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Preface

I wrote this book to review Real Analysis for myself. I picked up important points in a
textbook of Real Analysis and rewrote it into an exercise book. There are some mistakes
and leaps of logic in the original textbook. I modified them based on my understanding.
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はじめに

私が、中国の実解析の教科書を用いて勉強していた際に、重要なポイントを整理
して、この問題集の形にまとめあげた。 その教科書内の証明には誤りがあったり、
論理の飛躍があったため、私の理解に基づいて可能な限り修正をしている。 また、
その教科書より優れたor簡潔な証明があれば、そちらを採用した。 さらに元の教科
書の定理が強すぎる条件を与えていた場合、定理自体を書き換えたものもある。 た
だし私の書いた解答にも大なり小なり誤りが多く含まれていると思うので、気づい
た方は教えていただければ幸いである。
本書は基本的な解析や、集合およびユークリッド空間上の位相の復習からはじ

まる。 次にユークリッド空間上の点集合に対するルベーグ外測度、およびルベーグ
可測性を定義する。 その後、ルベーグ可測関数と、ルベーグ積分を定義した後、ル
ベーグ積分の性質について議論していく。 また最後に微分やLp空間についても触れ
る。
本書はすでにルベーグ積分を勉強した人のための演習書のようだが、しっかりと

手を動かしながら理解したい初学者向けの入門書として用いることができるのでは
ないかと思う。 「百聞は一見に如かず」という言葉があるように、数学も説明を聞
くよりも、実際に自分で問題を解いてみることが習熟への近道であると思う。 そこ
で問題演習の形式で、定義、定理、例題の解法を一つ一つ理解しながら読み進めら
れるようにした。
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序言

在學習實分析時，我將自己所研讀的課本之重點整理出來，並重新寫為這本題庫。
在定理證明中，我盡量修正了原始課本的錯誤之處，以及針對邏輯跳躍之處加以補充
說明。 如果想到比原始課本更簡明易懂的證明，我便採用了該方法。 另外，我發現在
原始課本中，有些定理給的條件過強，故我也修改了該書中一些定理的前提條件。 如
果本書中有錯誤之處，歡迎讀者們指教與分享。
本書從基本的微積分、歐氏空間上的點集合以及拓撲談起，緊接著定義歐氏空間勒

貝格外測度以及勒貝格可測性。 再來，我們定義勒貝格可測函數以及勒貝格積分，然
後開始探討勒貝格積分的各種性質。 另外，我們也會探討微分和Lp空間。
本書並不是針對曾學過實分析的人所撰寫的題庫，而本書的主要對象是希望能確實

理解實分析的初學者。 俗話說：百聞不如一見，同樣地，當學習數學時，與其專心聽
老師講解，不如自己拿起筆多寫題目。 有鑑於此，本書採用了習題演練的形式，讀者
們可藉此深度理解書中出現的定義、定理、習題解法等等。
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CHAPTER 1

Set Theory and Point Set

§ 1.1

1 (Definition 1.17, 1.18, 1.19, 1.20, 1.21) Answer the following questions.

(1) Let E ⊂ Rd. Define diam(E).

(2) Explain what is a bounded set.

(3) Let x0 ∈ Rd. Let δ > 0. Define an open ball and a closed ball. We denote
them B(x0, δ) and C(x0, δ) respectively.

(4) An open rectangle. A closed rectangle. A half-open rectangle.

(5) Let {xk}k=1 be a sequende of points on Rd. Define limk→∞ xk = x.

2 (Definition 1.21, 1.22, 1.23, 1.24, 1.25) Let E ⊂ Rd. Answer the following
questions.

(1) What is an accumulation point or a limit point of E? We denote a set of limit
points of E as E ′. What is a closure of E?

(2) What is an isolated point of E. Explain that the set of isolated points of E is
expressed as E \ E ′.

(3) What is a closed set? What is a closure of E. (We denote it as Ē.)

(4) What is an open set? (State the definition of an open set based on the definition
of a closed set.)

(5) What is an interior point of E? (We denote a set of interior points of E as E̊)

(6) What is a boundary of E? We denote a boundary of E as ∂E. Define ∂E
based on E and E̊. Also show that

∂E = A
def
= {x ∈ Rd | ∀δ > 0, B(x, δ) ∩ E 6= ∅, B(x, δ) ∩ Ec 6= ∅}.
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1.2.

3 (Theorem 1.13) Suppose that E ⊂ Rd. Show that x ∈ E ′ if and only if

∀δ > 0, B(x, δ) ∩ E \ {x} 6= ∅.

4 (Theorem 1.14) Let E1, E2 ⊂ Rd. Show that

(E1 ∪ E2)′ = E ′1 ∪ E ′2.

5 (Theorem 1.15 Bolzano-Weierstrass Theorem on Rd) Show that any
bounded infinite set E ⊂ Rd has at least one limit point. (or if {xn}n=1 ⊂ Rd

is bounded, we can find a subsequence nk s.t xnk converges to some x ∈ Rd.) You
may directly use Bolzano-Weierstrass Theorem on R1.

6 (Theorem 1.15 Supplement) Show Bolzano-Weierstrass Theorem on R1.

7 (Exercise 1.4.1) Let E ⊂ R be an uncountable set. Show that E ′ 6= ∅.

8 (Exercise 1.4.2) Let E ⊂ Rd and suppose that E ′ is a countable set. Show
that E is also a countable set.

9 (Exercise 1.4.5) Let E ⊂ R2 and suppose ∀x1, x2 ∈ E, |x1 − x2| > 1. Show
that E is a countable set.

§ 1.2

(I) Closed Set

10 (Example 2 and 6) Let f(x) be a function defined on Rd. Show that f(x) ∈
C(Rd) if and only if E1, E2 are closed for all t ∈ R where

E1
def
= {x ∈ Rd | f(x) = t}, E2

def
= {x ∈ Rd|f(x) 5 t}

(How about open sets?)

11 (Example 3) Let B(x0, r) ⊂ Rd. Show that the closure of B(x0, r) is a closed
ball C(x0, r).

If A ⊂ E and A = A ∪ A′ = E, then we say that A is dense in E. In the following
examples, we prove that a set is dense. It is enough for us to prove that ∀ε > 0 and
∀x ∈ E, there exists a ∈ A s.t |x − a| < ε. (Then we can find {an}n=1 ⊂ A s.t an → x.
So x ∈ A′.)

12 (Example 4) Let a /∈ Q, Ea = {p+ aq|p, q ∈ Z}. Show that Ēa = R.

13 (Example 5) Let E = {cosn}. Show that Ē = [−1, 1]. Hint. Use the conclusion
of Example 4. cos(n+ 2mπ) = cosn

14 (Theorem 1.16 Some Properties of a Closed Set)

9



1.2.

(1) If F1, F2 ⊂ Rn are closed sets. Then F1 ∪ F2 is a closed set.

(2) If {Fα|α ∈ I} is a family of closed sets, then F =
⋂
α∈I Fα is a closed set.

15 (Theorem 1.17 Cantor’ Intersection Theorem) Let {Fk}k=1 be a sequence
of nonempty and bounded closed sets on Rd. Suppose F1 ⊃ F2 · · ·Fk ⊃ · · · . Show
that

∞⋂
k=1

Fk 6= ∅.

16 (Exercise 1.5.1.4) Let E ⊂ Rd. Show that

Ē =
⋂

F⊃E;F : closed

F.

17 (Exercise 1.5.1.5) Let F ⊂ R be a bounded closed set. Let f(x) be a real-
valued function defined on F . For each x0 ∈ F ′, we have limx→x0,x∈F f(x) = +∞.
Show that F is a countable set. Hint. Consider the contraposition. Suppose that
F is uncountable and derive a contradiction.

18 (Exercise 1.5.1.6) Let f ∈ C(R). Show that F = {(x, y)|f(x) = y} is a closed
set on R2.

(II) Open Set

19 (Theorem 1.18 Some Properties of an Open Set)

(1) Let {Gα}α∈I be a family of open sets. Show that G =
⋃
α∈I Gα is also an open

set.

(2) Let G1, G2 · · ·Gm be open sets. Show that
⋂
k=1,2···mGk is an open set.

(3) Let G be a non-empty set no Rd. G is open if and only if ∀x ∈ G,∃δx s.t
B(x, δ) ⊂ G.

