. Next m({x €
E | |g(x)] > k+ip}) > 0 by assumption. By repeating the similar argument, we have 7,
st m({z € E| ki, <|gx)| £k+io+i1}) >0.

STEP 2. Let E; % {z € B |k < |g(x)| < kirt} We define

[e.e]

1@ Y e ).

i=1
Then

8N 1 1

e (x3) Use Theorem 4.6.
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However,

[l = [ 1ol 3 gy e
/ ZW X, (a)d

/3 Z - ’jn A e )

/ mem

/ Z . }n(El)xE (x)da

= Z/ Ty (s

- Zﬂ%zw

i=1

IV E

V&

so we have |f(x)g(x)| ¢ L(E). (contradiction!!)
o (x4) g(x) > k; on E;.
e (x5) k; = i because it is a subsequence of natural numbers.

e (x6) Theorem 4.6.

(Theorem 4.12)

STEP 1. Let g,(x) o |f(2)|X{well f@)>n} () gn(x) is a decreasing sequence of
integrable functions. limy, o gn(%) = 00 - X{ze||f(2)|=00} (¥). However, f(xz) € L(E), so
|f(z)] < oo a.e x € E by Theorem 4.3. (i.e m({z € E | |f(z)] = oo}) = 0.) Therefore
lim, o gn(z) =0 a.e z € E. By Example 2 in §4 1, we have lim,,_,o [, gn(z)dz = 0. For
any € > 0, we have sufficiently large ng s.t f 5 Ino (T )dx <5

STEP 2. Let A C E, A € . be an arbitrary measurable subset of E with m(A) <
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IA
T

|/ (x)]dx

15
—

(@)l + / f(@)ldx

{zeA|lf(z)|=no}

|f(x)|dz + / nodx

{zeA|lf(z)|=no}

{zeAllf(z)[>no}

A
—

{z€E||f(z)|>n0}

|f(2)] * X{a€E||f(z)|>no} AT + nom({x € A | |f(x)] = no})dx

&

S —

Gno(x)dx +nom({x € A[|f(z)] < no})dx

IAE

Gno(x)dx + ngm(A) < % + %

e (x1) divide A into two disjoint measurable sets.

e (x2) ACFandze{x e A|l|f(x) Eno}t=|f(z)] < no.

(x1)
(+2)
e (x3) apply properties of integral in §4.1 ; integral of a simple function
(x4) {z € A[|f(z)] = no} C A.

(Example 8)

STEP 1. Let £, @ En (—o0,t) € M. Let g(t) o [z, f(x)dx. Since f(x) € L(E),

g(t) is well-defined and finite. We show that g(¢) is a continuous function.

gt + A — g(t) = /E g(z)dz — /E g(z)dz

= / g(x)dx
Ei i nt\Et

= / g(z)dz
EN[t,t+At)

Since m(E N [t,t + At)) < m([t,t + At)) = At, by Theorem 4.12, if At \ 0, g(t + At) —
g(t) — 0 for all £ € R. So we conclude that g(t) is continuous.

STEP 2. Next, we show that limy. g(t) = [, f(z) = A. lim;_,_ g(t) = 0.

Since g(t) = [5, f(x)dx = [, f(x) - xg (2)dz, and f(x) - xg, is monotone increasing
with respect to ¢, limy_o g(t) = limy_o [, f(2) - X5 (x)dz = [, f(x)dz = A by monotone
convergence theorem. And lim; , . g(t) = lim;_,_ fE f(z) - xp(x)de = fE 0 dz =0 by
Example 2 in §4.1. (Note that E; \, () as t — —oo. Let us pick an arbitrary point xy € R.
If ¢ is sufficiently small, xy ¢ (—oc,t). This implies that (—oo,t) \ 0 as t — —oo, hence
E; \( 0 because E; C (—o0,1).)
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STEP 3. By intermediate value theorem, we can find ¢y s.t g(ty) = é. So e =
Ei,, = EN(—o0,ty) is the desired subset of E.

(Theorem 4.13)

STEP 1. (non-negative measurable simple function) Let f(z) o P aixe ()
where E; € A ,a; 2 0. Then [, f(z)de = 3" aym(E;). And f(z+yo)de = Y0 aixs, (x+
Yo) = D by QiXE—y(x). Let us recall that we proved that Va € R? and E € .#; E C R,
E. . € # and m(E,,) = m(F) in Theorem 2.5. Therefore f(x+yp) is also a non-negative
measurable simple function and fRd fle+yo)de =" am(E;_,,) =37 a;m(E;). So
Jga f(@)dz = [o0 fz + yo)da.

STEP 2. (non-negative measurable function) Let f(z) be a non-negative mea-
surable function. We can find a sequence of non-negative measurable simple functions

{fu(2)} st folx) 2 f(x) for all x € R? by Theorem 3.9. So lim, o fn(z + 30) =
f(z —|— Yo). By Theorem 4.4 (monotone convergence theorem) and the previous result,

fRd T+ yO dl’ - hmn—>oo fRd fn T+ yo)dl' - hmn—)oo fRd fn dl’ = fRd f(l’)
STEP 3. (measurable functlon) By the prev1ous result, fRd fH(x)de = f]Rd e+

yo)dx and fRd r)dr = [0 [~ (x+yo)dx. [o. f(x)dx exists. At least one of [, fT(x)dz,
f]Rd x)dx is ﬁmte So we are allowed to subtract one from another. fRd fH(z)dx —
o f dx = [oa [T (x4yo)dr— [,a [~ (x+yo)dz. And this implies the desired conclusion.

R R R
O

(Example 9) It is enough for us to show that
lim f(zx+n)=0aex€]|0,1).
n—oo

STEP 1. Let us consider f[o 0 > o |f(@ 4+ n)|dz. By Theorem 4.6, we have

/ Z]fx+n|dx—2/ f(z +n)|dx.
0,1)

[0,1) ,,—1

By Theorem 4.13, we have

+ n)|da = /
;/[071)] x +n)|dx Z

[n,n+1)

By Theorem 4.11, we have

Z/{ . If(x)ldscz/[0 )|f(x)|dm<oo.

STEP 2. From the argument above, we find out that > >° | f(z +n)]| is integrable
on [0,1). So we have

Z|f(l“+n)| <ooaez€l0,1).

n=0
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For a fixed z € [0,1), if > 7 /| f(z + n)| converges, lim,_ | f(z + n)| = 0 according to
knowledge of basic calculus. So lim,, . |f(z +n)] =0 a.e z € [0,1).

]

(Example 10) Let us recall that E' € #;E C R;a € R\ {0} then m*(aFE) =
lalm*(FE) and aF € 4 . (See Theorem 2.5)

STEP 1. (non-negative Ineasurable snnple function I) Let f(z) o exe(z). Then

g(x) = f(az) = explax) = exo-1p(z). [; f(@)dz = cm( Eﬂ] ). [, 9(x)dz = [, cxa 1E( Ydr =
ma@ENJ) = em(a (ENI)) = HC'm(EﬂI) = f f(x)dz. So [; f( =
lal [; g(z)dz

STEP 2. (non-negative measurable simple function 1I) When f ( ) =>0  cixe(x),
by repeating the similar argument, we have [, f(z)dz = |a| [, g(x

STEP 3. (non-negative measurable function) Let f(x) be a non-negative measur-
able function. Let g(z) = f(ax) We can find a sequence of non-negative measurable simple
functions { f,,(x)}nz1 st fu(z) 2 f(z). Let g,(z) = fn(ax) Then g,(z) 7 f(ax) = g(x).
By the previous result, we have f fol@)dz = |a| [ ;9n(7). By monotone convergence
theorem lim,, o [; fu(@)dz = [, f(x)dx and lim,, o |a] fJ gn (x)dx = |al fJg x)dx

STEP 4. (general measurable function) f(z) = f*(z) — f~(z). Let g(z) = f(ax).

Then g™ (x) = max{0,g(x )} = max{0, f(ax)} = f+(ax) Similarly ¢~ (z) = f~(ax).
Since [, ft(z)dz =a| [,¢*(z) and [, f~(x)dz = |a| [, g~ (x)dx and one of them is finite,
so by subtractlng one from another we have the desired conclus1on.

[

(Exercise 7) Let n be a natural number. Since the both sides are finite, so we
can subtract one from another. So we have f[a 2] (f(t)—g(t))dt =0 forall z € [a,a+n| C R.
By Example 6, f(z) — g(z) =0 a.e v € [a,a+ n]. So m{{z € [a,a+n] | f(x) — g(x) #
0}) = 0. Since this holds for all n € N, m (.~ {z € [a,a +n) | f(x) —g(z) #0}) =0
And we have m({z € [a,00) | f(z) — g(x) # 0}) = 0. This implies that f(z) = g(z) a.e
T € [a,00). O
(Exercise 8) ¢(x) o X{zcRr|f()20}- Since 0 = ¢(z) = 1, ¢(x) is bounded.
Jo f(@)8(2) = [(1cn|p(ayz0) [ (@)dx = 0. By properties of integral in §4.1, we have f(z) = 0
aere{reR]| f(x )>O} (iem({z eR| f(z) >0}) =0)
Similarly, let ¢(x) o —X{zer|f(z)<0}- We have f(z) =0aecxz € {z e R| f(z) = 0}
(ie m({z € R | f(z) < 0}) = 0)
By merging these two results, we have m({z € R | f(z) # 0}) = 0. This implies that
f(z) =0a.exeR. O

(Theorem 4.14 L.D.C.T) We apply Fatou’s lemma (Theorem 4.8) to {2¢g(x) —
|fi(x) — f(z)|} k21, where 2¢g(z) — | fi(z) — f(z)] 2 0 for all k 2 1 a.e x € E. Let us recall
that we suppose that fy(z) = 0 in the assumption of Fatou’s lemma. However, even if
fr(z) 20 for all k 2 1 a.e o € E, the conclusion of Fatou’s lemma still holds.
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Let N & Ui {z € E| fi(x) < 0} then m(N) = 0. Since if z € E\ N then fi(z) 20

for all £ = 1, we have

/ lim inf fi(z)dz < lim inf fr(z)dx
B

The left hand side is equal to [ pliminf, o fr(2)dr and the right hand side is equal to
liminfy oo [5 fu(2)dz because N is a measure zero set. ([, = fE\N + [y = Jg)

STEP 1. First, we prove that sup,>, |fi(z)| = g(z) ae z € E. [fi(z)] = g(2) a.e

x € E for each k € N. Let N}, & {z € E||fi(x)] > g(z)}. Let us recall that

U Np={rcF| Suplfk( )| > g(x)}.

k=1
Then m(J,—; Nik) = 0. So sup;>; | fr(®)] < g(x) a.e x € E.
STEP 2. Next, we prove that sup,>; |fr(z) — f(2)| = 2g9(x) a.e v € E. Since
o if limy o fi(z) exists, then limy o0 | fo(2)] = supgz | fe(2)],
o limy o |fu(2)] = |f(z)] ae x € E,

we conclude that
|f(z)] £ g(z) ae z € E.
By triangular inequality and the previous two results, we have

sup [ fi(z) — f(z)] = sup|fi(2)] + |f(2)]
k21 E>1

< g(x)+g(x) =2¢(z) aez € E.

Equivalently,
2(x) — sup | fe(x) — f(2)| 2 02z € E.

k=1

STEP 3. Note that
29(x) — | fu(x) — f(2)] 2 29(x) — sup | fu(x) — f(2)],

k=1

which explains that 2g(z) — |fi(z) — f(z)| 2 0 for all k 2 1 a.e x € E. By Fatou’s lemma,
we have

[ timintg(e) ~ i) — f(@)de < limint [ 29(0) = fulo) = fa))da

k—o0

The left hand side is
[ timint(29(0) ~ o) - fa)do = [ 29(o)de
E E

imint ( [ 20(0)de ~ [ 1) - f<x>|d:v)

/ g(x dx—hmsup/ | fr(z x)|dx
E k—o0
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The right hand side is

limint | (2g(a) = |fu(o) - f(z))da
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e (x1) 0= [,2¢9(x) < oo. By Theorem 4.10 we can assure that linearity holds.
e (x2) recall that liminf, ,, —a, = —limsup,,_, . a,

Finally we have

/2g(x)dx§/2g( x—hmsup/ | fr(x x)|dx.
E E n—00

Since [,,2g(x) < oo, we may subtract it from the both sides. And we have

limsup/ | fi( z)|dx = 0.
n—oo
By triangular inequality, this also implies that
lim sup /(fk(x) ~ f(z))dz| < lim Sup/ fu(z) — f(2)|dz = 0.
n—00 E n—00

Since fi(x) is integrable, (again by Theorem 4.10),

[ t@e [ swyis

This implies the desired conclusion.

lim sup
n—oo

Note.
e fi(x) 20 a.ex € E holds for each k 2= 1.
o fr(x)20forallk =21aexeFE.

these two statements have the different meaning, but they are equivalent. (You can prove
this like Step 1.) O

(Theorem 4.15) The Lebesgue Dominated Convergence Theorem holds even
if the condition f(z) =% f(x) changes to fi(x) = f(z). Let us recall that

a, = a€R

if and only if
V{nktiz1 C N, H{ng} st ay, = a,

where {ny,} is a further subsequence of {n}.

Let us consider a sequence a, = S| fa(z) = f(x)|dz. Let ny be an arbitrary subse-
quence of natural numbers. We show that there exists a sub-subsequence ny, s.t

lim / [ fo (2) — F(@)|dz = 0.

£—00

This implies that lim, o [5, |fn(2) — f(2)]|dz = 0.
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STEP 1. Since f,(v) = f(x), Vn, (subsequence) there exists ny, (subsubsequence)

a.e

8.t fuy, (2) =% f(x) (Theorem 3.17). =% always implies ~. So there exists for, () =
f(@).

STEP 2. Obviously, suppy | fn,, (%)| = sup,zy [fu(2)| < g(z) € L(E) a.e z € E, so
by Theorem 4.14, we have limg o [;; | fny, (2)— f(x)|dz = 0. So we have limy, o0 [5; | fn(2)—
f(z)|dz = 0.

STEP 3. By triangular inequality, lim, o | [, (fo(z)—f(z ))dx| = 0. Since [, fu(z
is finite, linearlity holds in integral. So lim,, . | f 5 fo(z)dx— f 5 x)dz| = 0. This 1mphes
the desired conclusion.

(Example 12) All we have to do is prove that

f[o 1] 11??; dx _ lim (nx) sin xdx

lim
n—00 [0,1] 1—|— (na:)"‘

n—o0

z = 0.

n

STEP 1. Let f,(x) & (ng)sine - pp ey |fu(2)] & =7%<5. We hope to find an

14+(nx)™ 1+(nx)>
integrable bound function. Let g, (z) o Trmay gn(z) = % When (nz)* =
L (lex =z, = %(ﬁ)é), gh(x) = 0. (There exists N, € Ns.t V¥n > N, z,, € (0,1).

= 1)7

)
T which is not related to n. So | f,(z)| <

M, € L([0,1]), ¥n > N,. (We may ignore n =1,2--- N, because we take lim,, . )

Then g, (z) takes the maximum value M, =

STEP 2. By Lebesgue Dominated Convergence Theorem, we have

lim fo(z)dx = / lim f,(z)dr = / 0 dx = 0.
[0,1] [0,1] [0,1]

n—oo n—o0
)

(Example 13) Our goal is to prove that

x exp(—n2z?)
Jooo) i —da

lim IR —0.
n—00 s
So we prove that
2 2.2
lim L e
n—00 [ct,00) 1 +x
By Example 10, we have (t = nx)
texp(—t?
— lim e J
n—oo [na,oo) n +t2
And )
t —t
= lim eXp( )X[nam)(t)dt.

n—oo [0700) ’I’L2 —f- t2
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Since
t exp(—t?)

n? + t2

t exp(—t?)
14 t2
texp(—t2)

we can apply Lebesgue Dominated Convergence Theorem. lim,, ., o7 X[na,oo) (t) = 0.
So the proof is complete. (Notice) exp(—t?) < 3> 27" Xpntn)(t) € L([0, 00)). O

X[na,OO)(t) = = exp(—tQ) € L([0, 00)),

(Exercise 1)  We show that

/ " F()6(t)dt = p(x) — dla),Va € [a,1]

By assumption, we have [ f(¢)¢,(t)dt = ¢n(x) — ¢n(a). By taking limit, we have
My o [ f(£)dn(t)dt = limy, 0 (¢n(2) — ¢n(a)). By Lebesgue Dominated Convergence

Theorem,
Jim / F(1)6a (1)t = / £t

because |f(t)pn(t)| < F(t) € L([a,z]). (F(t) € L(]a,b]) implies that F(t) € L([a,z]) for
all € [a,b]) The right hand side is ¢(x) — ¢(a). So the proof is complete. O

(Exercise 2) We use Lebesgue Dominated Convergence Theorem. (converge
in measure version) Suppose that cos(nx) 0. cos(nr) = 0 on [—m,7) if and only
if cos?(nz) = 0 on [, 7). |cos®(nx)] £ 1 € L([-=,7)). By Lebesgue Dominated
Convergence Theorem (converge in measure Versmn) we have lim,,_, o f[ ) cos Y(nz)dx =

f[_w ) 0 dx = 0. However this conclusion is false because

2 1
/ cos?(nx)dr = / %dw =m #0.
[771-’77)

[771-771-)

[]

(Exercise 3)  Since [g(z)] = [ o) Ht'dt = o000 W gy < 00, g(z+h)—g(z) is
well-defined. (i.e not oo —co. both g(x—l—h) g(x) are finite. ) We show that limy, 0 |g(z +
h) —g(x)| =0 for all z € (0,00). Let {h,},>1 be a sequence of real numbers with h, — 0
as n — 00. And we show that lim,_, |g(x + h,) — g(z)| = 0.

Since |h,| — 0, we may assume that |h,| = ¢ with out loss of generality. Then

S+t x4+t + hy Notethat0<§<(%+t)(m+t)é(x+t—|—hn)(x+t). So we have

o - | £ (2] z 2 Cf@)]
Grtrn)wrn =2 g W=7 € L(0.00).
Finally,
i a4y —haf(t)
Aol =gl = ‘/(o,oo) (x+t+ho)(z + 1)
2 lim |hn| ) ’f(t”

/ 0dt=0.
(0,00)
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e (x1) Integral has linearity [ fidz+ [ foadz = [(f1+ f2)dz when at least one of them
is integrable.

e (x2) triangular inequality

e (x3) L.D.C.T.

O

(Exercise 4) We can answer this question without employing Lebesgue’s Domi-
nated Convergence Theorem. However, we present a solution with L.D.C.T. [, g, |f(2)|dz =

S 1 @)X, (2)da. Since | f(x)x,| < |f(2)] € L(E), by LD.C.T

i [ (@l = [ Jin (@) s = [ ode

E
e (x) Fix x € E. For all |f(z)| > 0, if k is sufficiently large |f(z)| =
XE, (z) = 0.

Then

I =

]

(Exercise 5) Let us recall that a sequence {a, },>; converges to a, (i.e. a, — a)
if and only if Vn; (subsequene) there exists ny,, (subsubsequence) s.t a,, —— a. Let ny
be an arbitrary subsequence of natural numbers. We show that there exists ny,, s.t

S 1 s ()9, (x) = f(2)g(2)].
STEPl

1
o e s 2 [ e - el

/ 1 dx
{z€E||fn(x)—f(z)|>€}
= m({z € E||fu(z) — f(z)] > €})

By taking n — oo, we have f, () - f(x) on E. So for all subsequence n;, there exists
N, 8.6 fop, (2) == f(z). = implies that =>. So there exists f,, (z) = f(z) on E.

STEP 2.
[E o (@), (2) — f(2)g()|dz

[ Vo @00, (@) = o, (@)9(2) + Fo, (2)9(0)  F)gle)lda
J ot @0 0 = o (o)
[ Vo @)9(0) = F@)gla)lde
[ @), (@) = g(@)lda + / o (@) = F@)] - lg(e) o
Mg @) = 9@+ [ 1o, @) = @) lo(o)lds
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o (%) Supy>1 | foy,, (2)] = sup,zy [ful2)] = M.

In the last part of the inequality above, |f,, (x)— f(z)|- |g(z)] = 2M - |g(x)| €
L(E), we can apply Lebesgue Dominated Convergence Theorem. (limy,— |fn, (7)) =
SUp,,>1 | fny,, (2)]). By taking m 7 oo, we have the desired conclusion.

[
(Exercise 6) We show that
hm / | fr( x)|dx = 0.
Note that
[ 1@ -~ @iz < [ swplfuta) - f(a)lds
FE aclE
= m(E)-sup|fi(a) = f(a)l. (m(E) < o0).
ac
Since fi(z) = f(),
Jim sup | fy(«) = f(x)] = 0.
—00 pcF
Now the proof is complete. O]

(Corollary 4.16) By Theorem 4.6,
Z/ | fo(2)|dz = / > | ful@)]dz < oo
k=1"F B =1

This implies that > -, [fe(z)] < oo ae @ € E. Let S,(z) o > opy fr(z) and
lim,, oo Sp(x) exists a.e z € E. (- absolute convergence) Let

S(x) def lim,, o Sp(x) if the limit exists .
0 otherwise

S(z) is a measurable function and lim, . Sn(7) = S(x) a.e x € E. sup,>; [Su(z)] =
S ro i Ifk(x)] € L(E). By Lebesgue Dominated Convergence Theorem,

lim Sn(x)d:c—/S(x)d:c

n—00 E

The left hand side is

fm [, Sal dw:&:%Z/fk

E
So now we have the desired conclusion. O

(Theorem 4.17)
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STEP 1. Let {h,},>1 C R be a sequence with h, — 0. By the definition of
differentiation,

0 .1
5o [ rtwaide =t o ([ st tio = [ o).

Since f(x,y) is integrable with respect to x for all y € (a, b),

E ( [ty s~ [ f(x,y>das>,

is well-defined. (0o — 0o does not happen.) Since integral has linearity,

(/fxy+h d:r—/fasyd:v) /f””’ —f@Y),,

STEP 2. Since f(z,y) is differentiable with respect to y € (a,b), there exists
€ (y,y + hn) or cn € (y + I, y)

f z,y+ hn — f T,y 0
hn 8y Yy=ctn
by mean-value theorem. By assumption, %Z’y) < F(z) € L(E), so we have
h,) — f(z, 0
p| Lyt ) = @) _ 010y )l | < F(a), vne N,
n>1 hn n=>1 81/ Y=cn,

F(z) is not related to n. By Lebesgue Dominated Convergence Theorem,

lim
oo h,

n—oo

Now we have the desired conclusion.
O]

(Example 14) O
(Exercise 7) Suppose that [ f(z)cosazdr = 1, and let us try to derive a

contradiction. Note that
/ f(z)dz — / f(z)cosxdx =0,
E E

/ F(2)(1 = cosz)dz = 0,

because | [, f(z)dz| < oo and thus linearity holds in integral. (Theorem 4.10)

Since f(z) Z 0,1—cosz 20, f(x)(1—cosz) = 0. By properties about integral of non-
negative measurable functions, fE f(z)(1 — cosx)dx = 0 implies that f(z)(1 —cosx) =0
a.e v € E. Therefore f(xr) =0aex € For1l—cosz =0 a.ex € E holds.

hence
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case 1. (f(z) = 0aex € E) Suppose f(x) =0 aex € E then [, f(x)dz = 0.
(contradiction!!)

case 2. (1 —cosx =0 a.ex € E) Suppose that 1 —cosz =0 a.e x € E. However
{fr e E|1—cosx =0} C,p{2nm} and m(U, ,{2n7}) = 0. So 1 —cosz = 0 a.e
x € E can not occur except m(E) = 0. However if m(E) = 0, then [, f(z)dz =0 # 1.

The both cases above contradict to the assumption. So we conclude that

/ f(z)cosxdx # 1.

[
(Exercise 8) First, > 07 [0 [fu(z) — f(2)|dz £ 307 5 = %2 < 00. By

Theorem 4.6, [, > |fu(x) — f(x)|dz < co. By properties of integral, this implies that
Yoo falx) = f(z)] < 00 ae z € R. So limy, o0 | fn(z) — f(2)] = 0 a.e € R. (See books
of basic calculus.) O

(Exercise 9) Let us consider

*1
[ S o —z/ o
2 2,00)

[2,00) =2

e (x1) Theorem 4.6
e (x2) linearity of integral
e (*3,4) by assumption
By Corollary 4.16, we have
a,n” tdr = / a,n “dz
> >/

and the right hand side is >~

n=2 n? 1ogn

]
(Exercise 10) Let {h,}n>1 be a sequence with h, — 0. F(y+ hy,) — F(y) =
I f( :L‘ Y+ hy) fE z,y)dr. Since |f(z,y)| < g(z) € L(E) for all y € R? both

Jo [z, y + hy, dx [ [(z,y)dx are finite, hence well-defined. (not co — oo) By linearity,
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2¢g(z) € L(E). By Lebesgue Dominated Convergence Theorem,

lim (f(x,y%—hn)—f(x,y))dx:/E lim(f(x,y—l—hn)—f(x,y))dx;/EO dx = 0.

n—o0 E n—oo

e (x) holds because f(z,y) is continuous with respect to y € R<.

§ 4.3

(Theorem 4.18)

STEP 1. We have already shown that there exists a sequence of Lebesgue measur-
able simple functions defined on E {f,,(x)},>1 with a compact support s.t |f,(z)] < |f(z)|

and fy(z) = f(x) as n — oo. Since |fo(x) = f(z)| = |fu(z)| + |f(2)] = 2|/ (z)] € L(E),

by applying Lebesgue Dominated Convergence Theorem, we have

tin [ 1f0) = flde = [ lm |fu(o) = f@)lde = [ 0ds.

This implies that for an arbitrary positive number € > 0, there exists sufficiently large n,
€ 3 def
s.t fE |fn0(‘r) - f(l‘)|dl’ < 2 Let f(CL’) = fno(x)'

STEP 2. Since f(z) is a measurable simple function, we suppose that f(z) =
S aixg, (x) where {a;}'_, CR, E; € M, E =\J'_, E;. Let M % max{|a;[}’_,. Then
|[f(x)| = M < oo,

f(z) has a compact support, so we may suppose that if a; # 0, E; C B : a bounded
ball on RY. We may regard f(z) as a measurable function defined on B because f(x) =

Zf:l,aﬁéo a;x g, () + 0 XB\UZ 1 4,20 B (Z‘)

Now we apply Corollary 3.19 to f(z) as a measurable function defined on B. We have
g(z) € CRY) 5.t m({z € B| f(z) # 9(®)}) < 8 = 1%. Since |f(x)| < M, |g(z)] < M on
R?. Moreover, g(z) has a compact support. (if x §é B g(x) = 0) (See Corollary 3.19.)

F@) —g@lde = [ 1f@) —g@lde+ [ 1F() - g(a)lda
/. L. L
| 1) = gl

I1&

< / (@) — 9(2)lda

— [ i@ - gl
{z€B|f#g}

<

/ ~ OMdxr =2M -m({zx € B| f#g}) <
{zeB|f#g}

N
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o (x1) x ¢ B, f(x),g(:z;) =0.
e (x2) ENBCB

o (+3) |f(x) = g(@)| < |f ()| + |g(x)| < 2M

STEP 3.
[ 1#@) = a@ldz < [ 1) = Fldo + [ 1) = glallde < 5+ 5.
[
(Corollary 4.19, 4.20)  We may find {gx(z)} C C(R?) s.t [, |f(z) — ge(z)|dx <
- Then 350° ) [ 1f (@) — gu(@)ldz = [ 3532, |f(z) — gu(z )| <00 3| ( ) k()] €
L(E) hence > 7, | f(z) — gp(z)] < o0 a.e x € E. So hm;HOO |f(x) —gp(x)| =0aex E E.
We present an alternative solution. We may find {gx(z)} C C’ (RY) st [, |f(x

gi(z)|dz < +. Then gr(z) = f(z) on E because

m({x € E|[f(x) = ge(2)] > €}) =

/ € dx
{zeB||f(z)—gr(z)|>e}

< / (@) — gul)|da
{z€E||f(x)—gk(x)|>€}
< / f(x 2)|dz — 0

Since gi(7) <> f(x), for every subsequence k, (we may let k, = £ here), we can find a sub-
subsequence ky,, s.t gr, (z) = f(z) on E. (hence =% f(z) on E). So the subsubsequence
is the desired sequence. O

(Example 1) Suppose that f(z) = 0 a.e x € R? is not true. In other words,
suppose that m({z € R | f(z) > 0}) > 0 or m({z € R?Y| f(z) < 0}) > 0. Without loss

of generality, we may suppose that m({z € R? | f(z) > 0}) > 0.

Let £ % {z € R?| f(z) > 0}. We can find a bounded measurable subset of £, E with

m(E) > 0. Let B}y = ' En B(0,k). Then E, 2 E and m(E),) ,~ m(E) > 0. Therefore we

can find ko € N s.t m(Ej,) > 0. Let E % B, .

We apply Corollary 4.19, 4.20 to xg(z). (xg(z) € L(R?).) We can find a sequence
of continuous functions {gr(z)}r>1 € C(R?) with a bounded support s.t [o. |[xe(z) —

fe(z)|dz — 0 and gi(z) =5 xp(z) on RY Let us pay attention to the fact that |gx(z)| = 1
because |yg(z)| < 1. (In Theorem 4.18 or Corollary 3.19, |f(z)| = M = |g(x)| < M)

Since |f(z)gr(z)| £ |f(x)| € L(R?), by Lebesgue Dominated Convergence theorem,
we have

i [ f(@)gu(x)de = / lim f(z)gi(z)dz

k—oo Rd d k—o00

= [ J@ss

= /Ef(x)dm >0
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e (%) f(z) >0 on E and m(E) > 0 then [, f(x)dz > 0.

However, [o. f(x)gr(z)dz = 0 by assumption. (contradiction!!) So m({z € R? |
f(z) > 0}) = 0. Similarly m({z € R? | f(z) < 0}) = 0. Now the proof is complete. ~ [J

(Theorem 4.21) Let € > 0 be an arbitrary positive number.

STEP 1. By Theorem 4.18, we can find a continuous function g € C(R?) with a
bounded support s.t
€

[ 1@ = g(@)dr < §

Let h(z) © f(x) — g(x). Then [, |h(z)|dz < §.

STEP 2. Suppose that supp(g) C K o B(0,M),(0 < M < o). Since we take

ro — 0, we may consider that |zo] =< 1. Therefore, K def B(0, M + 1) contains the

support of g(z + z) — g(z). And we have

/Rd l9(7 + x0) — g(x)|dr = /K lg(z + z0) — g(z)|dz.

Let Ko & B(0, M+2). g(z) is continuous on R?, so is on K, which is a bounded closed

set. Let us recall that a continuous function defined on a bounded closed (compact) set
is uniformly continuous. Therefore 36 > 0, Vz,y € K, with |z —y| < 0, |g(x) — g(y)| <

€ €

sy I |zo| < 0, we have Vo € K, |g(x + zo) — g(x)| < Tk S0 we have

2m(Ky (K
ot +a0) ~g@@)lde = [ g+ ) - glo)lds
Rd K1
€ €
dr = -
/f;l Qm(K1> 2
STEP 3.
/‘uw+x@—fumm < /|¢x+ao—mwux+/'mm+x@—h@wm
Rd Rd R4
*1
< < —i—/ |h(x + zo)|dz +/ |h(x)|dx
2 Rd Rd
*2 €
< —+2 [ |h(x)|dx
2 Rd
B e, €
2 2

e (x1) Step2 and triangular inequality

e (x2) Theorem 4.13 states that translation does not change the value of integral on
R,

e (x3) Stepl
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O
(Example 3)
STEP 1. m(F) = fRd xe(x)dr = fRd(XE(x))Qd:L‘.
STEP 2. m(ENE.,) = [paXene,, (@)de = [puxe(®) - Xa,, (z)d.
STEP 3.
m(E) = mENEW] = |[ (e@)de = [ xple) xe, @
R R
*1
[ xel) (o) - e, @) do
R
*2
< [ helo) = xe o) do
*3
< / () — Xl — )| de
*4
%
e (x1) triangular inequality
o (x2) xp(r) =1
e (x3)x € Fypifandonlyifx —h e FE
e (x4) Theorem 4.21.
O

(Corollary 4.22) It is enough for us to prove that for all € > 0, there exists a
step function with a compact support (a bounded support) s.t

/|f x)|dr < e.

STEP 1. We have already proven that there exists a continuous function g € C(R?)
with a compact support s.t
)|dx <<
[ 1#@) = gtaidr < 5.

So we prove that there exists a step function ¢(z) with a compact support s.t

)|d
/|g |5f7<2

then the proof is complete.
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STEP 2. Suppose that supp(g) C [[~,(—N, N] where N € N. Let I = [[*_,(—N, N].

(This is a half open rectangle in R?). We define I, , et H (5—;, k’zﬁl} where n € N, k €
Z%. Let

gu(x) < > inf {g(a)} - X1, ().

ke{—N-2n —N.2n41 ... N.2n—1}d

This definition seems a bit complicated but we just divide I into small rectangles {I,, x }«
and take infimum of g(z) in each rectangle. When n goes to infinity, the division of 1
becomes finer. Since g(x) is continuous, g,(z) ' g(x) as n — 00. g(z) £ gpr1(x) holds
because for all zg € I, we can find k' s.t g € L4100 C I, and inf A 2 inf Bif A C B.

We apply monotone convergence theorem to g,(z) and we have lim, . [, gn(z)dz =
[z9 z9(@)dz. (g,(z) is not necessarily non-negative, but we can consider the sequence of

{gn( ) —q1(2)}. g1(x) € L(E). See Example 3 in §4.1.)
O</|gn —g(z)|dz = /E(g(x)—gn(x))dx

[E (gla) = gula))da
/I (9(2) — ga(w))dz

Il

A

for sufficiently large no € N. Let ¢(x) o Gno ().

o ()& ¢, g(x) gn(z) =0

STEP 3. Now the proof is almost complete. [, |f(z) — ¢(x)ldz < [, |f(x
g(x)|dz+ [ |g(x)—¢(z)|dr < §+5 = e. We can find a sequence of step functions {qbn( )}
with a compact support s.t [, | f(@)—dn(2)| < Z. Sowehave Y7 | [ | f(2)— ¢, (a)|dz =
S 2oni |f(x) = dn(z)|d < co. This implies that Y ", |f(z) — ¢p(z)|dz < co aex € E
hence ¢n(:v) 2% f(z) a.e x € E. (This technique is the same as that of Corollary 4.19,
4.20)

[]

(Example 4) Let ¢(x) be a step function s.t f[a . |f(2) = ¢(x)|dr < 55;. We do

not know if supp(¢) C [a,b]. However ¢(z) - x[q,4 is also a step function and 1ts support
is a subset of [a,b]. Therefore we may suppose that supp(¢) C [a, b].
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STEP 1.
\W P)gale)de| = ] /[ . £) + 6(2))ga(x)dr
< ] /[ (F(e) = 0 )i \w 2)gul)d
< /[ NECEEIE \dx+\ [ o)
< M- [ 1f@) - bla \dx+\ () )
[a,b] [ab]
< —+‘ . &(x)gn(v)dx

o (x1) |({(x) — o(x))gn(z)| < M|f(z) — ¢(x)] € L([a,b]) so we may separate into two
integrals.

STEP 2. Let ¢(z) o > @iX[wi 1 (x) Where a = 29 < 1 < --- <z, = b. By
assumption, it is easy to find out that f[x_il o) gn(z) = 0 as n — oo.

B(w)gal)ds = /[ bzazx[mzz - gn(@)da

= Z/{ . aiX[Iifl,xi)(l’) gn(fl?)dflf

= > a / Gu(z)dz:

i=1 [xi—1,24)

For each i =1,2--- | p, when n is sufficiently large | f[x;1 o) gn(z)dz| < 2p| . So we have

p
s@ga(is) < Slal|[  gula)ds
[a,b] i—1 [@i—1,2i)
< c_°
— 2p 2
Now the proof is complete.
O
(Example 5) Let B € .# be an arbitrary Lebesgue measurable set with

m(B) < oo.
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STEP 1. Let f,(z) o xa(x) - sin(A\,z) and let f(z) L im,, o fn(z). (Let us pay
attention to the fact that this limit converges for all x € R.) Since | f,(z)| < xa(z) € L(B),
by Lebesgue Dominated Convergence Theorem (or Bounded Convergence Theorem), we
have

lim fn d:c—/f

n—oo

STEP 2. We prove that

lim fn( )dz = 0.

n—oo

We apply Corollary 4.22 to xanp(z) € L(R). Ve > 0, we can find a step function
de(x) = Z?:l CiX(aiﬂ,az‘](x) s.t

/R|XAm3(x) — ¢(x)| dx < %

/B fn(x)dx

= /BXA(:C) -sin(A,z)dz

= /RXAQB(x) -sin(A,z)dz

/R (tans (@) — 6() + 6e(2)) - sin(Au)da

*
fraiy

= | [ (vannte) =) - sin(pa)da] + ) - sin(A,)de
< [ Inale) = 62 sin()| do -+ | [ o) -sin(hua)da
< [ ansle) =) da+ | [ 0u(o) -sin(ha)da

< §+ /gzﬁ -sin(\,x)dx

= g + /R; CiX(ai_1,a,](T) - sin(Apx)dx
. p

T2 + ZC" ' /Rx(aihai](x) -sin(Apz)de
€ l:pl @

= 3 + Zci . / sin(\,x)dx

€ —(cos Apa; — cos \,a;_
- s -
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e (x1) triangular inequality.