20 (Example 7) Suppose that f(x) is defined on B(x0, δ0). Let

ωf (x0) = lim
δ→0

sup
x1,x2∈B(x0,δ)

{|f(x1)− f(x2)|} .

Show that if G is an openset and f is defined on G, then

H = {x ∈ G | ωf (x) < t}

is an open set.

21 (Theorem 1.19)

(1) Let G be a non-empty open set on R. It can be expressed as a union of disjoint
open intervals.
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1.2.

(2) Let G be a non-empty open set on Rd. It can be expressed as a union of disjoint
half open rectangles.

22 (Exercise 1.5.2.1) Let E ⊂ Rd. Show that E̊ =
(

(Ec)
)c

.

23 (Exercise 1.5.2.3)

(1) Show that G is open ⇔ G ∩ ∂G = ∅.

(2) Also show that F is closed ⇔ ∂F ⊂ F .

24 (Exercise 1.5.2.4) Let G ⊂ Rd be a non-empty open set. Let r0 > 0. Show

that A =
⋃
x∈GB(x, r0) is an open set.

25 (Exercise 1.5.2.5) Let F ⊂ R be an infinite closed set. Show that we can find
a countable subset E ⊂ F s.t Ē = F .

26 (Definition 1.26, Lemma 1.20 Lindelof’s Covering Lemma)

(1) Explain open cover and sub cover.

(2) Let E ⊂ Rd be an openset. Suppose A = {A1, A2 · · · } is a family of open balls
with B(y, q) where y ∈ Qd, q ∈ Q. (Hence A is countable.) Let x ∈ E. Show that
we may find A ∈ A s.t x ∈ A ⊂ E.

(3) Suppose E ⊂
⋃
α∈I Gα. We can always find a countable subset of I ′ ⊂ I s.t

E ⊂
⋃
α∈I′

Gα.

This is called Lindelof’s coverling lemma.

27 (Theorem 1.21 Heine-Borel’s Finite Covering Theorem) State and Prove
Heine-Borel’s Covering Theorem.

28 (Example 8) Let F ⊂ Rd be a bounded closed set. And let G ⊂ Rd be an open
set. Suppose F ⊂ G. Show that ∃δ > 0 such that F + {x} = {y + x|y ∈ F} ⊂ G
for all x ∈ (−δ, δ).

29 (Theorem 1.22) Let E ⊂ Rd. Suppose all open cover of E has finite cover.
Show that E is a bounded closed set.

30 (Exercise 1.5.2.9) Let F ⊂ R be a nonempty countable closed set. Show that
F contains at least one isolated point.

31 (Exercise 1.5.2.10) Let fn(x) be a nonnegative decreasing sequence of con-
tinuous functions. Suppose there is a closed and bounded set F ⊂ R on which
fn(x)→ 0(n→∞). Show that fn(x) uniformly converges on F .

*
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1.2.

We have already considered continuity of a function defined on whole Rd. Now we
consider continuity of a function defined on a subset of Rd.

32 (Definition 1.27) Let f(x) be a real-valued function defined on E ⊂ Rd. Let
x0 ∈ E. What does it mean if we say that f(x) is continuous at x0, and f(x) is
continuous on E.

33 (Example 9) Let F ⊂ R be a bounded and closed set. Let f(x) : F → F .
Suppose |f(x) − f(y)| < |x − y|, x, y ∈ F . Show that there exists a fixed point,
that is x0 ∈ F s.t f(x0) = x0.

34 (Exercise 1.5.2.11) Let F ⊂ R be a closed set and f(x) ∈ C(F ). Show that

{x ∈ F | f(x) = 0}

is a closed set.

35 (Exercise 1.5.2.12) Let f(x) : R → R and En ⊂ R, En ∈ O1 (open set),
f(x) ∈ C(En). Show that f(x) ∈ C (

⋃∞
n=1 En).

36 (Exercise 1.5.2.13) Let E ⊂ R.

(1) Suppose ∀f(x) ∈ C(E) is bounded. Show that E is bounded and closed.

(2) Suppose that every f(x) ∈ C(E) takes a maximum value on E. Show that E
is bounded and closed.

37 (Exercise 1.5.3.14) Let E ⊂ Rd and let f : E → R. Suppose ∀K ⊂ E (K is
bounded and closed), we have f(x) ∈ C(K). Show that f(x) ∈ C(E).

(III) Borel Sets

38 (Definition 1.28) Explain Fσ-sets and Gδ sets.

39 (Example 11) Suppose f(x) is a real-valued function defined on an openset
G ⊂ Rd. Show that continuous points of f(x) is a Gδ set.

40 (Example 12) Let {fk(x)} ⊂ C(Rd) and suppose that limk→∞ fk(x) = f(x),∀x ∈
Rd. Express the set of continuous points of f and show that it is a Gδ set.

41 (Definition 1.29 1.30, 1.31)

(1) What is a σ-algebra?

(2) What is a σ-algebra generated from Σ?

(3) What is a Borel set?

42 (Exercise 1) Let {fn(x)}n=1 ⊂ C([a, b]) (a sequence of continuous functions on

12



1.2.

[a, b]) and suppose that limn→∞ fn = f(∀x ∈ [a, b]). Show that ∀t ∈ R,

{x ∈ [a, b] | f(x) < t}

is a Fσ set (a countable union of closed sets).

43 (Exercise 2) Let {fn(x)}n=1 ⊂ C(F ) and let F ⊂ R be a closed set. Show that

{x ∈ F | fn(x) converges}

is a Fσ,δ set.

44 (Exercise 3) Let f(x) : R1 7→ R1. Show that{
x ∈ R1 | lim

y→x
f(y) exists

}
.

is a Gδ set (a countable intersection of open sets).

45 (Theorem 1.23 Baire) Let E ⊂ Rd be a Fσ set. Hence E =
⋃∞
k=1 Fk. Show

that if every {Fk}k=1 has no interior point, then E also has no interior point.

46 (Example 13) Show that Q is not a Gδ set.

47 (Definition 1.32)

(1) What is a dense set ?

(2) What is a nowhere dense?

(3) What is a meagre set? (This is also called a set of first category. And what is
a set of second category?)

48 (Example 14) Let {Gk} be a sequence of open and dense sets on Rd. Show
that

⋂∞
k=1 Gk is dense on Rd.

49 (Example 15) Let fk ∈ C(Rd). Suppose that limk→∞ fk(x) = f(x)(∀x ∈ Rd).
Show that the set of discontinuous points of f(x) is a meagre set.

(IV) Cantor Set

50 (Cantor Set: Definition and Properties) Let C be a Cantor-Set.

(1) Show that C is a non-empty bounded and closed set.

(2) Show that C = C ′. (This is called a perfect set.)

(3) Show that C has no interior point.

*
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1.3.

Let us consider the Cantor function Φ(x). The Cantor function is defined on [0, 1]
and it has an interesting property. In the next chapter, we will introduce a concept of
measure. A Cantor set C defined on [0, 1] has a zero measure. The Cantor function is
constant on [0, 1] \ C, however the Cantor function is continuous on [0, 1].

51 (Example 17 Cantor function)

(1) Define the Cantor function (or Cantor-Lebesgue function) Φ(x).

(2) Show that the Cantor function is continuous.

52 (Example 18) Let E ⊂ R. Show that E is a perfect set if and only if

E =

(
∞⋃
k=1

(ak, bk)

)c

,

where (ai, bi), (aj, bj) (i 6= j) has no common edge point.

53 (Example 19) Let E ⊂ R2 be a non-empty perfect set. Show that E is an
uncountable set.

54 (Exercise 1) Let E ⊂ R be a non-empty perfect set. Show that ∀x ∈ E, ∃y ∈ E
s.t x− y /∈ Q.

55 (Exercise 4) Construct a set of isolated points E such that E ′ is a perfect set.

§ 1.3

56 (Definition 1.33 and Theorem 1.24)

(1) Define dist(E1, E2).

(2) Suppose F ⊂ Rn is a non-empty closed set and x0 ∈ Rn. Show that ∃y0 ∈ F
such that |x0 − y0| = dist(x0, F ).

57 (Theorem 1.25) Suppose that E ⊂ Rd is a non-empty. Let d(x,E) : Rn →
[0,∞) be a function of x. Show that d(x,E) is uniformly continuous on Rn.