(+1)

<2) [ [ f] = [1/]
(+3)

(

o (x3) [sin\,z| =1

o (¥4) A, — oo. By taking sufficiently large n, --- < 5.

So we conclude that lim, o | [ fu(#)dz| = 0. By Step 1, we have [, f(z)dz = 0
for all B € .# with m(B) < co. Let B, = {z € [-n,n] | f(x) > 0}. And we have
S5, () f(x)dz = 0. So m(B,) = 0. By considering U, By, we have m({z € R | f(z) >
0}) = 0. Similarly, m({z € R | f(z) < 0}) =0. So f(z) =0 a.e z € R.

STEP 3. By the previous result, we have

/(f(x))zdx =0, VBe ./

Let B € .# with m(B) < oo. Let us pay attention to the fact that lim, .. (f.(z))? =
(im0 fu(2))? = (f(2))*.

/B (f(x))*dx = /B lim (f,(z))%dz

n—oo

2 dim [ (folz))?da

n—0o0 B

= lim [ xa(x)-sin® \,zdx

n—oo B
11— 2\,
= lim [ yalz) — 2T,
ANB 1
= mANnB) _ lim = [ xa(z) - cos 2\, xdx
2 n—oo 2 |p
B 2

e (x5) Lebesgue Dominated Convergence Theorem

e (x6) We repeat the similar argument to prove that lim,, ., fB xa(x)-cos 2\, zdz = 0.
Let us consider [, (xans(z) — ¢e(z) + ¢e(2)) - cos 2N xda ...

So m(AN B) =0 for VB € .# with m(B) < co. Let us consider B,, = [—n,n] and we
have m(|,—, AN B,) = m(A) = 0.

]

(Example 6) Let F(x) o xf(x). f[o,u F(z)dx = 0. This means that F(z) €
L(]0,1]) so f[o,l} |F(x)|dr < co. (Let F(x)=0if x ¢ [0,1].)

STEP 1. By assumption, Ym € N U {0}, we have

/ " F(x)dx = 0.
(0,1]
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Therefore VP(x) : polynomial, we have

/[0 [P Pz =0

STEP 2. Let ¢(x) be an arbitrary continuous function on R. Then ¢(x) €
C(]0,1]). By Weierstrass’s Approximation Theorem, there exists a polynomial P.(z) s.t
SUD,e(0.1] |#(2) — Pe(z)| < € where € is an arbitrary positive number.

/R F2)(x)dx

A
=
o
—
)
S
S
|
o
&
=
8

174\ 17AN
s
—
SR
o B
SR
= A
= &

C(R). By §4.3 Example 1, we have F(x) = 0 a.e x € R hence F(z) = 0 a.e z € [0,1].

Since [,y |[F(z)|dz < oo, by taking e — 0, we have [; F(z)¢(z)dz = 0 for all ¢(z) €
[0,
1]

And let us recall that F'(x) = zf(x), and now we conclude that f(z) =0 a.e x € [0
[
(Example 7) O

§ 4.4

(Darbourx Theorem)
(1) We define

/ fla)de = g (S(2))
and

/ f@)dz 2 sup{S(2)),

where A is a partition of [a, b].
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(2) We show that V{A,} a sequence of partition of [a,b] with [A,] — 0 we have
S(A,) — fabf(x)dx and S(A,) — f;f(:v)dx But the proofs are similar so we only prove

S(A,) = [Mf(x)dx.

Let € > 0 be an arbitrary positive number. By the definition of f; f(z)dz we can find
a partition A* s.t

3(A*)</f(x)dx+§.

Suppose that A* = {zf ---x}}. (In otherwords, the partition devides [a,b] into K

intervals.) Let M o SUD,efap f(T), M oo infr, 5 f(x). (f(z) is bounded on = € [a,b].) Let

us consider A, U A*. (This is called refinement because the partition becomes finer by
adding new partition points ). We have

0= S(A,) —S(A,UAY S K- (M—m)-|A,l.

Seemingly this inequality seems difficult to prove but actually not. To simplify the situ-
ation, let us begin with a simpler case A, U {z*}.

We add only one new partition point {z*}. If #; = 2*, then S(A,) — S(A, U {z*}) =
0. If 2.1 < 2* < x;, then S(A,) — S(A, U {z*}) = SUDue(z; 104 J (@) (Ti — Tim1) —
SWPge(z; 1,0+ J(@)(T" — Zis1) — SUPuepe o f(a)(xi — %), At least sup,ep,, .. f(a) =
SUPue(z; 1.0+ J (@) OF SUDseps 1y f(@) = SUDGeppe ) f(a) holds. Without loss of gener-
ality, we may suppose the first case. Then S(A,) — S(A, U{z*}) = (SUPgefp; 1.0 fla) —
Ppeier oy F(@) (i — 77) < (M —m)| A,

From the argument above, we can easily find out that if we add K points, S(A,,)
S(A, UA*) £ K- (M —m)-|A,|]. By taking sufficiently large n, (M —m) - |A,| <
(Here K is already fixed before n — c0.)

Finally,

£
5

T b
?(An)—/f(x)das

I
ol

(An) — 5(A, UA%)) + (S(A, UA%) - 5(A%) + (E(A*) _ / ’ f(:c)d:c)

A

+ (S(AnU AT = 5(AY) + 3

I *

+
)
_l_

[NONINe N Nol e ¥
I
@)

[NORING

o (¥) S(A, UA*) — S(A*) £ 0 because A, U A* is a refinement of A*. So S(A*) is
greater.

The proof for lim,, . S(A,) — fff(a:)da: is similar.

(3) If fabf(x)dx = fabf(x)dm, we say that f(x) is Riemann integrable on [a, b].

267



4.4.

(Lemma 4.23)

STEP 1. Let {A,} be a sequence of partition points with [A,| — 0. Without loss
of generality, we may suppose that A, C A,,;1. By Darbourx theorem, S(A,) —S(A,) —

fabf@)CM - f_:f(x)dx.

STEP 2. Let A, = {a§”,--- &}, N < (U, A, and let

MM sup f@), MM f f(a).
IE(x(n) x(n)) me(mgﬁ)l,mgn))

=174

We define
def Mi(n) — mﬁ"’ x € (%@1, xgn))
wy(z) = .
0 reN,

By the assumption of A,, C A, 11, w,(x) is monotone decreasing if z ¢ N. So lim,, . wy, ()
exists. And we have

w(x) ' lim wn(7)
n—oo

= wi(@) ©lim  sup |f(a) — f@a")], 2 ¢ N

0—0 o’ 2" €B(x,6)

Let us fix z € [a,b] \ N. First, we prove w(z) 2 wy(z). It is enough to prove that

wa(z) = wp(z) foralln € N. We can find i s.t # € (2, ™). We can always take § > 0's.t

B(x,0) © (a1, 2,"). Therefore wn (z) = M{" —mi" 2 sup,s prepea) |F(2') = fa")] 2
we(x).

Next, we prove w(z) < wy(w). It is enough to prove that w(x) = sup,/ e pe s [ f(2) — f(2")]
for all § > 0. For all § > 0, we can find n € N and i s.t x € (xy,l,xg”)) C B(z,9), we

have w(z) < wy(w) = M = m" < SUp, puepis) |F(2) = Fa")]

7 7

Since m(N) = 0, we conclude that w,(z) = ws(z) a.e x € [a,].

STEP 3. Since w,(v) = sup,epy f(7) — infociay f(z) = M —m < oo (f(x) is
bounded.), by Lebesgue Dominated Convergence Theorem, we have

n—oo

lim wn(x)dx:/ we(z)dz.
[a,b] la,b]
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It is easy to verify that the left hand side is f_abf(w)dx — fabf(x)

/ wn(z)dr = / mgn))x( ) o0y (@)d
[a.] abh 1 o

- / (M =) o) o (@)
0,8

T 15T

=1
kn
= Yo" —m"ym((2"), )
=1
kn
= 2 =) - o)
=1
kn kn
= 2 M@ —al) = m @ - )
i=1 i=1

Now the proof is complete.

]

(Theorem 4.24)  f(x) is Riemann integrable on [a, b] < f_;f(x)da:—f;f(x)dx =
0& fab] r)dr =0 < wr(r) =0a.ex € [a,b] & f(r) = 0is continuous at a.e z € [a, b].

Therefore f ( ) is Riemann integrable if and only m(D) = 0 where D is a set of points of
discontinuity of f(x). O

(Theorem 4.25)

STEP 1. (f(z) is Lebesgue measurable) By the conclusion of Theorem 4.24, f(x)
is continuous almost everywhere = € [a,b]. Let D be the set of discontinuity of f(z). D
is a measure zero set. (D € .#) Then

{relab]| f(z) >t}
= {x€lab]| f(zx)>t}\DU{zx € [a,b] | f(x) >t} ND
= [a,b]\DNGU{z €la,b]| f(x) >t}ND

where G is an open set. (f(x) is continuous on [a,b] \ D. G € .#') Since D is a measure
zero set, {x € [a,b] | f(x) >t} N D C D so{x € [a,b] | f(x) >t} N D is also a measure
zero set hence measurable.

STEP 2. (f(x) is Lebesgue integrable) Since |f(z)| = M < oo, (*.* f(x) is bounded
on [a, b] by assumption), f(x) € L([a,b])
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STEP 3. ((L) f[a . f(x)dx = f f(x)dx) Let us pick a sequence of partitions
of the interval [a,b] {A,},>1 with |A | — 0. (We use the same notations as the previous
lemma and the theorems.) Since

kn kn
> Xy (o) £ 50 £ DM X0
by taking integral of them, we have
kn
Zm (") S @) [ fladde <3S M ml(alal))
a i=1

The left hand side and the right hand side are S(A,,) and S(A,) respectively, so we have

S(A,) = (L) b flz)dr = §<An)

Since f(z) is Riemann integrable, so S(A,), S(A,) — (R) fabf(a:)da: as n — 00. So we
have the desired result.

O

(Exercise 1) See Exercise 27 in §Exercise. xg(x),E C [0,1] is Riemann
integrable if and only if m(E\ E) = 0. If Fis a closed set, F = F. So m(F\ F) =
m(F \ F') < m(F)=0. Hence xp(z) is Riemann integrable. O

(Exercise 2)  Let Dy, Dy be sets of discontinuity of f(x) and g o f(x) respec-
tively. If f(x) is continuous at xy then g o f(x) is also continuous at zy. So if g o f(x)
is not continuous at xg, then f(z) is not continuous at xy. Therefore Dy C D;. Dj is a
measure zero set so is Dy. This implies that g o f(z) is also Riemann integrable. O

(Exercise 3)  Let Dy, Dy be sets of discontinuity of f(z), g(z) respectively. Then
Dy, Dy are measure zero set. Now let us pick an arbitrary point z¢ € [a,b] \ (D7 U Dy).
Since my € [a,b] = E, therefore there exists {z,},>1 C E st x, — zo. (You may
consider g € E or xyp € E'. In any case, we can find {x,} C E s.t x, — xo. Here we
allow {z,} to contain the same points.) Moreover since zo ¢ D; and z¢ ¢ Do, we have

f(zn) = f(xo) and g(z,) — g(xp). By assumption f(z,) = g(z,). So lim, . f(z,) =
lim,, 00 g(x,) = f(z0) = g(x0). We conclude that f(x) = g(x) for all x € [a, b]\ (D1 UDs)

hence f(z) = g(x) a.e x € [a,b]. Now we have the desired conclusion. O

(Theorem 4.26) As we have stated the proof is quite easy. Since |f(x)] -
xe. () = |f(2)] - XBy,, (x), by monotone convergence theorem, we have

lim / ()] - v (2)der = / lim | £(z)| - x, (z)dx.
k—oo E k—oo
The left hand side is

i [ 1) xe(2)de = Jim [ [7(@)]de < oo

k—o0 E
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by the properties of Lebesgue integral of non-negative measurable functions. The right

hand side is
[ i 1@ @) = [ |f(a)]ds
E R0 E

because if Ej — E then xpg, (z) = xg(x). (We have proven this before.) So we conclude
that [, |f(x)] < co. Finally since

[f (@) - xg.(@)] = |f(2)] € L(E),

by Lebesgue Dominated Convergence Theorem, we have

hm/f e (2)dr = /hmf() v (2)da

k—o0

=/f (o)t = [ fla)ds

lim/f - XE,(x)dr = hm f(x)dx

k—o0 —00 jon

The left hand side is

So the proof is complete. O

(Example 1) Let f(z) = 22 We prove that the Riemann improper integral
of f(x) is finite, however the Lebesgue integral of |f(xz)]| is inifinity.

STEP 1.

(R) /(0700) f(@)dz = lim (R) /Ot ST

t—o0 X
Let a(t) = (R) fot 2Ly We prove that limy, <00 [a(ty) — a(t2)| = 0. We can find
kE=leNst2k—1nr <ty S2kn S2n Sty <20+ 1)m.

2 gin g

la(ty) — a(ty)] = /t " dx

26T gin
= dr +
t1 z

2h7T oin
dr +
t1 z

2T gin x 2 sin x
dr +
2@

T sinx 2 sin a:
dr +

A

< /2”“7r |sin:c]d$+ %r sm:r;dx' N t2 \smx|
=/ .
< /2]€7r ]singv]dx+ %r sm:L’ ' tQ \smx!
- t

t1 1

2km
1 s1n.11:
< / —dx + / +/
~Juw h 2k 20w tl
_ (2km — 1) N /257r sma: ‘ (ty — 20m)
tl Py X tl

2 267 in 27
< — dr|+ —

1 2km z 1
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Smce T — (0 as t; — o0, it is enough for us to prove that

) 2T sin o
lim dr = 0.
k7£—>00 okm €T

It is not difficult to verify that fz 2t S“;xdz 2 0 because

—k— }
@k+2mt2)m o,
E dx
x

(2k+2m)m

o

/—k

i
o

/—

Ea

v

3

1 . .
(2k+2m+1)w sin (2k+2m+2)7 sin
E dx + dx
(2k+2m) 7 T (2k+2m+1)r L

1 /(2k+2m+1)7r <in 7 ot /(2k+2m+2)7r sin 7 ) .
¢ \Jerramyx  k+2m+D)m @kt2minye (2K 4 2m 4+ 1)

We separate each term into two parts. (sinz = 0 and sinx < 0). Next,

{—k—1

o
A

(2k+2m+2)7 sin
dx
(2k+2m)m T

{—k—1

4
2k 4 2m)(2k + 2m + 2)m? )

S
1(
(2k+2m <2k+272n+2> )
>
(

—k—1
= \(k+m) k+m+1)7r)
-1
a %(m«mﬂ)w)
< i S S —i—>0ask:—>oo
— m-(m+1r)  kn

2k+2m+1 sin (2k+2m+2)m oo
T +
(

dx)

(2k+2m) T x 2%k+2m+1)r L
/ (2k+2m+1)7 sin _ sz /(2k+2m+2)ﬂ' sin
x
(ehtomyx (2K +2m)m (@k+omanyr (2K +2m + 2

Therefore |a(t;) — a(t2)| is a Cauchy sequence. Hence a(t) converges.
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STEP 2. Next we prove that IswaI ¢ L(]0,00))

> |sinz| - /(k“”T |sin z|
L dr = L d
W [ e - Yo [ e

k=1 ™

>w [

=0 (k+3)m x

(k-‘ré)ﬂ 1 1
) / o e
(

k-&-%)w 2

(k?-‘ré)ﬂ'l 1
) / L —gda
ke 2 (K+5)m

(k+8)m |sin z|

1\

v 1\
I M8 I M8
= =

k:02 6
] — 1
3 %(lﬁ%)
1 1

(Example 3)

STEP 1. Let us consider

—1
/ B e,
on L—

Since Vz € (0,1), 1= = > oo 2" So

—Ilnzx >
de = / —Inz z"dx
/(071) l—w (o,1>( )nzzo
g Z/ (—=lnz)-z"dx

n=0 (0,1)

= i/ (—lnzx)-z"dx

n—=o ¥ (0,1]

e (x1) By a corollary of monotone convergence theorem. (Theorem 4.6)

STEP 2. We find
/ (—Inx) - 2"dx.
(0,1]

By monotone convergence theorem, we have

lim (—Inx) - 2"dx.
e——+0 [6,1}
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Since f —In x) - a"dx is Riemann integrable (because the function is continuous on
f[e y(=Inz)-2"dx = (L) [, (= Inz) - 2"dz. So let us we find

lim (R) / (—Ilnx) - 2"dx.
fe1]

e—+0

By integration by substitution (let x = e™*, u = (n + 1)t), we have

elirilo (R) /kl](—lnx)-m dx

= lim (R) t-e g
=40 [0,—In€]

u
= lim (R / ~e tdt
=40 ( ) [0,—(n+1)In€] (TL + 1)2

u
= (R ce tdt
( ) /[0700) (n + 1)2 c

o (x2) Let us recall the definition of Gamma function. I'(a) & ooy 4T
I'(n)=(n—1)ifn €N,

STEP 3. Finally,

2

—Inzx > 1 «3 T
dr = —_— =

e (x3) This is a well-known fact. We use this fact without proof.

2
SO I = 6

(Notice) O
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(Exercise 4) We prove that [,  [sinz?|dz = occ.

o0 \/ (n+1)m
(L)/ |sinz?|dz = Z(L)/ |sin 2*|dx
[0,00)

N
(n+1)m

S ®) [ et

Jnr

b e 1 (D7 |sint
: Z(R)§/ |ﬁ’dt

iy

(n+1)m |sin t|

IV

[M]¢
G
N | =

/ﬂ\,-\

=

T

o
B
QL

v
[]¢
~—~
-
SN—
N | —
s
+
([
3
[\
‘H
~
QL
~

N e 1
> S w -/ dt
2
s (wtdr 2, /(n+ x)
g
2 69 (n+ 2m)

e (x1) Let us regard the integral as a Riemann integral and do integration by sub-
stitution. We still do not know whether we can do integration by substitution in
Lebesgue integral.

§ 4.5

(Lemma 4.28)

(1) (af(z,y) € F)

STEP 1. (a) If y — f(z,y) is non-negative measurable, then y +— a - f(z,y) is
also non-negative measurable on RY.

STEP 2. (b) If F(x) of rae J(7,y)dy is non-negative measurable, so is af'(x).