58 (Corollary 1.26) Let F1, F2 ⊂ Rd be non-empty closed sets and at least one of
them is bounded. Show that there exists x1 ∈ F1, x2 ∈ F2 s.t

|x1 − x2| = dist(F1, F2).

59 (Example 2) Let F1, F2 ⊂ Rd be disjoint non-empty closed sets. Show that
there exists a continuous function f(x) defined on Rd with

• 0 5 f(x) 5 1(x ∈ Rd)

• F1 = {x ∈ Rd | f(x) = 1} and F2 = {x ∈ Rd | f(x) = 0}.

14



1.3.

60 (Theorem 1.27 Continuous Topology Theorem) Suppose that F ⊂ Rd be a
closed set and f(x) is a continuous function defined on F and |f(x)| 5M(x ∈ F ).
Show that there exists a function g(x) defined on Rd with

• g(x) ∈ C(Rd), (g(x) is continuous on Rd)

• |g(x)| 5M , (∀ x ∈ Rd)

• g(x) = f(x), (∀ x ∈ F ) .

61 (Extension of Theorem 1.27) Suppose that F ⊂ Rd be a closed set and f(x)
is a continuous function defined on F . (f(x) is not necessarily bouded on F .)
Show that there exists a continuous function g(x) ∈ C(Rd) with f(x) = g(x) for
all x ∈ F .

62 (Exercise 1) Let E ⊂ Rd be a nonempty set. Suppose ∀x /∈ E,∃y ∈ E s.t
|x− y| = dist(x,E). Show that E is a closed set.

63 (Exercise 2) Let G ⊂ Rd be an open set. Let F be a bounded closed set with
F ⊂ G. Show that there exists r > 0 such that

{x | dist(x, F ) < r} ⊂ G.

§Exercise

64 (Exercise 8) Let f(x) : R → R. Suppose ∀x0 ∈ R, ∃δ > 0 such that x ∈
B(x0, δ)⇒ f(x) = f(x0). Show that

E
def
= {y = f(x) | x ∈ R}

is a countable set.

65 (Exercise 9) Let E ⊂ R3. Suppose ∀x, y ∈ E, |x − y| ∈ Q. Show that E is
countable.

66 (Exercise 11) Let {fα(x)}α∈I be a family of real-valued functions defined on
[a, b]. Suppose ∃M > 0 s.t |fα(x)| 5 M(∀x ∈ [a, b],∀α ∈ I). Show that ∀E ⊂
[a, b] (E : countable), there exists a sequence of functions {fαn(x)} such that
limn→∞ fαn(x) exists for all x ∈ E.

67 (Exercise 13) Let f(x) be a monotone increasing function defined on R. Show
that E is a closed set.

E = {x : ∀ε > 0, f(x+ ε)− f(x− ε) > 0}

68 (Exercise 14-1) Let F ⊂ Rd be bounded and closed. Let E ⊂ F be an infinite
subset of F . Show that E ′ ∩ F 6= ∅.

69 (Exercise 14-2) Let F ⊂ Rd. Suppose ∀E ⊂ F (E : infinite), E ′∩F 6= ∅. Show
that F is bounded and closed.

15



1.3.

70 (Exercise 15) Let F ⊂ Rd be a closed set and let r > 0. Show that E is a
closed set.

E = {t ∈ Rd|∃x ∈ F s.t |t− x| = r}.

71 (Exercise 17) Let E ⊂ R2. Let Ey = {x ∈ R|(x, y) ∈ E}. (This is called a
projection set.) Show that E ⊂ R2 is closed ⇒ Ey is also closed.

72 (Exercise 18) Let f ∈ C(R) and let {Fk}k=1 be a decreasing sequence of
compact sets. Show that

f

(
∞⋂
k=1

Fk

)
=
∞⋂
k=1

f(Fk).

73 (Exercise 19) Suppose that f(x) has intermediate value property on R. If
f(x1) < f(x2) then there exists c ∈ (f(x1), f(x2)) and x0 ∈ (x1, x2) or (x2, x1) s.t
c = f(x0). We also suppose ∀r ∈ Q, {x ∈ R||f(x) = r} is a closed set. Show that
f(x) ∈ C(R).

74 (Exercise 20) Let E1, E2 be non-empty sets on R. Suppose E ′2 6= ∅. Show that

E1 + E ′2 ⊂ (E1 + E2)′.

(Notice: A+B = {x+ y|x ∈ A, y ∈ B})

75 (Exercise 21) Let E ∈ Rn. Suppose E,Ec 6= ∅. Show that ∂E 6= ∅.

76 (Exercise 22) Let G1, G2 ⊂ R2 be disjoint open sets. Show that G1 ∩G2 = ∅.

77 (Exercise 23) Let G ⊂ Rd. For any E ⊂ Rd, we have G ∩ Ē ⊂ G ∩ E. Show
that G is an open set.

78 (Exercise 25) Let f : R → R. Let G1 = {(x, y) ∈ R2|y < f(x)} and G2 =
{(x, y) ∈ R2|y > f(x)}. Show that

f(x) ∈ C(R) ⇔ G1, G2 ∈ O1,

where O1 is a collection of all open sets on R1.

79 (Exercise 27) Let {Fα}α∈I be a family of bounded closed sets on Rd. For any
finite number of closed sets {Fα1 , Fα2 , · · · , Fαm} ⊂ {Fα}α∈I ,

⋂m
k=1 Fαk 6= ∅. Show

that ⋂
α∈I

Fα 6= ∅.

80 (Exercise 28) Let {Fα}α∈I be a family of bounded closed sets on Rd, and let G
be an open set on Rd with

⋂
α∈I Fα ⊂ G. Show that we can find a finite number

of closed sets {Fα1 , · · · , Fαm} s.t

m⋂
i=1

Fαi ⊂ G.
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1.3.

81 (Exercise 29) Let K ⊂ Rd be a bounded and closed set. Let {Gk}k=1 be an
open cover of K. Show that ∃ε0 > 0 s.t ∀x0 ∈ K, ∃k0 ∈ N s.t B(x0, ε0) ⊂ Gk0 .

82 (Exercise 30) Let f(x) be differentiable on R. Moreover suppose that ∀t ∈ R,
{x ∈ R|f ′(x) = t} is closed. Show that f ′(x) ∈ C(R).

83 (Exercise 31) Let f(x) ∈ C(R) be a continuous function on R with

|f(x)− f(y)| = a|x− y|, (∀x, y ∈ R),

for some a > 0. Show that R(f)
def
= {f(x) | x ∈ R} = R. Hint. Show that R(f) is

open and closed.

84 (Exercise 32) Let E ⊂ R be a countable dense set. Show that E is not a Gδ

set.

85 (Exercise 34) Let f(x) : R → R. Suppose that f(x) is continuous at x ∈ Q
and discontinuous at x ∈ R \Q. Show that there does not exist such a function.

86 (Exercise 37) Show that every closed set on Rd is a Gδ set, and also show that
every open set on Rd is a Fσ set.

87 (Exercise 38) Let f(x) : [0, 1]→ R1. Suppose Gf = {(x, f(x)) | x ∈ [0, 1]} is a
bounded and closed set on R2. Show that f(x) ∈ C([0, 1]) (continuous on [0, 1]).

88 (Exercise 39) Let F ⊂ R. Suppose that ∀f(x) ∈ C(F ), there exists a continuous
extension to R. (i.e There exists g(x) ∈ C(Rd) s.t f(x) = g(x) for x ∈ F .) Show
that F is a closed set.
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CHAPTER 2

Lebesgue Measure

§ 2.1 Lebesgue outer measure

When I is an open rectangle on Rd, that is I
def
=
∏d

i=1(ai, bi) = {(x1, x2, · · ·xd) | xi ∈
(ai, bi)}, we define |I| def

=
∏d

i=1(bi − ai).

1 (Definition 2.1) Let E ⊂ Rd. If {Ik}k=1 be a collection of a countable number
of (or a finite number of) open rectangles. Define Lebesgue outer measure m∗(E).

2 (Example 1) Let x0 ∈ Rd. Show that

m∗({x0}) = 0.