Since a - F(x) = [p,a- f(x,y)dy, af(x,y) also satiefies (b).
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STEP 3. (¢) Since [, F(2)dz = [5q f(x,y)dzdy, we have

a- / F(z)de =a- | f(x,y)dzdy.
RP Rd

By linearity of integral we have

/ a- F(z)dx = / a- f(z,y)dxdy.
RP Rd

Since a - F(z) = a- [p, f(z,y)dy = [g,a - f(x,y)dy, by substituting this to the formula

above, we have
/ (/ a-f(:v,y)dy) dx 2/ a- f(x,y)drdy.
RP R4 R4

(2) <f1<l',y) +f2(37,y) € y)

STEP 1. (a) Suppose Nj, Ny are measure zero sets and if x; ¢ N; then y
fi(z,y) is non-negative measurable on R?. (i = 1,2). = ¢ Ny U Ny (m(N; U Ny) = 0)
then both y — fi(z,y),y — fo(r,y) are non-negative measurable on R? so we have
y — fi(z,y) + fo(z,y) is non-negative measurable on R?. So fi(z,y) + fo(x,y) satisfies

(a).

STEP 2. (b) Let Fi(z) o ra J1(7,y)dy and let Fy(z) o ra fo(7,y)dy. By
assumption, Fi(z), F3(x) are non-negative measurable functions on R?. So F(z)+ F(z) is
also non-negative measurable functions. Moreover by linearity of integral of non-negative
measurable functions, we have Fy(z) + Fo(x) = [o, (fi(x) + fo(2)) dz. So fi(x) + fo(z)
satisfies (b).

STEP 3. (¢) By assumption, [, Fi(z)dz = [p. fi(z,y)dedy and [5, Fy(x)de =
Jga fo(x, y)dzdy. Therefore, [o, Fi(x)dz+ [g, F2 Ydz = [pu fr(z,y)dedy+ [a fo(z y)dxdy.

Since integrals of non-negative measurable functions have linearity so we have

/Rp (Fi(z) + Fy(x)) de = / (fi(x,y) + folx,y)) dzdy.

R4
So fi(z,y) + fa(x,y) satisfies (c).

(3) (f(z,y) —g(z,y) € F)

STEP 1. This is just a review. If f(z),g(x) are measurable function on £ € .#
and f(x) — g(x) is well-defined (i.e oo — 0o does not happen.), then f(z) — g(z) is also
measurable. (See Chapter 3.)

Now suppose that if f(z), g(z) are measurable on E € .# and f(z) — g(z) is defined
a.e r € F then f — g is measurable on E. (i.e co — co happens but it happens only at
z in a measure zero set.) There exists N C E and m(N) = 0 and f(z) — g(x) is well-
defined on £\ N. Let us consider {z € E | f(z) —g(x) >t} ={z € F | f(z) — g(x) >
P\NU{z e E| f(z)—glx)>t}NN. {r e E| f(z)—g(x) >t} \ N={x € E\N |
f(z) —g(z) >t} € A because we may regard f(z), g(z) as measurable functions defined
on £\ N, and f(z) — g(x) is defined on E'\ N so f(x) — g(x) is measurable on F'\ N.
And {x € E'| f(x) —g(z) >t} NN C N € .. So the proof is complete.
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STEP 2. Let Fi(z &f qu x,y)dy and Fy(z qu x,y)dy. Since pr Fy(z)dr <
00, Fy(z) < oo ae x E RP.  And if Fy(z) = qu z,y)dy < oo (here x is ﬁxed.),
y— g(x, y)<ooaey€Rq
Let P(x) = of "y g(z,y) < oo a.e y € R?”. From the argument above, we conclude
that the proposition P(x) is true a.e x € RP.
(In the argument above, let us recall the fact that when f is non-negative |’ pf <oo=
f<xaezekFE.)

STEP 3. (a) By assumption for a.e x € R, y — f(z,y) and y — g(z,y) are
non-negative and measurable. We know that y — f(x,y) — g(x,y) is non-negative by
assumption. We still need to prove that y — f(z,y) — g(z,y) is measurable a.e x € RP.
However it is enough for us to prove that y — f(z,y) — g(x,y) is well-defined a.e x € RP.

Let us fix z € RP where P(z) is true. Since y — g(z,y) < cc aey € R? y —
f(z,y) — g(x,y) is well-defined a.e y € R?% (i.e oo — oo does not happen.) Therefore
y— f(z,y) — g(z,y) is measurable. So y — f(x,y) — g(x,y) is measurable a.e x € RP.

STEP 4. (b) Fi(z) — Fy(z) is well-defined a.e x € RP because Fy(x) < oo a.e
x € RP. Fi(z), F5(x) are measurable on R?, so F} (a:) - Fg(sc) is also measurable.

STEP 5. (¢) Since g(z,y) € L(RY), [5, Fo(x)de = fRdg z,y)dzdy < oo. (finite)
Therefore, we may subtract it from pr Fi(z)dr = fRd x,y)dxdy. (We just want to avoid
00 —00.) S0 [p, Fi(z)de — [, Fo(x)de = f f(x,y)dedy — [4. 9(x, y)dzdy. By Theorem
4.10, this implies that [, (Fi(z) — Fa(x)) do = fRd (f(z,y) — g(z,y)) dzdy.

4) (f(z,y) € F)

STEP 1. (a) By assumption, there exists { Ny }r>1 with my(Ny) =0 for all K € N

st Vk € N,Vo ¢ Ny, y — fr(z,y) is a measurable function on R?. Let N = o Uiz Nk

Then m,(N) = 0. Vo ¢ N,y — fi(x,y) is a measurable function on R? for all k € N.
So if x ¢ N, then y — limy_,o fr(z,y) is a measurable function. This means that for a.e
r € RP) y— limy_o fr(z,y)(= f(x,y)) is a measurable function. Obviously f(z,y) = 0.
Now the proof is complete.

STEP 2. (b) Let Fy(x qu Fi(z,y)dy and let F(z) < Jgo f(z,y)dy. By assump-
tion, Fy(z) is a non-negative measurable function on R? for all k € N. Since f(z,y) is a
measurable funtion for a.e x € R, F'(x) is defined a.e x € RP. By monotone convergence
theorem, if v ¢ NV,

lim Fi(z) = / kh_)m fr(z,y)dy
R4 o0

k—o00

= | flz,y)dy = F(z).

Ra

So limg 00 Fi(z) = F(z) a.e x € RP. Since limg_,o Fi(x) is measurable on R? (because the
limit of a sequence of measurable functions is also measurable), F'(z) is also measurable
on RP. Obviously F(x) is non-negative.

STEP 3. (¢) By assumption,

| Rz = [ ez
R4 R4
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By taking £ — oo, we have

lim [ Fg(z)de = lim fr(z,y)dxdy.
k—oco R

k—o0 Ra

(The sequence is of integrals is monotone increasing, so the limits exist.) By monotone
convergence theorem,

/ lim Fk(x)dx:/ lim fi(z,y)dxdy.
R R

q k—o0 d k—oo

Since limy_,oo Fi(z) = F(z) a.e € R? and fi(z,y) — f(x,y), we have

/ F(z)dr = | f(z,y)dxdy.
R4 Rd
Now the proof is complete.

(5) (f(z,y) € .F) Let us consider gi(x,y) = fi(z,y) — fe(z,y) = 0. Since fi(z) €
L(R%), we have gi(z,y) € F by (3). Moreover gi(z, y) A fi(x,y) — f(z,y). So fl(:v y)
f(x,y) € F by (4). Finally, f(z,y) = fi(z,y) — (fi(z,y) — f(z,y)) = f(z,y) € F by
(3) (fl(x7y) - f($,y> é fl(xvy) € L(Rd))

]

(Theorem 4.27) First we prove that f(z,y) o xe(z,y) € F for all E € 4.
However, we can not prove this directly. So we first start with £ = I} x I, where Iy, I,
are half open rectangles on R? and RY respectively.

(1) (E = I, x Iy where I, I are half open rectangles.)
STEP 1. (a)

df | X,(y) €l
y flzy) = L] v d I,

From this, we can find out that y — f(z,y) is a measurable fuction on R? for all z € RP.

STEP 2. (b)

def
F@) ™ [ @nn@dy = my(L) - xn o)
Ra
is a measurable function on RP.

STEP 3. (¢)

| P = [ my() - xiG@de = my(0) - m(n)

and
f(xﬁﬁdxdy:=]/ X1 x5 (%, y)dedy = mg(L X 1)
Rd Rd

We claim that m,(I1) - my(I2) = ma(I; X I5). Suppose that Iy = [[}_,(a1,,b1;] and I, =
[ (as;,bay]. Then Iy x I = [7_ (a1, b1:] < [}, (az,, ba ;] is also a half open rectangle.
Since m(I) = |1, both my,(11)-mg(Is) and ma(ly x I3) are [[{_ (bri—a1:)- T[] (baj—az;).
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(2) (E € 0% 1In Chapter 1, we proved that an open set is decomposed into a
disjoint union of half open rectangles. We may suppose that E = J,; I where {I;};>1

are disjoint half open rectangles on R%. Let E, o Up_y Ix- Let fo(z,v) o Xe, (T,y) =

> ket X1 (2, y). Each xp,(#,y) € # and by Lemma 4.27, fu(z,y) = > ;- x1.(2,y) € F
Since f,(z) / xe(x,y). Again by Lemma 4.27, we have yg(z,y) € F

(3) (E is a bounded closed set) We can find 0 < r < oo s.t £ C B(0,r). Let
Gi1 = B(0,7) and let Go = G1\ E. Then G1,G; € 0% xp(z) = xane(T,y) =
XGl( ) XG ( ) Since X, (2,9), X6, (2,y) € F and xg,(7,y) € L(R?), by Lemma

(4) (E is a measure zero set) mgy(E) = 0. In Chapter 2, we proved that we can find
a sequence open sets {G,,} C 0% st E C G, and mq(G,) \( 0 as n — oo. Without loss
of generality, we may suppose that G, .1 C G, because G; NGy C G and G; NG, is also
an open set. Let H = (,2, Gy, and G,, \y H. x¢, () € L(RY), xg,(7,y) \« Xu(z,y) so
by Lemma 4. 27 XH($ y) € F.

Let Fy(x qu xu (@, y)dy. [o, Fu(x)de = [guxu(z,y)dedy = mqe(H) = 0. (H is
also a measure zero set.) From this fact, we find out that Fy(z) = 0 a.e € RP. So for
aex € R, Fy(x) = [p, xu(z,y) = 0. Furthermore, this implies that for a.e z € RP,
"xu(x,y) =0 a.e y € R?” holds.

STEP 1. (a) Let usrecall that 0 < xg(x,y) < xu(z,y). Therefore, for a.e z € RP,
"xe(z,y) = 0 a.e y € R? also holds. So for a.e z € RP| y — xp(z,y) is a measurable
function on RY.

STEP 2. (b) We can define Fg(z qu Xe(z,y)dy a.e x € RP. Though Fg(x) is
a function defined a.e x € R (not deﬁned every x € Rp) Fg(x) £ Fy(x) a.e x € RP and
Fy(z) =0 a.e x € R? implies that Fg(z) = 0 a.e z € RP. So we find out that FE(JC) is
also a measurable function on RP.

STEP 3. (c¢) Finally, [, Fg(z)dz = 0 (because Fp(z) = 0 a.e 2 € RP) and
Jga XE(2,y)dedy = mq(E) = 0. Now we conclude that yg(z,y) € Z.

(5) (F € ) In Chapter 2, we proved that we can decompose a measurable set

E = ;2 F,UZ where {F} }x—1 are bounded closed sets and Z is a measure zero set. (We

may suppose | J,o, F), and Z are disjoint.) Let K = o Ui, Fr and let K, o Ui, Fr- K,

is also a bounded closed set so xk, (z,y) € %, and xk, (,y)  xx(z,y) so xx(x,y) € F
by Lemma 4.27. xp(7,y) = xx(7,y) + Xz(x,y)- Since both xx(z,y), xz(x,y) € Z. so
xe(z,y) € F by Lemma 4.27.

Finally, we prove that f(x,y) € .Z if f(z,y) is a non-negative measurable function on
R?. There exists a sequence of non-negative measurable functions f,(z,y) / f(z,y) and

falz,y) € F so f(a,y) € F. (fulz,y) =D ani - xB,. (2, y) € F.)

]

(Theorem 4.28) By Theorem 4.27, f*(x,y), f~(z,y) € F. Let Fy(z) &

Jao fH(z,y)dy and let F_(z) def Jgo [ (2, y)dy.
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STEP 1. (ax) By assumption, we have [, F'(z)dz = [, fT(z,y)dy < oo and
Joo F-(x)dx = [ f~(z,y)dy < oo. From this fact, we have F.(z),F_(z) < oo a.e
x € RP, Furthermore we have 7y — fT(z,y) < o0 a.e y € R? ae x € R? and "y —
[ (z,y) < 0 aey € R a.e x € RP. Now let us fix x € R? where y — fT(z,y) < o0
aey €RIand y — f(z,y) < 00 a.e y € RL Since y — fT(x,y) — [ (x,y) is defined
a.e y € R? (i.e oo — oo does not occur a.e y € RY), y — f(x,y) — f~(z,y) is measurable
on R? because sum and difference of two measurables functions are measurable as long
as they are defined a.e. So for almost every = € RP, "y — f(x,y) is measurable on R?”
holds.

STEP 2. (bx) Let Fz) ¥ Jgo f(x,y)dy. By definition of integral, F(z) =
Joo [Tz, y)dy — [oo [ (x,y)dy = Fy(x) — F_(x). Since Fy(z), F_(x) < co a.e z € RP,
and they are measurable on RP, F'(x) is also defined a.e x € R? (i.e oo — oo does not occur
a.e x € RP), hence measurable on RP. (As long as oo — 0o does not occur a.e, f — g is
also measurable if f, g are measurable.)

STEP 3. (ex) Since [p, Fy(x)de = [o. fT(z,y)dedy < oo and [, F_(z)ds =

Jpa [ (2 y )dzdy < oo, we have [, ( F+ z) — F_(2))dz = [p.(f*(z,y) — [ (z, y))dxdy.
So pr x)dr = fRd z,y)dzdy. (Let us recall that if integrals of f, g exist and at least

/e L(Rd) or g € L(R?) holds, then [(f+g)= [f+ [9).

(Example 1)

STEP 1. Let g(z,v) © sinaz - f(y) - e ®¥. Tt is easy to verify that g(x,y) is a
measurable function defined on [0, 00) x [0,00). Let us recall that we may regard f(y)
is a measurable function defined on [0, 00) x [0, 00) because { (z,y) € [0,00) x [0,00) |
fly) >t} =10,00) x{y € [0,00) | f(y) >t}, and if Ey, Ey € A, then Ey x Ey € M.

We may regard g(x,y) as a measurable function defined on [«, 5] x [0,00). (0 < a <
f < o0) Let us consider the following integral. Since |g(z,y)| =< |f(y)| € L([a, 8] X [0, 00)),
we apply Fubini’s theorem g(z,y) as a measurable function defined on [«, 5] x [0, 00).

/a ’ < /0 T inaz- fy)- e—wdy) dx
— /OOO (/jsinam fly) - e””ydl‘> dy

STEP 2. Let us define

def B . _
Gap(y) = / sinazx - f(y) - e "du.

We prove that G, 3(y) is bounded by an integrable function. (We would like to use
Lebesgue Dominated Convergence Theorem later.) Since

B
(R,L) / sin axe”Ydx

1
= Pia (y sin aae™® + a cos ace”™ ™ — ysin afe ™ — acos aﬂe_ﬁy) ,
Y +a
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and by triangular inequality,

B
/ sin axe” "Ydx
«

Gas(W) = 21 (y)] € L([0, 00)).

2y+2a _ 242t __a
o (1) e = 1 where t = . > 0.

STEP 3. Finally, by Lebesgue Dominated Convergence Theorem, we have

B 00
i i . ]
a—>-|1-{)I,rgl_>OO\/a (/0 sin ax f(y) e dy) dr
*2 S B
- ‘ i . LTy
aalloarglﬁoo/o (/a Sin ax f(y) e dl’) dy
> B
- / (M%{%m / sinaz - f(y) - d) dy
=4 / (fzf(w ) "
0 y? + a?

e (x3) Lebesgue Dominated Convergence theorem

*1
§M<2,

~y2+a? T

we have

e (x2) Stepl

o (x4)limy—10 800 f(y)'ygﬁ (y sin ace™ + a cos aae ™Y — ysinafe Y — acos aﬁe*ﬁy)

]

(Example 2) Let us consider the following integral and apply Tonelli’s Theo-
rem.

/ 21 exp (—(1 + xQ)yQ) dxdy
x,y€[0,00) x[0,00)

— / (/ 2y exp (—(1+ 2*)y°) dy) dr - (i)
z€[0,00) \Jy€[0,00)

— / (/ 2y exp (—(1 + wQ)y2) d$) dy -~ (i1)
y€[0,00) z€[0,00)

STEP 1. First we find (i). fye[O ooy 2y exp(—(1 + 2*)y*)dy = 175z because by

monotone convergence theorem,

lim (L) / 2y exp(—(1 + z%)y?)dy.
y€(0,]

c—00

Moreover 2y exp(—(1 + 2?)y?) is Riemann integrable on [0, ¢] so we find

lim (R) / 2y exp(—(1 + %)) dy.
yE[O,C]

c— 00

And this is ﬁ Finally, we find fz €[0.00) 1+%das. Similarly, we can find the integral as
1 s

Riemann improper integral and we have fx cl0.00) TT22 = 3
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STEP 2. Second we find (ii).

/ (/ 21 exp (—(1 + xg)y2) dm) dy

y€[0,00) z€[0,00)

= / 2y exp(—y?) (/ exp (—x2y2) das) dy
y€[0,00) z€[0,00)

We consider

/ exp (—x2y2) dx.
z€[0,00)

Since m({0}) = 0 and by monotone convergence theorem,

= lim exp (—x2y2) dx.

€70 J2e(0,0)

We apply §4.2 Example 10 (let z &f yx),
1 9
= lim — exp (—z )dz.
c=oo Yy z€(0,yc)

Again by monotone convergence theorem, we have

1

= - exp (—22) dz
y/ze((),oo) p( )

1

2
= = exp (—z7) dz
Y /zG[O,oo) ( )

(i) =2 (/[O’OO) eXp(—yZ)dy)Q-

2
Finally, 2 ( f[o exp(— )dy> = Z and we have f[o 00) exp(—y?)dy = ‘/TTT

Therefore

2

[
(Exercise 1) Since f(x,y) is integrable on [0,1] x [0,1], we apply Fubini’s

Theoren.