3 (Example 2) Let I =
∏d

i=1(ai, bi) be an open rectangle on Rd. Then Ī =∏d
i=1[ai, bi] is a closed rectangle. In this question, we may use the fact that if

I ⊂
⋃k
i=1 Ii then |I| 5

∑k
i=1 |Ii|, where {Ii}ki=1 ∪ {I} are open rectangles and k is

finite.

(1) Show that
m∗(Ī) = |I| .

(2) Show that
m∗(I) = |I| .

4 (Theorem 2.1 Properties of Lebesgue outer measure on Rd)

(1) Show that m∗ is nonnegative, that is m∗(E) = 0 and m∗(∅) = 0.

(2) Show that m∗ is monotone, that is A ⊂ B ⇒ m∗(A) 5 m∗(B).

(3) Show that m∗ has subadditivity, that is m∗(
⋃
k=1Ak) 5

∑
k=1m

∗(Ak).

5 (Corollary 2.2) Show that E ⊂ Rd and E is a countable set ⇒ m∗(E) = 0.
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2.1. LEBESGUE OUTER MEASURE

6 (Lemma 2.3) Let E ⊂ Rd and let δ > 0. We define m∗δ(E) in the following way.

m∗δ(E)
def
= inf
{In}n=1

{
∞∑
k=1

|Ik| | E ⊂
∞⋃
k=1

Ik, edge length of Ik < δ

}
In the definition above, we take infimum with respect to {Ik}k=1 where {Ik}k=1 is a
collection of a countable number of open rectangles covering E whose edge length
is less than δ. Show that

m∗δ(E) = m∗(E).

This means that in the definition of outer measure, even if we add a constraint
about the edge length of each open rectangle which covers E, the value of outer
measure does not change. We use this fact to prove the following theorem.

7 (Theorem 2.4)

(1) Let E1, E2 be point sets on Rd and suppose that dist(E1, E2) > 0. Show that

m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).

(2) Let {En}n=1 be point sets on Rd and suppose that dist(Ei, Ej) > 0 for all
i, j ∈ N (i 6= j). Show that

m∗

(
∞⋃
n=1

En

)
=
∞∑
n=1

m∗(En).

8 (Theorem 2.5 (a) Translation Invariance) Let E ⊂ Rd and x0 ∈ Rn. We
define E+x0 = {x+ x0 : x ∈ E}. Show that

m∗(Ex0) = m∗(E).

Hint. Obviously |I| = |I+x|.

9 (Theorem 2.5 (b) Scaling) Let E ⊂ Rd and λ ∈ Rd. We define λE = {λx|x ∈
E}. Show that

m∗(λE) = |λ|dm∗(E).

10 (Generalized definition of an outer measure) Let X be a nonempty set
and let µ∗ : 2X → [0,∞]. Explain µ∗ is an outer measure on X.

11 (Exercise 1) Let A ⊂ Rd and suppose that m∗(A) = 0. Let B ⊂ Rd be an
arbitrary point set. Show that

m∗(A ∪B) = m∗(B) = m∗(B \ A).

12 (Exercise 2) Let A,B ⊂ Rd and suppose that m∗(A),m∗(B) <∞. Show that

|m∗(A)−m∗(B)| 5 m∗(A∆B).

13 (Exercise 3) Let E ⊂ Rd. Suppose that ∀x ∈ E, ∃δx s.t m∗(E ∩B(x, δx)) = 0.
Show that m∗(E) = 0.
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2.2. LEBESGUE MEASURABLE SETS AND LEBESGUE MEASURE

14 (Exercise 4) Let E ⊂ [a, b], 0 < c < m∗(E). Show that there exists a subset
A ⊂ E s.t m∗(A) = c.

15 (Exercise 5) Let C ⊂ [0, 1] be a Cantor set. Show that m∗(C) = 0.

§ 2.2 Lebesgue measurable sets and Lebesgue measure

We have already defined Lebesgue outer measure of E ⊂ Rd, m∗(E). In this section,
we define Lebesgue measurability based on Lebesgue outer measure m∗(·). If E ⊂ Rd

is Lebesgue measurable (or simply measurable), its outer measure is often denoted as

m(E)
def
= m∗(E). (Basically m,m∗ have the same meaning. When E is measurable we

just prefer to using m(E) than m∗(E).)

16 (Definition 2.2) Let E ⊂ Rd. What does it mean if we say that E is Lebesgue
measurable. (or simply measurable.) We denote the family of all Lebesgue mea-

surable sets by M . (i.e M
def
= {E ⊂ Rd | E is Lebesgue measurable.}.) When we

need to emphasize it is on Rd, we sometimes denote it by Md, M d and so on.

17 (Example 1) Show that a measure zero set is Lebesgue measurable. (i.e if
m∗(N) = 0, then N ∈ M .) This is one of the most important properties of
Lebesgue measure.

18 (Theorem 2.6 Properties of Measurable Sets) Let M be a family of
Lebesgue measurable sets. Show that following properies.

(1) ∅ ∈M .

(2) E ∈M ⇒ Ec ∈M .

(3) E1, E2 ∈M ⇒ E1 ∪ E2, E1 ∩ E2, E1 \ E2 ∈M .

(4) {En}n=1 ⊂ M ⇒
⋃∞
n=1En ∈ M , Moreover, if they are disjoint sets we have

m(
∑∞

n=1 En) =
∑∞

n=1m(En). Notice. When En are disjoint, we sometimes denote⋃∞
n=1En as

∑∞
n=1En.

19 (Theorem 2.7: continuity of measure) Let {Ek}k=1 is an increasing sequence
of Lebesgue measurable sets. Show that

m

(
∞⋃
k=1

Ek

)
= lim

k→∞
m(Ek).

20 (Corollary 2.8: continuity of measure) Let {Ek}k=1 is a decreasing sequence
of Lebesgue measurable sets with m(E1) <∞. Show that

m

(
∞⋂
k=1

Ek

)
= lim

k→∞
m(Ek).
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2.2. LEBESGUE MEASURABLE SETS AND LEBESGUE MEASURE

21 (Example 2: Borel-Cantell’s Lemma (I)) Let {Ek}k=1 be a sequence of
Lebesgue measurable sets. Suppose that

∑∞
k=1m(Ek) <∞. Show that

m

(
lim sup
k→∞

Ek

)
= 0.

22 (Corollary 2.9: Fatou’s lemma - measure version) Let {Ek}∞k=1 ⊂M .

(1) Show that

m
(

lim inf
k→∞

Ek

)
5 lim inf

k→∞
m (Ek) .

(2) Suppose that m (
⋃∞
k=1Ek) <∞. Show that

lim sup
k→∞

m (Ek) 5 m

(
lim sup
k→∞

Ek

)
23 (Exercise 1) Let A ∈M , B ⊂ Rd. B is not necessarily Lebesgue measurable.

Show that
m∗(A ∪B) +m∗(A ∩B) = m∗(A) +m∗(B).

24 (Exercise 2) Let {An}n=1 ⊂ M , Bn ⊂ An and suppose that An are disjoint.
Show that

m∗

(
∞⋃
n=1

Bn

)
=
∞∑
n=1

m∗(Bn).

25 (Exercise 3) Let E1, E2 be point sets and let E1 ∈M . Suppose thatm(E14E2) =
0. Show that E2 ∈M and m(E1) = m(E2).

26 (Exercise 4) Let {fn}n=1 be a sequence of functions defined on R1 and let {λn}
be a sequence of positive numbers. Let En

def
= {x ∈ R | |fn(x)| > λn}. Suppose

that
∑∞

n=1m
∗(En) <∞. Show that there exists a measure zero set Z s.t

lim sup
n→∞

{
|fn(x)|
λn

}
5 1 ∀x ∈ R \ Z

27 (Exercise 5) Let T : Rd 7→ Rd be a one to one and onto transformation. Suppose
that m∗(B) = m∗(T (B)) for all B ⊂ Rd. Show that

T (E) ∈M ,∀E ∈M .

28 (Exercise 6) Let X = {Eα} ⊂M (Eα ⊂ R) and suppose that {Eα} are disjoint
and none of them is a measure zero set. Show that X is countable.

29 (Exercise 7) Let {Ek}k=1 ⊂ M and Ek ⊂ R. Suppose that Ek ⊂ [a, b] for
k = k0 and limk→∞Ek = E. Show that

m(E) = lim
k→∞

m(Ek).
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2.3. LEBESGUE MEASURABLE SETS VS BOREL SETS

30 (Exercise 8) Let En ⊂ [0, 1], En ∈M ,m(En) = εn and suppose that

∞∑
n=1

χEn(x) <∞, ∀x ∈ [0, 1] \N, m(N) = 0.

Show that εn → 0.

§ 2.3 Lebesgue measurable sets vs Borel sets

31 (Lemma 2.10: Caratheodory’s Lemma) Let G ⊂ Rd, (but G 6= Rd) be
an open set and let E ⊂ G. Let Ek = {x ∈ E : dist(x,Gc) = 1/k}. Show that
limk→∞m

∗(Ek) = m∗(E).

32 (Theorem 2.11) Let F be a nonempty closed set. Show that F ∈M .

33 (Corollary 2.12) Show that Borel sets are Lebesgue measurable.

34 (Theorem 2.13) Let E ∈ M and let ε > 0 be an arbitrary positive number.
Show the following statements.

(1) ∃G ⊃ E (G: open) s.t m(G \ E) < ε.

(2) ∃F ⊂ F (F : closed) s.t m(E \ F ) < ε.

35 (Converse of Theorem 2.13) Let Od be a collection of all open sets on Rd.
Suppose E ⊂ Rd satisfies the following condition.

∀ε > 0,∃G ∈ Od;E ⊂ G s.t m∗(G \ E) < ε.

Show that E ∈M . From these results, we find out that the condition above holds
if and only if E ∈ M . In some textbooks, Lebesgue measurability is defined by
the condition above.

36 (Theorem 2.14) Let E ∈M . Show the following statements.

(1) ∃H,Z1 s.t E = H \ Z1 where H: Gδ set and m(Z1) = 0.

(2) ∃K,Z2 s.t. E = H ∪ Z2 where K : Fσ set and m(Z2) = 0.

37 (Theorem 2.15: Regularity of Outer Measure) Let E ⊂ Rd. Show that
there exists a Gδ set H s.t H ⊃ E and m(H) = m∗(E).

38 (Corollary 2.16 and 2.17) Let {Ek}∞k=1 be a sequence of point sets on Rd.

(1) Show that

m∗
(

lim inf
k→∞

Ek

)
5 lim inf

k→∞
m∗ (Ek) .

(2) Suppose that {Ek}∞k=1 is an increasing sequence. Show that

m∗
(

lim
k→∞

Ek

)
= lim

k→∞
m∗ (Ek) .
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2.4. SETS OF POSITIVE MEASURE AND RECTANGLES

39 (Theorem 2.18 (a) measurability is translation invariant) Suppose that
E ∈ M and x0 ∈ Rd. Show that Ex0 = {x + x0 : x ∈ E} ∈ M and m(Ex0) =
m(E). We have already proven that m∗(E) = m∗(E+x0). This theorem states that
Lebesgue measurability is preserved after translation.s

40 (Theorem 2.18 (b) measurability is scale invariant) Let E ⊂ R and let

λ 6= 0. Show that if E ∈M then λE ∈M where λE
def
= {λx | x ∈ E}.

41 (Exercise 1) Let E ⊂ Rd,m∗(E) <∞. Suppose that m∗(E) = sup{m(F )|F ⊂
E; F is bounded and closed}. Show that E ∈M .

42 (Exercise 2) Let E ⊂ [0, 1], E ∈M .

(1) Suppose that m(E) = 1. Show that E = [0, 1].

(2) Suppose that m(E) = 0. Show that E̊ = ∅.

43 (Exercise 3) Let f(x), g(x) be strictly decreasing continuous functions on [a, b].
For any t ∈ R, we have m({x ∈ [a, b] | f(x) > t}) = m({x ∈ [a, b] | g(x) > t}).
Show that

f(x) = g(x) for all x ∈ (a, b).

In this question, you may suppose that {x ∈ [a, b] | f(x) > t} and {x ∈ [a, b] |
g(x) > t} are Lebesgue measurable. Actually proof is easy. Since f(x), g(x) are
monotone decreasing, {x ∈ [a, b] | f(x) > t}, {x ∈ [a, b] | g(x) > t} are intervals,
thus they are Lebesgue measurable.

44 (Exercise 4) Let E ⊂ R and suppose that 0 < α < m(E). Show that ∃F ⊂ E
(F : bounded and closed) s.t m(F ) = α.

45 (Exercise 5) Let G ⊂ R1 be an open set. Does the equality m(G) = m(G)
always hold?

46 (Exercise 6) Let E1, E2 ⊂ Rd and suppose that E1∪E2 ∈M with m(E1∪E2) <
∞. Show that if

m(E1 ∪ E2) = m∗(E1) +m∗(E2),

then E1, E2 ∈M .

47 (Exercise 7) Construct a set of second category E ⊂ [0, 1] with measure zero.

48 (Exercise 8) Let A ⊂ R and for every x ∈ A there exists infinitely many
(p, q) ∈ Z× N s.t |x− p/q| 5 1/q3. Show that m(A) = 0.

§ 2.4 Sets of positive measure and Rectangles

49 (Theorem 2.19) Let E ⊂ Rd be a Lebesgue measurable set and suppose that
m(E) > 0. Let 0 < λ < 1. Show that there exists a rectangle I such that
λ|I| < m(I ∩ E).
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2.5. LEBESGUE NON-MEASURABLE SETS

50 (Theorem 2.20 Steinhaus Theorem) Let E ⊂ Rd be a Lebesgue measurable

set. We suppose that m(E) > 0. We define E − E def
= {x − y : x, y ∈ E}. Show

that there exists δ0 > 0 s.t. E − E ⊃ B(0, δ0).

51 (Exercise 1) Let E ⊂ R be a Lebesgue measurable set with m(E) > 0. Show

that there exists α > 0 such that E+x∩E 6= ∅. (|x| < a) where E+x
def
= {x+y | y ∈

E}

52 (Exercise 2) Let E ⊂ R be a Lebesgue measurable set, let a ∈ R and let δ > 0.
Suppose that ∀x : |x| < δ, we have a+ x ∈ E or a− x ∈ E. Show that

m(E) = δ.

53 (Exercise 3) Let f(x) be a function defined on R. Suppose that f(x + y) =
f(x) + f(y),∀x, y ∈ R and f(x) is bounded on x ∈ E ⊂ R;E ∈ M ;m(E) > 0.
Show that

f(x) = cx, where c = f(1).

§ 2.5 Lebesgue non-measurable sets

54 (Example: non Lebesgue measurable set) Construct a non Lebesgue mea-
surable set.

55 (Extra Theorem) Show that if A ⊂ Rd with m∗(A) > 0 (A is not necessarily
measureble) then ∃W ⊂ A s.t W /∈M .

56 (Exercise 1) Discuss if there exists a point set E ⊂ [0, 1] s.t ∀x ∈ R,∃y ∈ E s.t
x− y ∈ Q.

57 (Exercise 2) Construct a family of disjoint point sets {Ek}∞k=1 s.t

m∗

(
∞⋃
k=1

Ek

)
<

∞∑
k=1

m∗(Ek).

58 (Exercise 3) Construct an uncountable point set W ⊂ [0, 1] s.t W −W has no
interior point.

59 (Exercise 4) Show that W /∈M , E ∈M ⇒ E4W /∈M .

60 (Exercise 5) Let E be a point set. Suppose that

sup
F : closed;F⊂E

{m(F )} < inf
G: open;E⊂G

{m(G)} .

Show that E is not Lebesgue measurable.

61 (Exercise 6) Let {Eα}α∈I ⊂ M . Prove or disprove
⋂
α∈I Eα ∈ M . Of course

when I is countable, the statements holds. However when I is not countable does
the statement still hold?
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2.6. CONTINUOUS TRANSFORMATION AND LEBESGUE MEASURABLE SETS

62 (Extra Exercise 1) Let Γ be a family of half open intervals on R1, that is
∀I ∈ Γ, I = (a, b] or I = [a, b). Show that

⋃
I∈Γ I is Lebesgue measurable.

63 (Extra Exercise 2) Let f : [a, b] 7→ R1 be a one-to-one and onto transformation.
For all E ∈M , E ⊂ [a, b], f(E) ∈M . Show that

m(f(Z)) = 0, ∀Z ⊂ R1,m(Z) = 0.