/01 </0f (x’”dy) = | | </ K <‘C’y>'><[o,z]<y>dy) d
= /01 (/ F(@,9) - X,y )da:)dy
= /01 (/ fla,y) X[y,11($)dfc> dy

(f
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e (x1) Fubini’s Theorem

e (x2) When 0SS z,y = 1,0y =Szifandonlyify<z <1

[
100 (Exercise 2) We apply Tonell’s Theorem.
m(A_, N B)dx = / (/ XAIOB(y)dy) dx
Rd Rd R4
2 ([ ) xsty) o
Ré \JRd
= / (/ xa(z+y)- Xs(y)dy) dx
Re \JRd
2 ([ vt 0 xatie) dy
R R
[ e ([ vt nie) dy
Ré Rd
2 [ et ([ i) dy
R¢ Rd
= / xs(y) - m(A)dy
R4
= m(4): [ xal)dy
Rd
= m(A)-m(B)
i (*1) XA1< )XA2< ) XAlﬁAz(x)
o (x2)yc A ,ifandonlyifz+yec A
e (x3) Tonelli’s Theorem
e (x4) x5(y) is not related to = so we may put it outside of [, --- dx by linearity of
integral.
e (x5) Theorem 4.13
[

101 (Theorem 4.30) Let E € .#,; where d = p + q. Let us consider a measurable
function yg(x,y), x € R?,y € R?. We apply Tonell’s Theorem to xg(z,y). For a.e x € RP,
y — xe(7,y) is a measurable function on R?. When z € R? is fixed, xp(z,y) = x5, (y).
So for a.e x € R?, y — Xp,(y) s a measurable function on R?.

Furthermore,
/XE(x,y)dxdyzf / xe(r,y)dydz.
R4 RP JRa
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The right hand side is

RP JRY
= /m(E|z)d:c.
RP

Now we have the desired conclusion. O

102| (Theorem 4.31)

(1) We show that Ey € #,, By € M, then Ey X E, oo {(z,y) | z € E1,y € Ex} €
My iq. Let us recall that By = K1 UZy, By = KoU Zy where K, Ky are F;, sets and 2y, Z,
are measure zero sets. So By X Fy = K1 X Ko U K| X ZoU Zy X K9 U Zy X Zs.

STEP 1. First we show that K; x K5 is measurable on RPT. K x Ky = UZEN Fyix
U ien F,; where Fy;, Fy; are closed sets on RP and R? respectively. So we prove that
Ui,jeN Fy; x Fy; is measurable. It is enough for us to prove that Fy x Fy (Fy, F, are
closed sets.) is also a closed set. Let {(x,,y,)} C F1 X Fy and (z,,y,) — (z,y). Since
T, > x € Fand y, >y € Fy, (x,y) € F} X F. So F} x F; is also a closed set on RPT9,

STEP 2. We prove that A x Z is a measure zero set if m;(A) < oo and m,(Z) =0

(A CRP,B CRY). Let a &of my(A) < oo. We can find open intervals {1, } on R s.t
ACUpenfinand a =37 |I1,] < a+ 1. Let € > 0 be an arbitrary positive number.
We can also find open intervals {I5,,} on R? st Z C (J, ey fom and anofl | Iom| <
€. Then A x Z C U,enlin X UpenL2on = Upmen Lin X Iom. So mi, (A x Z) =

fozl Z;)nozl ’Il,n‘ ‘[2,m‘ = Ziozl ‘Il,n’ 2;;1 |I2,m‘ < (1 +a)-e.

STEP 3. In Step2, we assumed that m(A) < oo, however A x Z is still a measure

zero set when m7(A) = co. Let A, AN B(0,n) where B(0,n) is an open ball with
radius n whose center is at origin. Then A = J, .y An. S0 A x Z = oy An x Z. Each
A, X Z is a measure zero set so A X Z is also a measure zero set. (A, is bounded so it
has a finite measure.)

p+q

From the arguments above, we find out that F; x E, is measurable on RPTY,

(2)  We apply Tonell’s Theorem to xg,xg, (2,y) = Xg (%) - X5, (y). (This equality

holds obviously.) Let us consider [,,,, X&, x5, (%, y)dzdy and [o, ([o, X5 () - X5, (v)dy) dz.
The left hand side is m,,(Ey x E»), and the right hand side is m,(E;) x my(E>). Now

we have the desired conclusion.

[]

(Corollary 4.32) Let Ej = {reE|(k—1)-0 = f(z) < k-6}. Without loss
of generality, we may suppose that my(E) < oc.

STEP 1. Let 0 > 0 be an arbitrary positive number.
G(E; f) = U (Ey; f)
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Since f(z) is real-valued, E = |J;=, E;. Therefore {(z,y) € R¥! |z € F,y = f(z)} =
Ui {(z,y) € R™ | z € B,y = f(z)}. (The left hand side is G(E; f) and the right
hand side is {J,—, G(Ek; f))

STEP 2. By sub-additivity of an outer measure (m},(-)),

o
*
md+1 ) = E d+1 G(Ey; f))-
k=1

Moreover, G(Eg; f) C Ex x{yeR | (k—1)-d =y <k-0},so
M1 (G(Ex; [)) S masa (B < [(k = 1) -0,k - 6)) = ma(E}) - 0.

(In the inequality above, since Fy € #y and [(k—1)-6,k-0) € 4, E, x[(k—1)-,k-0) €
Myy1). Therefore we have

my (G(B; ) £ my (G(Eg; £)) £ )6 -ma(Ey) = 6 - mg(E).

k=1 k=1

Since my(E) < 0o, by taking 6 N\, 0, we have the desired conclusion.

STEP 3. If m(E) we consider E, € F N B(0,r),r = 1,2,3---. Then

= o0,
E=J2, E, hence G(E f) Ufoz G(E., f). mgs1(G(E,; f)) =0 foreach r =1,2,3---
So ma1 (U2, G(Ey; f)) =

104] (Theorem 4.33 -1)

STEP 1. (f(x) is a non-negative measurable simple function.) Suppose that
f(z) def D aixa;(x),A; € M,A; C E. Suppose that Ay,---A, are disjoint and
E = UL A Then G(E;f) = {(v,y) € R™ |z € B0 =y = 30, aixa()}
When z € A;, 0 £ y < q;. Therefore G(E; f) = J/_{(z,y) € R¥"! | x € A;,0
y = f(z)} = U, Ai x [0,a;] (this is a disjoint union) So we have mg.1(G(F; f))
marr (U= Ai x [0, a]) = 300, aima(4) = [ f(

STEP 2. (f(x) is a non-negative measurable function.) We find a sequence of non-
negative measurable simple functions f,(z)  f(x). By monotone convergence theorem,

we have
lim fn )d;v:/f(x)dx
n—oo E

1A

The left hand side is

lim fn( Ydx = lnn md+1( (E; fa))-

n—oo

Since f, < foi1, G(E; fn) C Q(E; fnt1). Therefore the right hand side is
nh:rn mas1(G(E; ) = Masa (U (E; fa ) .
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Let us consider |J,~, G(E; fy).
{(z.,y) ER™M [z € B,0 Sy < f(2)}

& e 1) = Uty e B [z e B0y < fulo))

n=1
*2

C {(z,y) eR™ [z € B,0=Sy < f(2)} = G(E; f).

e (x1) Equality does not necessarily hold. However | J°” {(z,y) € R |z € E,0 <
y < fol@)} ={(z,y) eR* |z € E,0=y < f(x)}.

e (x2) Equality does not necessarily hold. If for all z € E, there exists N € N,
fn(x) = f(x),¥n = N then the equality hold.

Therefore, we have

3

G(E; fu) UG(E; f) = G(E; f).

n=1

Since mg41(G(E; f)) = 0, we have

Mgl (U G(E; fn)> =ma1 (G(E; f)).

n=1

The left hand side is [}, f(x)dz. Now the proof is complete.

]

105/ (Theorem 4.33 -2) Let us consider G(E; f)|y=a. G(E; f)ly=a = {z € E |
f(z) = a}. (If you do not know why, you may draw a graph.) By Tonelli’s Theorem, =
Xc(B;p) 1s a measurable function for a.e y € R. Therefore, G(E; f)|, = {zr € E | f(z) 2 y}
is Lebesgue measurable for a.e y € R. (x) Let ¢t € R be an arbitrary real number. We can
find a sequence of {yx }r>1 8.t yp \(tand {z € F | f(x) 2 yi} is measurable for all k£ € N.
(Otherwise, there exists an interval (¢,d) C R s.t Yy € (¢,d), {z € E | f(z) 2 y} ¢ .
This contradicts to (x).) So {x € E | f(z) >t} =, {z € E| f(z) 2y} € Ay

]

106| (Definition of Convolution) If f(z), g(x) are measurable functions on R? and
f(x —y)g(y) is integrable with respect to y then we define the convolution of f(x) and

g(z) as
(F20)@) = [ fla=pg)dy.

107| (Theorem 4.34)

STEP 1. Let us recall Corollary 3.24. (z,y) — f(x —y) is a Lebesgue measurable
function on R??. (z,y) — ¢(y) is also a Lebesgue measurable function on R??. Therefore
f(x —1y)g(y) is a Lebesgue measurable function on R4,
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STEP 2. By Tonelli’s Theorem

/R2d\f(a:—y)g(y)\dxdy _ /Rd </Rd |f($—y)g(y)|dm) "
/Rd l9(y)| (/Rd |f<x—y)|dx) a
/Rd l9(y)| (/Rd |f(q:)|daj) a

= [ swldr- [ 1r)lde <

Il

e (x) Theorem 4.13.

Therefore f(x —y)g(y) € L(R?*?). By Fubini’s Theorem,
(f * g)(x) < @ vy

is a measurable function on R<.

108 (Example 5) Suppose there exists u(x) € L(R) s.t Vf(z) € L(R),
flz) = (ux f)(z) ae x € R.

STEP 1. Let us apply Lebesgue Dominated Convergence Theorem to w(x)-X[—2526) ().
Since |u(z)] - (2526 (z) < |u(z)| € L(RY), by taking 6 \, 0, we have

lim / ()] - X(_229)(2)dz = 0.
R

6—+0

This implies that there exists sufficiently small § > 0 s.t

/ lu(z)| - X|—20,28) (x)dx < 1.
R

S0 Ji_g5.05 lu(z)|dz < 1.
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STEP 2. Let f(x) aef X[-s5,]- By assumption,

F(@) " ZF (ux f)()dr = / u(x — ) (y)dy
= / u(r — y)x[-s0(y)dy

= / u(=y)x[-s0(y + z)dy

=

R

= / U(=Y) X[=5—2,0—2](Y)dy
R

= u(—y)dy
[-0—z,0—x]

*2
= / u(y)dy
[z—d,2+4]

e (x1) Theorem 4.13. Translation does not change the value of integral. y — y + x
e (%2) See §4.2. Example 10. a = —1.

So there exists xy € [0, ] s.t

fe=1 = [ty

STEP 3. Finally, consider

1= ’ / U(y)dy‘
[]}0—5,5004—6]

A

[l

[£0—0,20+9]

[ iy <1
[—25,26]

e (x3) Since zg € [—9,0], 20 Sxg— S a0+ = 20

A&

So there is a contradiction.

]

109| (Definition 4.4) Let f(x) be a measurable function defined on F € .#. We
define the distribution function f.(\) as

£ Em({ze E||f(z)] > A})
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110 (Theorem 4.35) We use Tonell’s Theorem.

[iwra 2 [ (0] o)
: E [0,f(=)]
2 /((L)/ p/\pld)\> du
E [0,f(@)]
([ ea)e
E [0,f(z))
- / (/ pAp_IX[O,fu»(A)dA) dx
E [0,00)
- /(/ pAP_lX{fUEElf(I)»\}(.’E)d)\) dx
E [0,00)
x4 / (/ p>\P—1X{er|f(x)>,\}(;p)dx) d\
[0,00) \VE
— / p/\P—l . (/ X{$€E|f(z)>)\}(x)dx) d\
[0,00) B

= | pvmlie € B ) > by

[0,00)

o

700)

e (x1) (R) f[o . ptP~ldt = aP.

e (x2) Riemann integrable implies Lebesgue integrable. (The integrals are all Lebesgue
integrals from the second line.)

e (x3) a single point is a measure zero set. So the integral does not change even if we
get rid of it from the range of integral.

e (x4) Tonell’s Theorem. (When the function is non-negative, we may always swap
the order of iterated integrals.)

§ 4.6

111] (Exercise 1)

0= /Ef($)d$

v

/ f(2)dz
{z€E|f(x)>1/n}

1
/ —dx
{acE|f(z)>1/n} T

> “m({re | f(z)>1/n})

v
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Som({x € E| f(x) >1/n}) =0 for all n € N. Therefore

m (U{a: eFE| f(x)> 1/n}) =m({r e FE| f(zx) >0})=m(E)=0

n=1
[
112| (Exercise 2) Let € > 0 be a positive number. Since f’(0) exists, 3§ > 0 s.t
[a) f’(O)‘ < eforall z € (0,6). And we have |£&)| < [£&) _ ff(@)]+|f'(o>y — M <
for all z € (0,6). Since f(z) is non-negative, L& < M.

xT

[ [ S0 [ 0,
(0,00) T (00 T [b,00) T
< Mdx + @dx
(0,8) [6,00) T
< Mdx + ﬂdar:
(0,6) [6,00)
1
= M-6+= f(z)dx
0 J[5,00)
1
< M-5+—/ f(x)dx < o0
0 J(0,00)

113 (Exercise 3) First we show some fundamental facts.

STEP 1. Let{a,}, {b.} besequences of real-numbers. We show that lim inf,, . (a,~+
b,) < liminf, . a,+limsup,,_,. b,. (We suppose that both limits on the right hand side
are finite.)

lim inf(a, + b,) lim inf (@, + by)

n—00 n—0o0 m=n

AL

lim inf (a, + sup byy)

n—00 m2n m/'2n

A

lim (inf a,, + sup b,y)

n—00 mzn m/'2n

&

lim inf a,, + lim sup b,

n—00 m2=n =00 11>y

e (1) when m 2 n, by, < sup, >, by

® (*2) sup,,>, by is not related to m and finite for sufficiently large n, so we can
separate.

o (x3) lim, (¢, +d,) = lim, o ¢, + lim,,_, d,, when both ¢, d,, converge.
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STEP 2. Let E), € 4 for all k = 1. We show that

A déf lim Sup X, (:L‘) =B déf Xlimsupy, _, o Eg (.Z‘)
k—o0

We show A < B and A > B. A, B only take 0 or 1. It is enough for us to show that
A=1=B=1land B=1=A=1.

Let us consider that x is fixed. First if A = 1, there are infinitely many £ € N
s.t xg,(x) = 1. In other words, there are infinitely many k& € N s.t © € E;. So x €
lim supy,_, ., Ex. Hence B = 1.

Next, if B = 1, then « € limsup,_,. Ex. This means that z is contained infinitely
many k € N. So xg,(x) = 1 occurs infinitely many times. Hence limsup,_,., Xg,(2) = 1.
But xg, (x) = 1. Therefore A = limsup,_,. Xg,(z) = 1.

STEP 3. Let A, < E\ Ey and B, © Eyx. Then m(A) < 5. This implies that

m(lim sup,_, . Ax) = 0 by Borel-Cantelli’s lemma. (See §2.2. Example 2)

/E f(2)de = /E (F(2) - X, (@) + (@) - v, (2))de
tlglhninf(f(x)~:XAkCr)%-JKIﬂ‘,ka(x))dx

I

k—o0

*2
< /E(liznsup f(x) - xa,(x) + liggglff(x) - XB, (7))dx
*3
< (@) N 2, (0) + Hint ) x5, ()
2 [ liminf d

[ timint f(a) - xo (o)

liminf/Ef(:L‘) - XB, (x)dx

k—o0

1%

liminf | f(z)dx

k—o0 By,

1%

lim inf f (x)dx

k—o0

oo

k—o0

= lim/ f(z)dr < 0o

(1) f(x) - xa,(x)+ f(z) - xpB,(x) is not related to k. It does not change even if we
take lim infj,_, .

x2) We apply the fact stated in Step 1.

(x2)

(%3) We apply the fact stated in Step 2.

o (x4) m(limsup,_,,, Ax) = 0. So the first term in [,(---) equals to 0 a.e z € E.
(x5)

*5) Fatou’s lemma.
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e (x6) This is a basic property about Lebesgue integral of non-negative measurable
functions.

e (x7) Let us recall that By, def Eo.

e (x8) By assumption, the limit exists. So we may change liminf to lim. And it
converges. So it is finite.

O
114] (Exercise 4) We use Tonell’s Theorem.
oo>/F(x)d:z: = // f(t)dtdx
R (—o0,x]
= //f (—o0,z] )dtdx
= [ [ 10 xus @itz
R JR
= //f(t) 'X[t,oo)(x)dxdt
= /f /X[too x)dxdt
= [ 50 m(it. o)
R
= /oo - f(t)dt
R
~ / F(t)dt
R
So we conclude that [, f(t)dt = 0. (In Lebesgue Integral, 0 - co = 0) ]
115/ (Exercise 5) Let E), & {z € R | fp(z) > fk+1( )}. Since {fi(z)}r>1 are
integrable, [, fri1(z)dr — [ fe(v)dr = [ (fra(z) = ( )dx 2 0. fra(z) — fu(z) <
0 on z € Ej, so m(Ek) = 0, otherwise fE (fes1(x) — fe(z))dx < 0. And we have
m(Uee; Ex) = 0. This implies that fi(z) < fo(z) < -+ £ fi(x) £ -+- ae z € R%
Finally, we have the desired conclusion by monotone convergence theorem. ]

116 (Exercise 6)

STEP 1. Since (1/f(z) — v/g(z) f(z) =2/ f(z)g(x) + g(z) = 0, we have
f(x)+g(x) = 2+/f(x)g(x) =2 0. So f(x)g(:c) is also integrable on F.

STEP 2. Let us consider an equation with respect to ¢, [, (t-1/f(x)—+/g(x))*dx =
0. (This equation has at most one root.) [.(t-+/f(z) — /g(z))?dz = [,(t*f(z) —

2t/ f(x)g(z) + g(z))dx. Since f(x),g(x),/f(x)g(x) are all integrable on FE, we have
=t [, fx)de —t-2 [, \/f(x)g(x)dx + [, g(x)dz. The discriminant of the quadratic
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equatlon is equal or less than 0 since the equation has at most one root. So we have

(fE V[ df”) —4 [, f(x)dx - [, g(x)dz < 0. Thereore,

</E \/de)zé/jgf@)dx'/jgg(w)dx

STEP 3. 1If f(x)g(z) =21, \/f ) = 1. So we have

1 = (m(E))? < ( / def < [ tae- [ gwyie

]

117 (Exercise 7) Since g(z) € L(RY), we have fE (f(x)—g(z)) +g(x))dx =
L (f( z))dx+ [, g(x)dz. (Let usrecall that [, (fi+f2) = [, fi+ [, fo if at least one
of fl,fz is mtegrable on E) 0 < f(o)—g(x) < h(x)—g(x) and 0 £ [ (h(z)—g(z))dz <€,
so f(x) — g(z) is integrable. Therefore f(x) = (f(z) — g(z)) + g(x) is integrable. O
X () = ()] dor <

. S0 > fea ‘XEMm) (x) — f(x)‘ dr < oo. Since ‘XEk(m) (x) — f(x)
may swap »_ -, and [,. And we have

/Rdmiojl ‘XEHM (z) = f(ﬂf)‘ dx < co.

X By (T) — f(:z:)‘ <ooa.ex € E. (When f(z)is integrable on F,

118 (Exercise 8) We can take a subsequence of Ej st [,

is non-negative, we

This implies that >,

|f(x)] < ooa.ex € E.) Since the infinite series converges, limy, 0 | X, (¥) — f(z)] =0
a.e x € E. So limsup,, . X5, () = f(¥) ae z € E. (Since the limit exists a.e
r € E, so liminf(---) = limsup(---) a.e x € E. Therefore we may change it to
limsup(---) or liminf(---). Here we change it to limsup(---).) We have already dis-
cussed im sup,_,o X&, (€) = Xiimsup,_, . £ (%). S0

E = limsup Eym) € A
m—00
is the desired measurable set. O

119 (Exercise 9) Let By & [0,4]N E, By € [0,¢]\ E and E5 < (¢,1]N E. Then

[0,t] = By U Ey and E = E; U E3. Since m(E) = t, we have m(Fy) = m(Es3). (f(x) is
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bounded. So the following integrals are all finite.)

(2)dz = /E . f(x)dz /E | fz)dz + A f(z)dx

[0,¢]

*
flainy

< 5 fz)dx + EQf(t>dﬂf
- /| flx)dz + f(t) - m(Es)
2 . flx)dz + f(t) - m(Es)
=/ fz)dx + i f(t)da
; 1 !

fa)de+ [ fa)de
F1 E3

/131UE3 f(z)dx

/E f(x)dz

o (x1) f(z) S f(t) on x € Ey C [0,1t].
o (x2) m(Ey) = m(Es)

o (x3) f(t) < f(xz) onx € E3 C (t,1]

120 (Exercise 10)

STEP 1. Since | f(@)|Xoerd|je>r () < |f(2)] € L(R?), we can apply Lebesgue Dom-
inated Convergence Theorem.

lim f(@)|de = lim/ F(@)] -+ Xfzerd|lz|sm (T)dz
T {xeRdebr}' @) AL Jo VO Xt
= / lim | f(z)| - X{wera|jz|>r} (z)dw
Rd 700

L / 0 de =0
Rd

e (x1) Suppose that 7y € R?. When r is sufficiently large, r > |z¢]. so X{werd|z|>r} (T0) =
0.

STEP 2. Since E is bounded so we suppose that £ C B(0, M). Let x € E,,. Then
there exists z € E' s.t x = y+z. By triangular inequality, |z| = |y+z| 2 |y|—|z| = |y|— M.
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This implies that z € Ey, C {x € R?| |z]| = |y| — M}.

nmsup/E f(x)de < lim (x)|dz

|yl 00 lyl=00 J{zeRd||z|2|y| M}

~ lim £(@)lde =0

"0 J{zeRe||x|>r}

121] (Exercise 11)

(1)
STEP 1. L =3 r"if [r| < 1. When z € (0,00), 0 < exp(—z) < 1. So we

1—r
have
ol 2% lexp(—x)
exp(z) —1 1 —exp(—2x)
1
_ a—1 o L
= 2% exp(—x) T~ (1)
= 2% 'exp(— Zexp —nx)

= Zxa_l - exp(—nzx)
n=1

STEP 2. Since 2! - exp(—nz) is non-negative for all n = 1, by Theorem 4.6 we
have,

[e.9]

:L.a—l /
———dx = o1 exp(—nx)dz
/(0,00) exp(az) —1 (0,00) Z

n=1

= Z/OOO - exp(—nax)dz.
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By monotone convergence theorem and §4.2 Example 10, we have

Z/ -exp(—nzx)dr = Zlim/ 27 - exp(—nx)dx
0 OO c— 00

n=1 (O,C)
00 a—1
t 1
= Z lim / (—> - — - exp(—t)dt
1 c— 00 (O,C) n n
00 a—1
t 1
— Z/( | (ﬁ) o exp(—t)dt
n=1 0,00
o 1 «
— Z (ﬁ) 7 exp(—t)dt
(0,00)

In the equations above, we used the fact that

I'(o) € (R) /[O )ta_lexp(—t)dt = (R) lim | t*“ ‘exp(—t)dt

Cc— 00 [O,C]

= (L) lim t* Lexp(—t)dt

c—00 [076]

= (L) / t* Lexp(—t)dt
[0,00)

= (L)/ t* L exp(—t)dt
(0,00)

e (x) On [0,c|, t* !exp(—t) is continuous so it is Riemann integrable (-." continuous
a.e [0, c|) and its integral is same as Lebesgue integral.

(2)

STEP 1.
sin ax . exp(—x)
————— = snar- ———
exp(z) —1 1 —exp(—=x)
= sinax-exp(—z) Y exp(—nz)
n=0
= Z sin ax - exp(—nz)
n=1
STEP 2.
k k
Z sinaz - exp(—nx)| = Z | sin ax| - exp(—nz)
n=1 n=1

A

Zx - exp(—nzx) e L(0,00).
n=1
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o (%) f(o,oo) D o1 @ exp(—nx)dz = 377, f(O,oo)x exp(—nz)dr = 377, f(o,oo) i
exp(—t)dt =3 | & = %2 < 0.

STEP 3. Let us apply Lebesgue Dominated Convergence Theorem to gi(x) et

ZZ:1 sin ax - exp(—nx).

/ AT g = / lim gy (x)dx
(0,00) €xp(z) — 1 (0,00) k=00

= lim gr(x)dx
k—o0 (0700)
k

= lim Z sin ax - exp(—nz)dz

k=00 (0,00) n=1

k
= i i : —nx)d
kgg";/(o,oo) sin ax - exp(—nx)dx
= Z/ sin az - exp(—nx)dx

= Z/ sin ax - exp(—nz)dz

STEP 4. We find f[o oo SIIL ax-exp(—nz)dz. Since |sinaz-exp(—nz)| < exp(—z) €
L(]0,00)) C L(]0,¢]), 0 < ¢ < o0, by Lebesgue Dominated Convergence Theorem,

lim sinazr - exp(—nx)dr = lim sin ax - exp(—nx) - Xjo,q(z)dz
c— 00 [O,C} c— 00 [0,00)

= / lim sin ax - exp(—nx) - xjo,q(x)dx
[0,00)

c—00

= / sin az - exp(—nx)dx
[0,00)

Since Riemann integrable implies Lebesgue integrable, we have

1
(R) / sinax - exp(—nz)dr = = i R (nsinac + acosac) - exp(—nc)
[0,c]

= (L)/ sinax - exp(—nz)dz.
[0,c]

So
lim sin az - exp(—nx)dx
Cc— 00 [O,C]
I a 1 ( . n ) ( )
= lim — nsin ac + acos ac) - exp(—nc
c—oo \ N2 + a2 n? + a? P
B a
o242
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Now the proof is complete.

]

122| (Exercise 12) Let S(x) = = S o f(2+mn). First we show that S(z) con-
verges absolutely a.e = € [0, a]. Let us consider

/[Oa] ‘f( +n>‘dw

Since |f (§ + n) | is non-negative, we may swap [ and Y by Theoerm 4.6, we have

Py

+ n ’ dx
By §4.2 Example 10,

Z /Oa +n ‘dx Z / | f (y+n)|dy.

n=—oo n=—oo

Furthermore,

2/01 Afy+n)| = Z/ 1f (y +n) Ixp(y)dy

= % [a s o=

= % [a 0

= ) |d
n;oo/[;wﬂ_1 |f ’y

= )|d
nz_oo/[mﬂ 1S (y) [dy

because f(z) € L(R). Therefore we conclude that > 07 |f (%2 +n)| € L([0,a]) and
thus Y07 [f(£+n)| <ooaexz e [0,a]. SoS(x) converges absolutely a.e z € [0,a].
It is easy to find out that S(z) = S(z + ka), k € Z, so S(x) converges absolutely a.e
z € R. O
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123 (Exercise 13)

/Rgnp |f(nx)| dz

Let us consider [; > n™?|f(nz)|dx.

*2
= llm/ n | f(nx)| dx
nz_: Cc—00 (7C,C)
*3 . _
23 hm [ wrli
;C_}OO (—ne,ne)
*4 = —p 1
=) = |f ()| dy
n=1 (—00,00)
*5 = 1
S M BT
n=1 " {700,
*6 = 1
S
n=1 (—00,00)
*7
< o0
e (x1) Theorem 4.6.
e (*2) monotone convergence theorem to n™" | f(nw)| - X (=) (7).
e (x3) §4.2 Example 10
e (x4) monotone convergence theorem.
e (x5) obvious.
e (x6) obvious. (linearity of integral)
o (x7) f € L(R), >0 -5 < oo when a > 1.

124] (Exercise 14) Let

g(u) /[ Sy

If x > 0, then z%| f(x)| < 2% f(x)| + 2| f(z)| € L([0,00)). (It is easy to verify this fact by

considering 0 < x < 1 and z = 1)

So z*f(x) is integrable hence g(u) is well-defined. Next we prove that g(u) is con-
tinuous. Consider {ug}tr>1 C (s,t) s.t upy — u € (s,t). By the previous inequality
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| f(z)| £ 2°|f(x)| + 2| f(z)| € L([0,00)). By Lebesgue Dominated Convergence Theo-
rem, we have

lim g(ug) = lim " f(x)dx
k—ro0 k—o0 [0,00)
= / lim z" f(x)dx
[0,00) k—o0

- / 2 f(z)dz = g(u)
[0,00)

Now the proof is complete.
125 (Exercise 15)
STEP 1. Let k€ N.

¢ = /[ s
(f(z))"dx + / (f(z)) dx

/{w6[071}|f(x)>1+,1} {z€[0,1]]0<f(z)S1+%}

1 n
> / <1 + —> dx
(z€0.1]|f()>1+1) k

= m({xe 0,1 | f(z) > 1+%}) . <1+%)ndx,Vn€N

}) > 0, the right hand side goes to infinity by taking
1+ +}) =0 for all k € N. Moreover,

m G{xé[O,l]|f(x)>1+%}>

= m({xe€[0,1]] f(x) > 1}) =0.

This implies that 0 < f(z) <1 a.e 2 € [0, 1].

STEP 2. Since 0 < f(z) = laexe€[0,1] = 0< (f(x))" =1 aexec]|0,1] and
1 € L([0,1]), by Lebesgue Dominated Convergence theorem, we have

c= lim (f(x)"de = /[ lim (f(x))"dx

- / X{zelo1]|f(@)=1} (z)dz
[0,1]

= m({z €[0,1] [ f(z) =1})
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STEP 3.

c:/ )" dx
[0,1]

/[:pe[o 1]j0< f(xz)<1}

=l

f(lﬂ)”dw-+u/§ (f (x))"da

{ze0,1]]f(x)=1}

/’ (f(@))dz +m({z € [0.1] | f(z) = 1})
{z€]0,1]]0< f(x)<1}

/ (F(z))da +
{z€[0,1]|0< f(xz)<1}

So we have f{:cE[O 1”0<f(x)<1}(f(:v))"dx = 0. Since f(z) > 0, we have m({z € [0,1] | 0 <
f(z) < 1}) = 0. This implies that f(x) =1 a.e z € [0,1] hence ¢ = 1.

126| (Exercise 16)

STEP 1. Let x € [0,1]. Then exp(z) —x —1 2 0. So exp(z) = x + 1. By taking
In(-) of the both sides, we have x = In(z+1). Since z = z?, we have In(z+1) = In(z?+1).
So z = In(x? +1).

STEP 2. When n is sufficiently large, Y2 € [0,1] a.e = € [0,1] because | f(z)| €

n

L([0,1]) implies that |f(z)] < oo a.e x € [0,1]. By the inequality above, when n is
sufficiently large, we have \f(;: | 2> In ('f Il 4 1> a.e x € [0,1]. By multiplying n to the

both sides, we have |f(z)] = n - ln< o 1) and the left side is integrable on [0, 1]
hence we may apply Lebesgue Dommated Convergence Theorem.

STEP 3. By Lebesgue Dominated Convergence Theorem, we have

i [ e (Y0 < [ i ew (M1 a
n—00 [0, ﬂ 0.1] oo
o WO (M)
= 1 . "
/[0,1] "ggo n |f($)‘2 2 +1
= / lim M*“(MJ&)W@
[0 N n
/[0,1] 0 Infe) do /[0,1] V=0

[
127 (Exercise 17) |f(x)] - xg,(x) = |f(2)| - xg () € L(E)). By Lebesgue Domi-
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nated Convergence Theorem, we have

lim f(z)de = lim f(z) - xg, (z)dz
Ey

k—o0 k—o0 B

- /E lim f(x)- xg, (z)dz

X k—o00

= EMWMWM

_ /Ef(x)dx

128| (Exercise 18)
STEP 1. (m(F) = o0) By Fatou’s lemma, we have

/ lim inf(£(2))/5dz < liminf [ (f(2))"*dz.
E

k—o0 k—o0 E

Since f(x) > 0, the left hand side is [, 1 dz = m(FE) = co. So we have

lim /E(f(x))l/kdx = 0.

k—o0

STEP 2. (m(E) < o) We separate {x € E | f(z) > 1} and {zr € E|0 < f(z) =
1}. Let p € (0,1]. If a > 1, then a? < a and if 0 < a < 1, then a < a” < 1. So we have

(fla)t* (F@)* - Xqwerir@)>13 (@) + (F@)* - X a0 f@)<1y (2)
f(2)  Xjaer|f@)>11(T) + 1 X{eeBj0<f(@)<1} (T)

f(z)+1€ L(E)

A A I

By Lebesgue Dominated Convergence Theorem, we have the desired conclusion.

]

129 (Exercise 19) The proof is not easy. This exercies is related to LP convergence,
absolute continuity, and uniform integrability.

O
130 (Exercise 20) Let gx(z) o max{ fi(z), fo(x), -+, fe(z)}. Then gp(z) =
gr+1(z) and gg(x) is non-negative. We apply monotone convergence theorem to gx(z)
We have

lim [ gp(z)de = /lim gr(z)dz
E E

k—o00 k—o0

_ / sup{ fel)}do

k=1
*
< M<oo

Therefore sup;>,{fx(7)} is integrable.
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e (%) holds because [, gr(z)dx < M so supys; [, ge(x)dz < M.

Since 0 = fi(z) = supyz{fr(2)} € L(E), we can apply Lebesgue Dominated Convergence
Theorem. And we have the desired conclusion. O

131] (Exercise 21)

STEP 1. Let {a,}n>1 be a sequence of real numbers. We show that we can find a
subsequence ny, s.t

lim a,, = liminf a,.
k—o0 n—00

case 1. (liminf, ,, a, = c0) This implies that a,, — oo so we can let n; = k.

case 2. (liminf, ,o a, = —00) limy_, inf,>; a, = —oco. Since inf, >y a, = —oo for
all k, we can find ny s.t a,, < —k.

o def 1. . def . .

case 3. (liminf, .o a, € (—00,00)) Let a = liminf, .o a,. by = inf,>,a, is an

increasing sequence with respect to k and b, * a. We can find a subsequence k; s.t

0<a—b < ﬁ Since by, = inf,,>y, a,, we can find k7 = ky 5.t 0 = ag; — by, < ﬁ So
< la — by, | + |ar; — be,| < 1. So a: — a.

|a — akz«

STEP 2. We can find a subsequence {k;}s>; s.t

lim/f;w dx—hmlnf/fk Ydzx (%)

l—00

Let us recall that fy(z) = f(z) if and only if Yk, 3k, s.t fr, (z) = f(z) and that

2% implies =%. So we can find a subsubsequence kg, s.t Jke,, () 2% f(z). We apply
Fatou’s lemma to fi, (z) and we obtain

/hmmffk,Z (x)dr < liminf [ f;, (z)dx
E

m—0o0 m—0o0 E

e (x1) m — oo =, = o0.
e (x2) See (x).
The left hand side is f 5 x)dzx. So we have the desired conclusion.

132| (Exercise 22) Let us apply Theorem 4.17.
STEP 1. Let

f(z,t) o exp(—a?) cos 2tz, (x,t) € [0,00) x (—00,0).
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The partial derivative of f(z,t) with respect to ¢ is

%f(x, t) E— exp(—a;2) sin 2tx

And

%f(a:,ﬁ‘ < 2z exp(~a?) '€ L([0,00))

We explain why (1) holds. We know that the improper Riemann integral

C

(R) / 2z exp(—2?)dr = (R) lim [ 2zexp(—2?)dr < co.
0

c—00 0

For each 0 < ¢ < o0,
(L) / 27 exp(—a?)dr = (R) / 27 exp(—a?)dx
[0,c] 0

because the right hand side is Riemann integrable. By taking ¢ — oo and applying
monotone convergence theorem, we have

(L)A )2:1: exp(—2?)dz = (R) /000 27 exp(—a?)dr < .

STEP 2. Let

And

/ *2 9
g0 2 [ s s

= / —27 exp(—2?) sin 2tzdz
[0,00)

2 lim —2z exp(—?) sin 2t - yjo,q(x)dzx

c— 00 [0,00)

= lim —27 exp(—2?) sin 2tzdx
c—00 [070]

e (x2) By Theorem 4.17, we may swap & and [.

e (x3) Lebesgue Dominated Convergence Theorem. |2z exp(—?) - x[o.(2)| < 2z exp(—a?) €
L([0, 00)).

We find the above integral

(L)/ —27 exp(—2?) sin 2ztdx
[0,c]
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using Riemann integral. (We have already learned it in basic caluclus.) [, ; —2z exp(—2?) sin 2ztdx

07
is Riemann integrable because this is a continuous function on [0, ¢].

(R) / —2rexp(—a?)sin2xtdz = (R) exp(—c2)—2t/ exp(—2?) cos 2xtdx
0 0

And the Riemann integrals (R) [; —2x exp(—2?) sin 2ztdz and (R) [ exp(—a?) cos 2ztdx
are equal to Lebesgue integrals. Therefore we have

g(t) = lim —2x exp(—a?) sin 2tzdx
c—00 [O,C]
= lim <exp(—c2) - Qt/ exp(—x?) cos 2xtdx)
c—00 [O,C}

Cc— 00

= lim —2t / exp(—2?) cos 2xtdx
[0,c]

= —2t-/ exp(—x?) cos 2xtdx
[0,00)

= —2t-g(t).

e (%4) Lebesgue Dominated Convergence Theorem. |exp(—x?)cos2zt| - xjo.q(z) =
exp(—?) € L([0,0)).