§ 2.6 Continuous transformation and Lebesgue measurable sets

64 (Definition 2.3) Let T : Rd → Rd be a transformation from Rd to Rd. What
does it mean if we say that T is a continuous transformation? State the definition
of continuity based on an inverse image of an open set.

65 (Theorem 2.21) Show that a transformation T : Rd → Rd is continuous if and
only if ∀x ∈ Rd,∀ε > 0,∃δ(x, ε) s.t.

∀y ∈ B(x, δ), |T (y)− T (x)| < ε.

66 (Example 1) Let T : Rd → Rd. Show that if T is linear, then T is continous.

67 (Theorem 2.22: Compact Set and Continuous Transformation) Let
T : Rd → Rd be a continuous transformation. Suppose that K is a compact set on
Rd. Show that T (K) is a compact set on Rd.

68 (Corollary 2.23, 2.24) Let T : Rd → Rd be a continuous transformation.

(1) Let E be a Fσ set. Show that T (E) is also a Fσ set.

(2) Suppose that T (Z) is a measure zero set for all Z with measure zero. Now let
E be a Lebesgue measurable set. Show that T (E) is also a Lebesgue measurable
set.

(3) Do all continuous transformations Rd 7→ Rd satisfy m(T (Z)) = 0, ∀Z : m(Z) =
0?

69 (Extra Theorem: Lipschitz Continuous) Let T : Rd 7→ Rd.

(1) Explain what is Lipschitz continuity.

(2) Suppose T is Lipschitz continuous. Show that T (Z) = 0 for all Z with m(Z) =
0. If necessary, you may use the fact that an open ball B on Rd with radius r has
a measure

m(B) =
πd/2

Γ(d
2

+ 1)
rd.

This result can be derived by Tonelli’s theorem in Chapter 4.

70 (Theorem 2.25, 2.26) Suppose that T : Rd → Rd be a nonsingular linear
transformation. Let E ⊂ Rd. Show that m∗(T (E)) = |detT |m∗(E). Especially, if
E ∈M , we have m(T (E)) = |detT |m(E).
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2.7. CONSTRUCTION OF NON-BOREL MEASURABLE SET

71 (Extra Exercise 1) Let f(x) be a function defined on R. Suppose we have

|f(x)− f(y)| 5 e|x|+|y| |x− y| , ∀x, y ∈ R.

Show that
m(E) = 0⇒ m(f(E)) = 0.

72 (Extra Exercise 2) Explain that rotation does not change the value of Lebesgue
measure on R2

§ 2.7 Construction of non-Borel measurable set

73 (Lemma) Let f(x) be a real-valued function defined on E ⊂ Rn. Let Γ be a
σ−algebra that consists of point sets on Rn. Suppose E ∈ Γ. Show that

A = {A ⊂ R | f−1(A) ∈ Γ}

is a σ−algebra.

74 (Corollary) Let f(x) be a continuous function on R. Let A ⊂ R be a Borel set.
Show that f−1(A) is also a Borel set.

75 (Example: non-Borel set) Construct a non-Borel (or non-Borel measurable)
set.

§ 2.8 Exercise

76 (Exercise 1) Let E ⊂ R and let q ∈ (0, 1). For any open interal (a, b), we have
{In}n=1 s.t

E ∩ (a, b) ⊂
∞⋃
n=1

In,
∞∑
n=1

m(In) < (b− a)q.

Show that m(E) = 0.

77 (Exercise 2) Let A1 ∈M ,Rd ⊃ A2 ⊃ A1. Suppose that m(A1) = m∗(A2) <∞.
Show that A2 ∈M .

78 (Exercise 4) Let F ⊂ [a, b] a closed set and F 6= [a, b]. Prove or disprove there
exists F s.t m(F ) = b− a.

79 (Exercise 5) Construct a closed set F ⊂ R where ∀x ∈ F is a irrational number
and m(F ) > 0.

80 (Exercise 7) Let {Ek}k=1 ⊂M . Suppose that m (
⋃∞
k=1Ek) <∞. Show that

m

(
lim sup
k→∞

Ek

)
= lim sup

k→∞
m(Ek).
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2.8. EXERCISE

81 (Exercise 8) Let {Ek}k=1 ⊂M , Ek ⊂ [0, 1],m(Ek) = 1. Show that

m

(
∞⋂
k=1

Ek

)
= 1.

82 (Exercise 9) Let E1, E2 · · ·Ek be Lebesgue measurable sets on [0, 1]. Suppose

that
∑k

i=1m(Ei) > k − 1. Show that

m

(
k⋂
i=1

Ei

)
> 0.

83 (Exercise 11) Let {Bα}α∈I be a family of open balls on Rd. Let G =
⋃
α∈I Bα.

Suppose 0 < λ < m(G). Show there exists finite number of disjoint open balls
{B1, B2 · · ·B`} ⊂ {Bα}α∈I such that

∑̀
k=1

m(Bk) >
λ

3d
.

84 (Exercise 12) Let {Bk} ⊂M be a decreasing sequence of measurable sets. Let
A ⊂ Rd : m∗(A) <∞. Let Ek = A ∩Bk and let E =

⋂∞
k=1Ek. Show that

lim
k→∞

m∗(Ek) = m∗(E).

85 (Exercise 13) Let E ⊂ Rd (m∗(E) < ∞), H ⊃ E,H ∈ M . Suppose that
∀N ⊂ H \ E, if N ∈M ⇒ N is a measure zero set. Discuss if H is a measurable
cover of E. (i.e. m(H) = m∗(E))

86 (Exercise 14) Show that E ∈ M if and only if ∀ε > 0 there exists G1, G2 :
G1 ⊃ E,G2 ⊃ Ec s.t m(G1 ∩G2) < ε.

87 (Exercise 15) Let E ⊂ [0, 1] be a Lebesgue measurable set and let {xi}ni=1 ⊂
[0, 1]. Suppose that m(E) = ε > 0 and n > 2

ε
. Show that ∃y1, y2 ∈ E and

∃i, j ∈ {1, 2 · · · , n} s.t
|y1 − y2| = |xi − xj| .

88 (Exercise 16) Let W ⊂ [0, 1] be a non measurable set. Show that there exists
ε > 0 such that for all E ⊂ [0, 1], E ∈M with m(E) = ε, we have

W ∩ E /∈M .

89 (Extra Exercise 1) Let {rn}
def
= Q. Let

G
def
=

∞⋃
n=1

(
rn −

1

n2
, rn +

1

n2

)
.

Show that
m(G∆F ) > 0,

for all closed set F ⊂ R1.
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2.8. EXERCISE

90 (Extra Exercise 2) Let {En}n=1 be a sequence of Lebesgue measurable sets
and suppose that lim supn→∞m(En) = 1. Show that for all α ∈ (0, 1) we have a
subsequence {nk} s.t

m

(
∞⋂
k=1

Enk

)
> α.

91 (Extra Exercise 3) Let E ⊂ [0, 1] be a Lebesgue measurable set with m(E) > 0.
Show that there exist n disjoint Lebesgue measurable sets {Ei}ni=1 s.t

E =
n⋃
i=1

Ei ; m(Ei) =
1

n
m(E).

92 (Extra Exercise 4) Let E ⊂ R1 be a Lebesgue measurable set with m(E) <∞.
Show that

lim
x→∞

m (E+x ∩ E) = 0.
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CHAPTER 3

Lebesgue measurable functions

§ 3.1 Lebesgue measurable functions and their properties

1 (Definition 3.1: Lebesgue measurable function) Let f(x) : E → R where
E ⊂ Rd, E ∈ M . State the definition for f(x) to be a measurable function
(a Lebesgue measurable function) defined on E. (When we discuss a Lebesgue
measurable function defined on E ⊂ Rd, E is implicitly a Lebesgue measurable
set.)

2 (Theorem 3.1) Let f(x) be a function defined on E ∈ M . Let D ⊂ R
be a dense set. Suppose ∀r ∈ D, {x | f(x) > r} ∈ M . Show that ∀t ∈ R,
{x | f(x) > t} ∈M .

3 (Example 1) Let f(x) be a monotone increasing (or decreasing) function defined
on [a, b]. Show that f(x) is Lebesgue measurable function defined on [a, b].

4 (Theorem 3.2) If f(x) is a Lebesgue measurable function defined on E ∈M .
Show the following sets are all Lebesgue measurable.

(1) {x ∈ E | f(x) 5 t}

(2) {x ∈ E | f(x) = t}

(3) {x ∈ E | f(x) < t}

(4) {x ∈ E | f(x) = t}

(5) {x ∈ E | f(x) <∞}

(6) {x ∈ E | f(x) = +∞}

(7) {x ∈ E | f(x) > −∞}

(8) {x ∈ E | f(x) = −∞}
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3.1. LEBESGUE MEASURABLE FUNCTIONS AND THEIR PROPERTIES

5 (Theorem 3.3)

(1) Let f(x) : E1 ∪ E2 → R and let E1, E2 ⊂ Rd(∈ M ). Suppose that f(x) is
measurable on E1 and E2. Show that f(x) is measurable on E1 ∪ E2.

(2) Let f(x) be a Lebesgue measurable function on E ∈M . Let A ⊂ E,A ∈M .
Show that f(x) is a Lebesgue measurable function on A.

6 (Example 2) Let E ⊂ Rd;E ∈M . Show that χE(x) is a Lebesgue measurable
function on Rd.

7 (Theorem 3.4: Properties of Measurable Functions I) Let f(x), g(x) be
real-valued Lebesgue measurable functions on E ∈ M . (A real-valued function
does not take ∞,−∞, so f(x), g(x) : E → R. ) Show that the followings are
Lebesgue measurable functions.

(1) cf(x)(c ∈ R).

(2) f(x) + g(x).

(3) f(x)g(x).

8 (Corollary 3.5) Theorem 3.4 holds for f(x), g(x) : E → R. You may assume
that (f(x), g(x)) 6= (+∞,−∞), (−∞,+∞) on E because f(x)+g(x) is not defined
in such cases.

9 (Theorem 3.6, Corollary 3.7: Properties of Measurable Functions II)
Let {fk(x)}k=1 be a sequence of measurable functions. Show that the following
items are also measurable functions.

(1) supk=1{fk(x)}

(2) infk=1{fk(x)}.

(3) lim supk→∞ fk(x).

(4) lim infk→∞ fk(x).

Especially, when fk(x)→ f(x) exists, f(x) is also measurable.

10 (Example 3) Let f(x) be a Lebesgue measurable function defined on E ∈M .

Show that f+(x)
def
= max{f(x), 0} and f−(x)

def
= max{−f(x), 0} are Lebesgue

measurable functions.

11 (Example 4) Let f(x, y) : R2 → R. For each x ∈ R, y 7→ f(x, y) : R → R
is a continuous function. For each y ∈ R, x 7→ f(x, y) : R → R is a Lebesgue
measurable function on R. Show that f(x, y) is a measurable function on R2. If

necessary, you may suppose that if A ∈M1, B ∈M1 then A × B def
= {(x, y) | x ∈

A, y ∈ B} ∈ M2. M1,M2 are the collections of all Lebesgue measurable sets on
R1 and R2 respectively.

30



3.1. LEBESGUE MEASURABLE FUNCTIONS AND THEIR PROPERTIES

12 (Example 5) Let E ⊂ R, E ∈M and let f : E 7→ R ∈ C(E). Show that f(x)
is a Lebesgue measurable function defined on E.

13 (Exercise 1) Let f(x) be a function defined on E ∈ M , E ⊂ Rd. Suppose
that f(x)2 is measurable on E and {x ∈ E : f(x) > 0} ∈ M . Show that f(x) is
measurable on E.

14 (Exercise 2) Let F be a family of continuous functions defined on (0, 1). Show
that

g(x)
def
= sup{f | f ∈ F}, h(x)

def
= inf{f | f ∈ F}

are measurable functions on defined (0, 1).

15 (Exercise 3) Let {fk(x)}k=1 be a sequence of measurable functions defined on
E ∈M . Let A = {x ∈ E : fk(x) converges}. Show that A ∈M .

16 (Exercise 4) Let f(x) be a Lebesgue measurable function defined on E. Let
G,F be an open set and a closed set respectively. Show that

E1
def
= {x ∈ E | f(x) ∈ G}, E2

def
= {x ∈ E | f(x) ∈ F}

are measurable sets.

17 (Definition 3.2) Let E ⊂ Rd, E ∈M . Consider a proposition P (x) related to
x ∈ E. What does it mean to say that P (x) is true almost everywhere on E (or
P (x) is true for almost every x ∈ E.)

*

In Definition 3.2, let {fk(x)}k=1∪{f(x)} be a sequence of functions defined on E ∈M .
(not necessarily measurable functions) Let the proposition P (x) : fk(x)→ f(x) as k →∞.
If P (x) is true for almost every x ∈ E, then we say that fk(x) converges to f(x) almost
everywhere on E. And we denote it as fk(x)

a.e−→ f(x) on E or fk(x) → f(x) a.e x ∈ E.
(a.e is an abbreviation for almost everywhere.)

18 (Theorem 3.8) Let f(x), g(x) : E → R be measurable functions defined on
E ∈ M . Suppose that f(x) = g(x) a.e x ∈ E. Show that g(x) is measurable on
E.

19 (Extra Example) Let {fk(x)}k=1 be a sequence of Lebesgue measurable func-
tions on E. Let f(x) be a function (not necessarily Lebesgue measurable) defined
on E. Suppose that fk(x)

a.e−→ f(x) on E. Show that f(x) is a measurable func-
tion defined on E. In Theorem 3.6, we have shown that if fk(x) is measurable
and fk(x) → f(x) (converges at every x ∈ E) then f(x) is also measurable. This
example claims that → can be replaced with

a.e−→.

20 (Example 6) Let 0 < m(A) < ∞, A ∈ M and let f(x) be measurable on
A ⊂ Rd. Suppose that 0 < f < ∞ a.e x ∈ A. Show that ∀δ ∈ (0,m(A)), ∃B ⊂
A,B ∈M and ∃k0 ∈ N such that m(A \B) < δ and 1/k0 5 f(x) 5 k0(∀x ∈ B).
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

21 (Exercise 6) Let f(x) ∈ C([a, b]) and let g(x) : [a, b] → R. Suppose that
g(x) = f(x) a.e x ∈ [a, b] Discuss if g(x) is continuous a.e x ∈ [a, b].

22 (Exercise 7) Let f(x) be a function continuous a.e x ∈ R. Discuss if there
exists g(x) ∈ C(R) s.t f = g a.e x ∈ R.

23 (Definition 3.3: Simple Function) Explain the following terms.

(1) a simple function

(2) a measurable simple function

(3) a step function

24 (Theorem 3.9 Approximation Theorem by Simple Functions) Prove the
following statements.

(1) Suppose that f(x) : E 7→ [0,∞] is a non-negative Lebesgue measurable function
defined on E ∈M ;E ⊂ Rd. Show that there exists an increasing sequence of non-
negative Lebesgue-measurable simple functions {fk(x)}k=1; 0 5 fk(x) 5 f(x) s.t
limk→∞ fk(x) = f(x) on E.

(2) Suppose that f(x) is a measurable function defined on E ∈M ;E ⊂ Rd. Show
that there exists a sequence of Lebesgue-measurable simple functions{fk(x)}k=1 :
|fk(x)| 5 |f(x)| s.t limk→∞ fk(x) = f(x) on E.

(3) Show that if f(x) is bounded, fk(x)
u−→ f(x) on E.

25 (Definition 3.4) Let f(x) be a function defined on E. State the definition of
supp(f).

26 (Corollary 3.10) Show that in Theorem 3.9, it is possible for us to suppose
that each fk(x) has a compact support.

§ 3.2 Convergence of Lebesgue measurable functions

27 (Definition 3.5) Let f(x), fk(x) : E → R and let E ⊂ Rd. What does it mean
to say that {fk(x)}k=1 converges to f(x) almost everywhere on E?