By solving the differential equation, we have g(t) = g(0) - exp(—t?). And ¢(0) = \g
Now the proof is complete.

133] (Exercise 23)

STEP 1. As with Exercise 5, fi(z) £ fa(z) £ -+ £ fi(z) £ -+ ae z € R
From this fact, fi(z) converges a.e v € R? because it is monotone increasing a.e x € R%.
Therefore f(z) is measurable.

() def {limkﬁoo fr(x) if fr(x) converges

0 otherwise

STEP 2. Let gi(x) o ful@) = fi(z) 2 0 ae z € RL gu(z) 25 flz) — fi(z) ae
z € R? (hence x € E € .#). We apply monotone convergence theorem to g (z).

lim [ gp(x)dx :/ lim gi(z)dx,
E

k—o0 B k—oo
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where £ € ./ is an arbitrary Lebesgue measurable set on R?. The left hand side is

lim [ gp(o)dr = lm / (ful@) — fi())de

k—o0 I

o (¥1) fi(x), fe(r) € L(R?) so linearity holds. (When at least one of fi, f» is integrable,
fE(fl + fa) = fEf1 + fEfQ.)

e (x2) By assumption.
The right hand side is

l
/ Jm gl

))dx

/f M—/ﬁ
e (¥2) fi(z) € L(R?) so linearity holds.

By adding fE fi(x)dx to the both sides, we have

/Ef(x)dyc:/Ef(x)dx

STEP 3. The integrals above are finite by assumption, so we can subtract one
from another. And the integral has linearity, so we have

/E (F(2) — f(z))dz = 0.

for all E € #. Let E = {x € R? | f(x) — f(z) > 0}. And we have m({z € R? |
f(x) = f(z) > 0}) = 0. Similarly, we have m({z € R? | f(z) — f(z) < 0}) = 0. So
f(z) = f(z) a.e v € R%

forall E € .#,FE C R%

134 (Exercise 24)

STEP 1. Let {a,},{b,} be sequences of real numbers. Suppose that a, — a €
(—00,00). Then liminf, . (a, + b,) = a + liminf,_,. b,. First we prove this fact. Since

lim (inf a,, + mf brn) = lim inf (ay, + by) S lim (sup a, + ir;f bin)s

’
n—oo m >n n—oo mzn n—oo m/;n
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we have

lim inf a, + lim inf b,, < lim iof (@, + b,) < lim sup a,y + lim inf b,
n—o0o m/2n n—0o0 m=n n—00 m=n n—=00 11>y n—00 m2=n
Since liminf, ,, a, = limsup,_,. a, = a,

a+ lim mfb < lim inf (@, + by) £ a+ lim 1nfb

n—o00 m2=n n—o0o m=n n—o0o m>n

Now we have the deisred conclusion.

STEP 2. We apply Fatou’s lemma to g,(z) — fu.(z) =2 0 and g,(x) + f.(z) = 0.

/Eliminf(gn(x) — fo(z))dx < liminf/E(gn(x) — fu(x))dx

n—0o0 n—oo

2 Jiminf < /E on(2)dz — [E fn(a;)dx>
2 /E g(w)dz + lim inf (— / fn(x)dx)
= /Eg( fv—hg:sogp/fn

e (x1) By assmption, g,(z) is integrable for sufficiently large n. So we may separate
into two integrals.

e (x2) Step 1.

By assumption, the left hand side is

/E (9(z) — f(x))d.

And g(x) is integrable, so the left hand side is

/E g(x)dz — [E F(a)da

By subtracting | » 9(x)dx (this is finite) from the both sides, we have

limsup/fn dx</f
n—o0o

Let us repeat the similar argument to g,(z) + f,(z) and we have

/f(x)dx §liminf/ fo(x)dx
E n—oo  Jp

By merging these two results, we have the desired conclusion.
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135 (Exercise 25) D =D\ D'UDND'. Since D\ D' is a set of isolated points, so
D\ D' is countable. And DND’" C D', so this is also countable. Therefore D is countable.
We conclude that f(x) is Riemann integrable. O

136] (Exercise 26) It is enough for us to prove that

AL {z € R| f is discontinuous at x, lirriof(y) exists}
y—x

is countable. N
137 (Exercise 27)

STEP 1. Let

wy() < lim I SN ECORF(COl

Let us recall that the points of discontinuity of f is
{z €[0,1] | wg(x) > 0}.
Let f(x) of xe(x). We prove that xz () = wp(z). Then {z € [0,1] | ws(x) > 0} =
o € 10.1] [uylo) = 1} =B\ £
STEP 2. Let A% we(z), B o Xz 5(2). We prove that A < B and A = B. (We
may suppose that x € [0, 1] is fixed.)

First we show that A < B. Since both A, B take only 0 or 1, it is enough to show that
A=1= B=1. Suppose that A =1. Then V§ > 0, sup, ,cp(.q IXe(®') — xe(z”)] = 1.
This implies that there exists 2/,2"” € B(z,9) s.t xg(z') = 1,xeg(2”) = 0. (Exactly
speaking, we can find a sequence {z/,},{z} C B(z,J) s.t xg(x)) — xg(z!) — 1. For
sufficiently large n, xg(z),) = 1,xg(2]) = 0. Therefore there exists 2/, 2" € B(x,6) s.t
xe(z') = 1,xe(z") = 0.) SoVd > 0, B(z,0) N E # 0 and B(x,d) N E° # (. Hence
x € OF = E\ E. Therefore B = 1.

Next, we show that A = B. The proof is similar to the previous argument. Suppose
that B=1. Thenz € dF = E\ E. SoV§ >0, B(x,0)NE # () and B(x,§) N E # (). We
can find ', 2" € B(x,d) s.t xp(2') =1 and xg(z”) = 0 for all 6 > 0. Therefore w¢(z) = 1.
Now the proof is complete.

]

138 (Exercise 28) Let g(z) o f(x*). Since x? is continuous in R, if f(x) is
continuous at zo € [0, 1] then g(z) is also continuous at xy. This implies that
D, o {zo € ]0,1] | g(z) is is discontinuous at o}

C Dy af {zo € [0,1] | f(z) is is discontinuous at xg}

Therefore D, is also countable. We conclude that ¢ is also integrable on [0, 1]. O

139 (Exercise 29) Since f(z) + g(y) € L(E x E), by Fubini’s Theorem,
/ ((2) + g(y))de € L(E) ac y € E.
E
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Therefore there exists yg € E s.t

/E (f(2) + gluo))dz € L(E).

9(yo) # £oo (otherwise, the integral above not integrable). So

/E (f(x) + glyo))de = /E f(2)de + m(E) - glyo) € (00, 00).

Therefore [, f(z)dz € (—o00,00). Similarly [, g(y)dy € (—o00,00). Now the proof is
complete.

]

140/ (Exercise 30) m is non-negative so Tonelli’s Theorem assures us that

we may compute the integral as iterated integral or integral on R2.

STEP 1.
/ .
(e )e(0.00)x(0.00) (1 +Y)(1+2%y)

4 / </ ! da:) dy
ye(0,00) \Jze(0,00) (1 +y)(1 + 2%y)
= /ye(o,oo) <‘31Eg° /xE(D,c) (1+ y)(ll + 2%y) dx) %
= /ye(o,oo) (CILI?O /te(O,\/ﬂc) (1+ y)l(l + 1) %dt) %
. 1 1
- /ye(o,oo) </t€(0,oo) (L+y)(1+1¢2) ﬁdt) W

* o ") (/tew,w) =)

dxdy

e (1) Tonell’s Theorem. We first compute me(O 00) -dx and then f c000) " -dy.
e (x2) monotone convergence theorem. lim, f(o o = limese f(o ooy X(0,0) 1 =

f hmc%oo X(0,¢)
o (¥3) t=,/yxr. §4.2. Example 10
e (x4) monotone convergence theorem.
STEP 2. We use Riemann improper integral to compute the integral. (

LG 0,00) (lth2

ft o) T +t2)dt (L) lim, 00 ft o @ Jiﬁ dt by monotone convergence theorem. And

ft cld @ +t2)dt is Riemann integral. So we find

I3

1
R) lim ——dt = —.
L N (e K
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Next, (L) [,c0.00 mdy = (L) lime, 40,0500 Sy ey en) mdy by monotone con-

vergece theorem. Similarly, fy cletca] mdy is Riemann integral so we find

1
(R) lim / 1 4
1= 10,2200 Jyeler oo (1+ y)\/g

* (R) lim 2

/ —QdZ =T
c1—+0,co—00 ze[\/er/e) (1 + 2 )

o (x) Let z = \/y and change variable.

Therefore the integral is %2
STEP 3.

1
/(ffvy)G(O,oo)x(o,oo) (1 + y)(l —+ :EQy)

= y €T
z€(0,00) y€(0,00) (1 + y)(l + ny)
1
lim/ dy) dx
= Jyepoq (1+y)(1+ 2%y)
1 1 2
lim/ 2( - xQ)dy>d:c
c—00 ye[ojc]l—x 1+y 1+~Ty
1 1 x?
R) lim ( — ) dy) dx
( )c—>oo vepg L—22 \1+y 1+2%y

(
(
(
= (e () )
(
(

dxdy

1 1
— In (ﬁ)) dx

(%5) Tonelli’s Theorem.

e (x6) monotone convergence theorem

(*7) = (ﬁ -1 f;y) is Riemann integrable on y € [0, ¢]. So we find the integral

as Riemann integral.

(x8) by the result of Step 2.
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141] (Exercise 31) f(x) is a non-negative measurable function. (So we can apply

/R Flo)de = /R /E Flo — t)dtdz
= [ [ 1=t 0 dtas
d /R/Rf(x—t)-x]z(t)dxdt
=[x [ 5=t do i
2 [ ) [ f@) doa
=[xty at- [ fia) aa
_ m(E)-/Rf(:U) do < 00

Tonell’s Theorem).

e (x1) Tonell’s Theorem.

e (x2) Translation does not change the value of integral. See Theorem 4.13.

Since m(E) > 0, [ f(
142 (Exercise 32) We show that both [ F
STEP 1. Since zf(x)

) dx < oo. Now the proof is complete. O

r)dr and f F(x)dx are finite.

fo xf(z)dz is finite.

/Oooxf(x)dx - /Ow/oxf(x)dtdx
A /Ooo/toof(a:)da:dt
/000 (— /_; f(x)dx) dt

= /OOO—F(t) dt e R

e (1) Fubini’s Theorem.

e (x2) By assumption ffooo f(x)

So fooo fo

))dx € R.
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So

STEP 2. Repeat a similar argument on [°_ —x f(z)dz.

/_io—xf(x)dx _ /_(;/xof(x)dtdx
2 /_(;/_;f(x)dxdt

= /Oo F(t)dt e R

e (x3) Fubini’s Theorem.

By merging these two conclusions, we have [~ (—zf(z))dv = [7°_F(t)dt € R.

143 (Exercise 33) We apply Lebesgue Dominated Convergence Theorem.

|cos x arctan nx| < gcosx e L([0, =]).

N

us

3
lim cos z arctan(nx)dx
n—o0

us
3
lim cosx arctan(nz)dr =
n—oo 0

jus
2

T
CoS T - §dm

[ *
NI S — S—

(R) /2 cosxdx =
0

b |

o (x)if z € (0,%], arctannx — 5. So arctannz — § a.e x € [0, 7]

144] (Exercise 34)
STEP 1. (g € L(I))

| gt as

1%
:c\“e\@
=

T
ISH
8
&

AL

4.6.
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e (x1) triangular inequality

e (x2) Tonelli’s Theorem

STEP 2. ([,g= [, f)

/Oag(rv) dr =

e (x3) Fubini’s Theorem. We already know that g(x) € L(I), so we can swap dt and
dz.
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CHAPTER b

Solutions

§ 5.1

(Definition 5.1) For all x € E and for all € > 0, there exists [ € I's.t z € [
and diam(/) < €, then we say that I' is a Vitalli cover of E.

e Until now, | - | is defined for open intervals. (i.e if I = H?Zl(ai,bi), then |/ &
H?:l(bi — a;).) However, we extend the definition of | - | to closed intervals and

half-open intervals.

e Note that diam(/) = || when F C R,

]

(Example 1)  Let {rp,}m>1 def QnNla,b]. Let T aef {Imn}mennen where I, ,, df
[P — £, 7 + 1]. We claim that T is a Vitalli cover of [a,b]. We pick n € Ns.t 2 < e. For
every z € [a,b] we can find 7, € QN [a,b] s.t [# — 7| < . (Qis dense.) So x € I,,,, and
diam(I,,,,) = 2 <e. O

(Theorem 5.1 Vitalli’s Covering Lemma) We pick G € &' (an open set) s.t

E C G with m(G) < oco. (We can find such G because m*(E) < oco. Let us consider
def

{Jotnz1 st EC U, Jn with Y | J,| <m*(E)+1<o0. Let G =, Jn.)

We may suppose that VI € I', I C G without loss of generality. Let x € E. Then
x € G. There exists 6 > 0 s.t B(z,d) C G. Since I is a Vitalli cover, we can find I € T’
s.t ¢ € [ and diam(/) < d. Then I C G. So we suppose that every I € I is contained in
G.

STEP 1. We pick an arbitrary interval from [; € I'. Now suppose that we have
chosen {I,--- ,I;} CT(k=21). f EC Ule I;, then the statement holds obviously, and

we do not have to prove anymore. So we we suppose F ¢ U§:1 I; for all k 2 1. Let us
define

5 Csup{|I| | T €T with INL; =0 forall j =1,---  k}.
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Note that §; < 0o because I C G for all I € I' by our assumption. We can find I, € T’
s.t

1
| Tiyq1| > §5k and I N =0foralj=1,--- k.
Since {I,,},>1 are disjoint with each other and | J.~, I, C G, we have
" (U fn) 1S
n=1 n=1

< m(G) < ©

o (+1) m(ln) = [In]- (See §2.1). So m (U,Zy In) = D22y m(In) = 2202 [nl-
Since Y7, [n] = D202, [In| < 00 as m — oo, we can find sufficiently large n € N s.t.

o0

€
EE: |I” < g.
j=n+1
Let .
s=e\{JI,.
j=1
Our goal is to prove that
m*(S) < e.

STEP 2. Let [} (j = 1,2,---) be the interval which has the common center with
I; and whose edge length is 5 times ;. It is enough for us to prove that

sc |J 1.
j=n+1
because . . .
* * * E
m(S) S Y mI)= D IG1=5 ) |l<5--=¢
j=n+1 j=n+1 Jj=n+1

and so the proof is complete.

STEP 3. We prove that S C U2, ,, I;. We pick an arbitrary point z € S and

show that there always exists sufficiently large no € N s.t € I, . By our assumption

that {I;};>1 are closed intervals, F o Uj—, I; is a closed set. Let us recall that d, o

dist(z, F') = |z — y| for some y € F by Theorem 1.24. Since x ¢ F, dist(z, F)) > 0
(otherwise |x —y| = 0 & = = y for some y € F'), 6, > 0. Since I' is a Vitalli cover, we
can find I, € T with diam(/,) < d,. Then I, and F = U?Zl I; are disjoint. So I, NI; =0
forall j=1,---,n.

We claim that there exists sufficiently large ng > n s.t I, N I,,, # 0. To prove this,
suppose that I, N I; = 0 for all j = 1,2,---. Note that |[;| = diam(l;) — 0 as j — o0
because > 72 [I;| < 00. So we can find sufficiently large jo € N s.t

1
L] < 511 (2
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Let us recall that

S Esup{|I| | INL;=0forall j=1,--- jo}.

Since we suppose that I,NI; forall j =1,2,---, (so |I;| € {|I| | I € I'with INI; forall j =
]-a o 7j0})7 we have
L] £ 6. (43)

By merging these two results (*2,3), we obtain
1 1
i1l < Sl < 50, (+4)
However we chose {I;};>; so that
1
|[j0+1| > E(sjo (*5)

in STEP 1. And (%4) and (*5) contradicts to each other. So we conclude that there exists
no >n st I, NI, #0.

STEP 4. We suppose that ng is the smallest index s.t I, N I,,, # 0. So I, N I; =)
for j=1,--- ,n9g— 1. Therefore

|| < 0ng—1 G1§sup{|[| | IeTwithINnj=0forall j=1,--- ,no— 1}.

Let us recall that we chose {I;};>1 s.t

1
’[TLo’ > 5(5”0,1.

By merging these two results we have,

11| < 2|1,
Since x € I, I, N1, # 0 (not disjoint) and diam(1,) = |1, is less than twice diam(I,,) =
[ T

rel, CI?

no’

where I, is the interval which has the common center with I, and whose edge length is
5 times I,,,. (You may draw a figure to see this fact.) In conclusion, Va € S, there exists
no >n s.t x € I, . Therefore
o0
sc |J 1.

j=n+1

Now the proof is complete.
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(Definition 5.2)

D* f(zg) ¥ timsup LT = F(@0)

h—+0 h
= lim sup f(wo + k) = f(xo)
h—+0 ke(0,h) k
def . . o f(xo+h)— f(zo)
D, f(zo) = limin h
= lim inf flwo + k) — f(zo)
h—+0 k€e(0,h) k
D™ f(zo) ' Jim sup J(wo + 1) — f(xo)
h——0 h
~ lim sup f(xo+ k) — f(zo)
h=—=0 ke (h,0) k
def . . o f(xo+h)— f(zo)
H A
= lim inf f(wo + k) — f(xo)
h——0 ke (h,0) k

It D f(xg) = Dy f(xo) = D™ f(x0) = D_f(x0), then we say that f(x) is differentiable at
x = x9. Note that

D™ f(xo) 2 Dy f (o),
and

D™ f(zo) 2 D— f(x0)
always holds.

(Theorem 5.2 Lebesgue’s Theorem)
(1) We show that
DYf(x) = D, f(x) = D™ f(z) = D_f(z) a.e x € [a,b].
Let
Ey = {z€lab]| DT f(z) > D_f(2)}
By £ {o€lab]| D™ f(@) > D.f(@)}

We show that
Then it follows that

*2

D*f(x) € D_f(z) € D~ f(x) Dy f() 2 D* f(a) ac @ € [a,b].
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e (x1,2) These inequality always hold by definition. liminf < lim sup.

And we have the desired conclusion. Let g(x) = —f(z). Then g(x) is a monotone
decreasing function on [a, b], and

Ey={z €a,b] | DYg(z) > D_g(x)},
because
DYg=D"(-f)=-D,fand D_g=D_(—f)=—-D"f.

And the proofs of m(FE;) = 0 and m(FE>) = 0 are quite similar. (monotone increasing vs
monotone decreasing) It is sufficient for us to show that m(E,).

Let Q* o QN (0,00). Note that

Ei= |J {z€lab]| D f(x) >r>s>D_f(x)}

r,seQt

Note that D_f(z) = 0 because f(z) is monotone increasing. So it is sufficient to pick
r>s e Q" (but not Q) in the equality above. Let

A {rea,b]| DT f(x)>r>s>D_fx)}

It is sufficient for us to show that
m(A,.s) =0,
for each (r,s) € Q" x Qt (r > s) because

m(E) £ Y m(A).

r,seQt

Now we fix 7, s € Q" and let
def

AL 4,

STEP 1. Let € > 0 be an arbitrary positiver number. Let G be an open set with
G D A and
m(G) < (1 +¢e)m*(A). (xa)

Actually A € .#, however we can derive the result without the assumption that A € .Z.
So we use m*(A) instead of m(A). For every x € A, since

flx+h) = fx)

D_f(z) = liminf

h——0 h

— limige L&~ (@)
h—+0 —h

= lim inf fle—h) — f(z) < s,
k—+0 he(0,k) —h

we have
e fle—h) — f2) .
he(0,k) —h
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for every k > 0 (especially for arbitrarily small £ > 0). And we can find h € (0,k) s.t

fl@—h) = f(z)
—h

< S.

Since x € A C G and G is an open set, when h > 0 is sufficiently small,
[z — h,z] C G.

In conclusion, for every x € A and for every 6 > 0, we can find h € (0,0)

—h) —
f —)h /() <sand [z —h,z] CG
Therefore such {[z — h,z]} is a Vitalli cover of A. By Theorem 5.1 Vitalli’s Covering
Theorem, there exist disjoint closed intervals {[z; — hj, x;]}/_; s.t

(A\U h],:lrj> < e (xb)

Note that (Jj_,[x; — hy, hj] is a Lebesgue measurable set. By definition of Lebesgue
measurability, for all A C R we have

m*(A) (AOU hj,x]>+m (A\U h],:vj>.(*c)

By (xb) and (xc), we have

(AHLPJ h],x]> >m*(A) —e

STEP 2. Note that

<s (& flx;) = f(x; — h;) < shy).

So we have

We explain (*2.1).

p p *2.3 2.
=1 =1

o (x2.2) {[x; — hj,z;]}5_, are disjoint.
° (*23) jzl[xj — hj,mj] C G.
o (%2.4) See (xa)
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STEP 3. Let )
B déf A N U(l'] — hj,l'j).

j=1

We repeat a similar argument. For every y € B, D% f(y) > r. Note that
fly+h) = fy)

D*f(y) = limsup

h—+0 h
_ mnsw)ﬂy+m—f@)>r
h—~+0 g (0,h) k

So for every h > 0 (especially for arbitrarily small h > 0),
fly+k) = fy)

sup >,
ke(0,h) k
hence we can find k € (0,h) s.t
k) —
ﬂy+; o),

By taking sufficiently small £ > 0, we can satisfy
[y7y+ k] C (l’j - h],xj) for some ] = 17.. P,

because y € B C Ji_,(z; — hj, z;), and each (x; —hy, x;) is open. In conclusion, for every
y € B and for every § > 0, we can find k£ € (0,9) s.t

fly+k)— f(y)
k

>rand [y,y + k] C (x; — h;,x;) for some j =1,--- ,p.

Therefore, such {[y,y + k]}, x is a Vitalli cover. By Theorem 5.1 Vitalli’s Covering The-
orem, we can find disjoint closed intervals {[y;, v; + ki]}i; s.t

i=1

320



Therefore

Zki = Zm([yi,yi+/€z’])
£ m(U[yiayi“‘ki])

=1

q
=z m' (B Nl vi + kz])
=1

5.1

22 m*(B) —m* (B \ Ul v + k’z])

i=1

o (x3.1) {[yi, ys + ki]}_, are disjoint.

. (*3 2) Since U, [vi, i + ki] € A, we have m*(B)
m* (B\ Uiz [y vi + Fil).

= m* (BNUL, [y, vi + k]) +

e (x3.3) Use sub-additivity of Lebesgue measure. Then recall that a countable set is

a measure zero set.

<AmU h],x]>

IA

S*

o

D
C =

.
Il

A
3*
N
D
C =

.
Il
—_

A

3*

s

)
=

1

<.
Il

e (x3.4) By the conclusion of STEP1.

Furthermore, for each i = 1,--- , g, we have

flyi +k+1)— ()

So

>r o (& flyi+ ki) —

[z — hj#”j])

(z; — hj#"j)) +m* (A N O{%‘ - hj»xj}>

=1

(zj — hm%')) +m” (U{% - hjy%'}>
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STEP 4. Let us recall that for each ¢ = 1,--- ¢, there exists j s.t [y;,y; + ki] C
(xj — hj,x;). Furthermore, f(x) is a monotone increasing function on [a, b]. These facts

imply that
q p
> Flyi+ k) = fw) éz xj — hy)
=1 j=1
By the conclusion of STEP2 and STEP3, we have
r(m*(A) — 2e) < s(1+e)m*(A).

By taking € — 40, we have
Since r > s, we conclude that

Now the proof is complete.

(2) Let
h@ (5 (o4 1) - 1)

Note that f,(z) is a non-negative measurable function define on [a,b]. We may suppose
that

f(z) = f(b) (if x > b).

exists a.e © € [a,b], lim, o fn(z) exists a.e © € [a,b]. And we

(@) def {hmh—mo

fla+h)—f (=)

Since limy,_g "

define

w if exists

0 otherwise

Since limy,_, 4 M does not always exist, we modify the definition of f’(x) so that

f'(z) becomes a measurable function defined everywhere on [a,b]. (Note that the mod-
ification is only done on a measure zero set, so it does not have an influence on the
integral.) However, some people do not implement the modification above, and directly

treat f'(x) C limp o w as a measurable function defined a.e z € [a, b].
Anyway now f’(z) is a measurable function, and f’(z) = 0 because f(x) is monotone
increasing on [a, b]. Furthermore, lim,, o, f.(z) = f'(x) a.e x € [a,b]. By applying Fatou’s
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lemma to {f,(z)},>1, we have

—

=
&
Y
3
I
?\
<=
E
=
—+
o
—~
&
Y
3

A

=

=

=
=
—
=

U

S

[1&
1
=
=4
—
s
—
N
)
_|_

2 Jiminf <n/ f(x)dx —n f(x)da:)
n—oo [a+1/n,b+1/n] [a,b]

1%
3»—’_'
18
8E
=
7N
S
@\
Q“
_|_
A
~
3
Q.
&
|
3
—
)
Jr
=
3,
s
&
QU
&
~

*9

< liminf n/ dw—n/ f(a)dx)
n—o0 bb+1 /n] [a,a+1/n]

= liminf (f(b) —
n—oo

*1

o () = liminf, o fn(z) a.e x € [a, b].

o (x2) Fatou’s lemma.

(
(

e (x3) By definition.
(

*4) Note that f(z) is intregrable on [a, b]. Note that |f(x)| < max{|f(a)|,|f(D)|} <

oo (f(x) is a real-valued function), and [a, b] is bounded.

#6) Rewrite [ f(z + )X (z)dz. Then apply Theorem 4.13.

*8

) f
)
)
)
(f
*b) Put n outside the integral. (Theorem 4.10)
)
)
) f(x) = b when z > b.
)

(

(

e (x7) Simple rearrangement.
(

(%9

o f(z) is monotone increasing, so f(z) = f(a).
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[ 6 | (Theorem 5.3) Let

n

S@)EY fule), Su(2) E Y fulz), Ru(2)= Y fula).

k=1 k=n+1

Since S(x) converges (is well-defined and is finite), R(x) also converges. By assumption,
each f,(z) is monotone increasing on [a, b], so f/(x) exists a.e © € [a,b]. (Theorem 5.2)
Let A, be a measure zero set where f!(z) exists z € [a,b] \ A,. Since A o U A,
is also a measure zero set, we can say that f/(z) exists for all n € N a.e z € [a,b)].

Note that S(z),S,(z), R,(z) are also monotone increasing function on [a,b]. Simiarly,
S'(x), S!(x), R, (z) exists for all n € N a.e x € [a,b].

STEP 1. Note that

because

k—ro0
= lim (; felw) + ;1 fg(af))

= S,(z) + Ru(x).

From the previous discussion, S'(z), S, (x), R, (x) exists a.e x € [a,b]. So we have
S'(x) = S, (x) + R, (z) a.e x € [a,b].
for each n € N. Note that

d d & i d
%@ViE“@:@QZﬁ@: ——fi(r) ae x € a,0]
k=1

k=1

e (x1) Recall that (f +¢g) = f'+ ¢ if f',¢ exists. (For a sum of a finite number
of differentiable functions, we can swap > and %. In this theorem, we prove that
we can swap » . and % for a sum of a countably infinite number of differentiable
functions.)

So we have
n

S'(x) = filx) + R,(z) ae x € [a,b],

k=1

for each n € N. All we have to do is to prove that

lim R (z) =0 a.e x € [a,b],

n—oo
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STEP 2. Note that

R.(x) = foi1(z) + Rpya(2),

because
Ry ( —]}gglo<z Fi(@) + fra (2 ) Z Fi(@) + faa (2).
Jj=n+2 j=n+2
Recall that R] (z), f/(x) exist for all n € N a.e z € [a,b]. So we have

R, (z) = fr(2) + By (2) ae x € [a,0].
Since f; . ,(z) 2 0 (if exists), we have
R, (z) 2 R, ,(z) a.e z € [a,b].

So R (x) exists a.e x € [a,b] and {R] ()} is a decreasing sequence with respect to n € N.
This implies that
lim R) (z) exists a.e x € [a, b].

n—o0

We define
R*(x) def | im0 Rl (z) if exist? ‘
0 otherwise

Note that R/ (x) = 0 (if exists), so R*(x) 2 0. Therefore R*(x) is a non-negative measur-
able function define on [a, b].

STEP 3. By Fatou’s lemma (we apply to R,(x)) and Theorem 5.2

/ R*(z)dx
[a,b]

1%

/ liminf R) (z)dx
[a,b]

n—oQ

*3

< liminf/ R) (z)dx
n—oo [a,b}

*4

< liminf(R,(b) — R,(a))
n—oo

I1&

0.

e (*2) Since lim,,,, R, (x) exists a.e x € [a, b], R*(z) = liminf, . R, (z)a.ex € [a,b].

)
(%3) Fatou’s lemma.
e (x4) Theorem 5.2.

)

o (x5) Recall that R,(a) = 7.2, ., fr(a) converges. (exists and is finite) So when
n — 00, R,(a) — 0. (Basic calculus) Similarly R,,(b) — 0 as n — oc.

This implies that R*(z) = 0 a.e x € [a,b]. Therefore if lim,_,., R, (x) exists, then
lim, o R (2) = 0 a.e z € [a,b]. (So we can say that lim, . R, (z) = 0 a.e z € [a,}].)
Now the proof is complete.
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]

(Exercise 1) Suppose that F(z) is a real-valued primitive function of f(z).
Since F'(z) = f(x) = 0 (f(x) is non-negative by assumption), F(x) is monotone-
increasing. By Theorem 5.2, we have

(x)dx = / F'(z)dx £ F(b) — F(a) € [0,00).
[a,b] [a,b]

So f(z) is integrable on [a,b]. This contradicts to the assumption. Now the proof is
compelte. O

(Exercise 2)

STEP 1. Since lim, o fn(z) =1 a.e z € (0,1), we can pick by 1 s.t
lim f,(bg) =1forall k=1,2,---.

n—oo
Otherwise, there exists some b € (0,1) s.t Vo € [b,1) lim,,, fr(x) # 1. Similarly, we can
pick ar N\, 0 s.t

lim f,(ax) =1forallk=1,2,---.

n—oo

STEP 2. By Theorem 5.2, f/(z) exists a.e x € (0,1) and f/(z) = 0 if exists.
Virtually we can regard f/ (x) as a non-negative measurable function. (If f/(z) does not
exist, then we assume f/(z) = 0. ) By applying Fatou’s Lemma and Theorem 5.2, we
have

*1
0§/ liminf f) (z)dx < liminf/ fr(x)dx
[ag,bk] T "0 S fak b
*2
< lminf(fo(be) — folar)) 21—1=0.
n—oo

e (x1) Fatou’s Lemma.
e (%2) Theorem 5.2.

° (*3) limn_m fn(ak) =1 and hmn—mo fn(bk> =1
So for every k € N,

n—oo

/ liminf f) (x)dx = 0.
lakbr]

By Theorem 4.4 Monotone Convergence Theorem (x4),

0= lim liminf f/ (z)dx = lim (lim inf f,,(2)) - X{ap b (2)d

k—o0 [ar,bi] n—00 k—o0 (0,1) n—o0

= / lim (iminf f; (z)) - X[a,0] (2)dT
(0,1)

k—oo n—oo

= / liminf f (z)dx.
(0,1)

n—00
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So we have

/ liminf f) (z)dz = 0.
(0,1)

n—oo

Since liminf,,_, f! () is non-negative, the above integral implies that liminf,,_, f}(z) =
0 a.e z € (0,1). (Review the properties derived from Definition 4.2.) Now the proof is
complete.

]

[ 9 | (Exercise 3) Similar to Theorem 5.1 Vitali’s Covering Theorem, we may sup-
pose that every I € I' is a closed inteval. Because if we obtain a countable disjoint closed
intervals {1;}52, with m(E\ U;Z, I;) = 0, then {;} are countable disjoint open intervals

and m(E\ U2, IJ) = 0. (Note that edge points are measure zero sets.)

STEP 1. By Vitali’s Covering Theorem, we can find a finite number of closed

intervals {7}, s.t
K;
m* (E\ U ILk) <1
k=1

STEP 2. Let F} def U£(:11 I . Since E\ Fy C E and I' is a Vitali cover of E,
so I' is also a Vitali cover of E\ F;. Suppose that we have picked an arbitrary point
r € E\ Fi. Wepick I,5 € T with « € I, 5 and diam(/,5) < 0. If we choose sufficiently
small 0 > 0, then I, 5 N F; = () because F} is closed. (Otherwise, we can find a sequence
{z,} C I,sNFy C Fy with x,, — x by taking § — 0. Then = € F} because F} is closed.
This contradicts to the assumption that z € E'\ F}.)

Therefore, T'; & {I eT | INF, =0} is a Vitali cover of E'\ F;. By Vitali’s Covering
Theorem, we can find a finite number of closed intervals {I,;};2, C Ty s.t

m* <(E\F1)\gjg’k) < %

STEP 3. We continue the procedure in the similar way. Then we obtain disjoint
closed intervals {I;} s.t

n Kj
m* | E\J U L <%.

j=1k=1

for every n € N. Therefore

n=1 k=1

Now the proof is complete.
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(Exercise 4) Let

def

F(e)  f(z) - ke,
then F'(x) is also continuous on [a, b]. Note that
F(b) = F(a) € R,

so F(z) take the maximum value or the minimum value at some z = ¢ € (a,b). If z = x
is the maximizer of F', then

l)+}7ﬂr0)

A

0= D_F(x).
If x = x( is the minimizer of F', then
D™ F(x9) £ 0= Dy F(x).

And then we have the desired conclusion. O

(Exercise 5)

STEP 1. We can find an open set G,, € 0" with E C G,, C [a, b] with m(G,,) < 5

2_71,'

(Consider {I,;} with E C g, Ing with m*(E) < Y27 x| < m*(E) + €, where
€y = 2% Let G, of Ui, Inx- Review Chapter 2.) Let

Fol2) ¥ m(la, 2] N Gy).

Obviously, 0 £ f,(z) £ m(G,) < 5= and each f,(z) is a monotone increasing function on
[a,b]. Furtheremore,

falz+h) = fu(x) = m(la,z+h]NG,) —m(a,z]NG,)
= m((x,x +hNG,) < m((x,x + h]) = h,

so each f,(z) is a continuous function.

STEP 2. Let us consider
S@) = fal@), Sal@) =D fila).
n=1

Obviously S(z) is non-negative and monotone increasing. Since S, (x) is continuous (be-
cause it is a sum of a finite number of continuous functions) and S, (z) = S(z) converges
uniformly on z € [a, b] (see below), S(z) is continuous. (Recall that a sequence of contin-
uous functions uniformly converges to a function, then the function is also continous.)

S(2) = S,()] = 5(z) = Sue)
= Jim (8i(x) = $,(@))

= Jlim Z fi(x)
Jj=n+1
k
1 1
é lim - =
k—ro00 27 2n
J=n+
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So

lim sup |S(z) — Su(x)| =0.

=0 yela,b]

In conclusion, S(z) is a non-negative continuous and monotone increasing function.

STEP 3. We show that S’(z) = oo if x € E. Since E C G, for every x € F,

r € G,. Since G, is an open set, we can find h, > 0 s.t [x,z + h,] C G,. Let h o

min{hy,--- ,hx}. Then [x,2 4+ h] C Gy, - Gg. Note that for n =1,2,--- |k,

falw+h) = fulz) _ m((z,2+h]NGy)  m((z,z+h]) .
h h h 7

SO

b w(x+h)— fu.lx
;f( )=o) _

Therefore

S(z+h)— S(x) — im Sp(x 4+ h) — Sp(z)
h m—00 h

_ mlgréozm: fulz + h})b — fu(zx)
n=1

v

i e t1) = fole) _

This implies that

lim inf Sle+h) = 5(@)
h—+0 h

v

k.

Since k is an arbitrary natural number, by taking k — oo, we have

lim S(x+ h) — S(z) ~
h—+0 h

By the similar argument above, we have

lim S(x) — S(z —h) —
h—+0 h
(Consider [x — h,z] C G, for n =1,--- ,k.) Now the proof is complete.

(Exercise 6) Let {r,}n>1 o (0,1) NQ and let



5.1

We claim that

S(x) =N fule)

is the desired function. Note that S(x) converges for all x € [0,1]. This is because
0<8) £, 4 =1 <00, and let S,(x) © S0 fi(x), then S,(x) £ Spia(2) s0
S(z) = limy, 00 Sy () exists.

STEP 1. First, we show that S(z) is strictly monotone increasing. Since each
fn(z) is monotone increasing, so S(z) is monotone increasing. Let 1 < x2 € [0, 1]. There
exists r € (z1,22) NQ C (0,1) N Q. This implies that there exists 7, s.t x1 ¢ [r,, 1] but
Ty € [rn, 1], hence fo(z1) = 0 but f,(zs) = 5. So S(z1) < S(zs). It follows that S(z) is
strictly monotone increasing.

STEP 2. Next, we show that S’(z) = 0 a.e © € [a,b]. Recall that each f,(z) is
monotone increasing and S(z) converges. So we can apply Theorem 5.3. Also note that
fl(x) =0aexel0,1],s0 f/(x) =0 for all n € N a.e x € [0,1]. By Theorem 5.3,

S'(x) = Zﬂl(x) =0a.ex€[0,1].

Now the proof is complete.

(Exercise 7) O
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