28 (Lemma 3.11) Let {f(x)}∪{fk(x)}k=1 be Lebesgue measurable functions finite
almost everywhere on E ∈M . (i.e |fk(x)| <∞ a.e x ∈ E for each k ∈ N.) Suppose
that m(E) <∞ and fk(x)

a.e−→ f(x) on E. Show that ∀ε > 0, we have

lim
j→∞

m

(
∞⋃
k=j

Ek(ε)

)
= 0

where
Ek(ε)

def
= {x ∈ E | |fk(x)− f(x)| = ε} .

*
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

Before Theorem 3.12, let us introduce a new concept of convergence defined for a
sequence of Lebesgue measurable functions. Let {fk(x)}k=1 be a sequence of measurable
functions defined on E ∈ M . (In this definition, both m(E) < ∞ and m(E) = ∞ are
allowed.) If ∀δ > 0, there exists Eδ : m(Eδ) < δ, such that fk(x)

u−→ f(x) (i.e converges
uniformly) on E \ Eδ, then we say that fk(x) converges to f(x) almost uniformly on E.
We denote it as

fk(x)
a.u−→ f(x) on E

29 (Theorem 3.12 Egorov) Let f(x), f1(x), f2(x) · · · be Lebesgue measurable

functions finite almost everywhere on E. Suppose that m(E) < ∞ and fk(x)
a.e−→

f(x)x ∈ E. Show that
fk(x)

a.u−→ f(x) on E.

*

Theorem 3.12 Egorov’s theorem states that if m(E) <∞, fk(x)
a.e−→ f(x) on E implies

that fk(x)
a.u−→ f(x). However, fk(x)

a.u−→ f(x) on E always implies that fk(x)
a.e−→ f(x)

on E without the assumption m(E) < ∞. We will prove Egorov’s theorem again using
another extra theorem, which helps you to clarify the relationship between several different
convergence concepts.

30 (Example 1) Suppose that fn(x) = xn(0 5 x 5 1), f(x) = 0(0 5 x < 1), f(1) =

1. Verify that fn(x) → f(x) but not fn(x)
u−→ f(x). (

u−→ means uniform conver-
gence.)

31 (Definition 3.6) Again we introduce another concept of convergence. Let
{fk(x)}k=1 ∪ {f(x)} be measurable functions defined on E ∈ M and all of them
are finite almost everywhere on E. What does it mean to say that fk(x) converges
to f(x) in measure on E? We denote it as

fk(x)
m−→ f(x) on E.

*

Let f(x), g(x) be measurable functions defined onE ∈M . Ifm ({x ∈ E | f(x) 6= g(x)}) =
0, then we say that f(x) and g(x) are equivalent on E.

32 (Theorem 3.13) Let {fk(x)}k=1 be a sequence of measurable functions de-
fined on E ∈ M . Let f(x), g(x) be measurable functions defined on E with
|f(x)|, |g(x)| < ∞ a.e x ∈ E. Suppose that fk(x)

m−→ f(x) and fk(x)
m−→ g(x) on

E. Show that f(x), g(x) are equivalent.

*

The following theorem states that in a finite measure space (i.e if m(E) < ∞),
fk(x)

a.e−→ f(x) on E implies that fk(x)
m−→ f(x) on E. We can also prove this state-

ment using the extra theorem below, but we first prove the statement using the theorems
and the lemma we have introduced.
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

33 (Theorem 3.14) Let {fk(x)}k=1 be a sequence of measurable functions on
E ∈M ,m(E) < ∞ and suppose that |fk(x)| < ∞ a.e x ∈ E. And suppose that
fk(x)

a.e−→ f(x)(x ∈ E) where |f(x)| < ∞ a.e x ∈ E. Show that fk(x)
m−→ f(x).

(However its converse does not hold.)

*

Until now, we have already introduced three new concepts of convergence related to
measurable functions. The following extra theorem will be of great help for you to clarify
the relationship between fk(x)

a.u−→ f(x), fk(x)
a.e−→ f(x) and fk(x)

m−→ f(x). By using the
extra theorem we can easily find out the following facts.

• if fk(x)
a.u−→ f(x), then fk(x)

a.e−→ f(x) and also fk(x)
m−→ f(x) without any assmption

about m(E). (But fk(x)
a.e−→ f(x) does not imply fk(x)

m−→ f(x) if m(E) =∞.)

• especially, when m(E) < ∞, fk(x)
a.e−→ f(x) if and only if fk(x)

a.u−→. (⇒ is called
Egorov’s theorem.)

From these facts, if m(E) <∞,

fk(x)
a.e−→ f(x) ⇔ fk(x)

a.u−→ f(x) ⇒ fk(x)
m−→ f(x).

34 (Extra Theorem: equivalent statements to
a.e−→ and

a.u−→) Let {fk(x)}k=1

be a sequence of Lebesgue measurable functions defined on E ∈ M and suppose
that |fk(x)|, |f(x)| <∞ a.e x ∈ E.

(1) fk(x)
a.e−→ f(x) on E if and only if

m (
⋂∞
m=1

⋃∞
k=m{x ∈ E | |fk − f | = ε}) = 0,∀ε > 0

(2) fk(x)
a.u−→ f(x) on E if and only if

lim
m→∞

m (
⋃∞
k=m{x ∈ E | |fk − f | = ε}) = 0, ∀ε > 0

35 (Theorem 3.15) Let {fk(x)}k=1 ∪ {f(x)} be measurable functions defined on

E ∈ M . (Suppose that |f(x)|, |fk(x)| < ∞ a.e x ∈ E.) Suppose that fk(x)
a.u−→

f(x). Prove the following statements.

(1) Show that fk(x)
m−→ f(x).

(2) Show that fk(x)
a.e−→ f(x).

36 (Alternative Proof: Theorem 3.12 Egorov) Show Theorem 3.12 (Egorov’s
Theorem) again using Extra Theorem above.

37 (Definition 3.7) Let {fk(x)}k=1 be measurable functions on E ∈M and sup-
pose that |fk(x)| < ∞ a.e x ∈ E. Explain {fk(x)}k=1 is a Cauchy sequence in
measure.

38 (Theorem 3.16) Let {fk(x)}k=1 be a Cauchy sequence in measure defined on

E ∈M . Show that ∃f(x) : |f(x)| <∞ a.e x ∈ E s.t fk(x)
m−→ f(x).
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3.2. CONVERGENCE OF LEBESGUE MEASURABLE FUNCTIONS

39 (Theorem 3.17 Riesz Theorem) Let {fk(x)}k=1 ∪ {f(x)} be a sequence of
Lebesgue measurable functions defined on E ∈M . Suppose that |fk(x)|, |f(x)| <
∞ a.e x ∈ E. Show that fk(x)

m−→ f(x) if and only if ∀{kl}l=1 (a subsequence),

∃{klm}m=1 s.t fklm
a.u−→ f .

40 (Exercise 1) Let E ⊂ Rd, E ∈M and let {fn(x)}n=1 ∪ {f(x)} be measurable

functions. Suppose that fn(x)
a.e−→ f(x) , fn(x)

m−→ g(x). Prove of disprove g(x) =
f(x) a.e x ∈ E.

41 (Exercise 2) Let f(x), fk(x)(k ∈ N) be a real-valued function defined on E ∈
M ;m(E) < ∞. Suppose fk(x) > 0 and fk(x)

m−→ f(x). Show that fpk (x)
m−→

fp(x), (p > 0). Hint. Use Theorem 3.17.

42 (Exercise 3) Let {fk(x)}k=1 be a sequence of measurable functions defined on

E ∈M and suppose that fk(x)
m−→ 0 on E. Let g(x) be a real-valued measurable

function defined on E. Suppose that m(E) = +∞. Show that fk(x) · g(x)
m−→ 0 is

not necessarily true by giving a counter example.

43 (Exercise 4) Let fn(x) = cosn(x). Prove or disprove fn(x) converges to 0 in

measure on [0, π]. Hint. m([0, π]) <∞ so
a.e−→⇔ a.u−→⇒ m−→ on [0, π].

44 (Exercise 5) Let {fn(x)}n=1 be a sequence of measurable function defined on

E ⊂ R;E ∈M ;m(E) > 0. Suppose that fn(x)
m−→ 0. Prove of disprove

lim
n→∞

m ({x ∈ E | |fn(x)| > 0 }) = 0.

45 (Exercise 6) Let E ⊂ R, E ∈ M . A sequence of measurable functions

{fk(x)}k=1 satisfies fk = fk+1. Suppose that fk(x)
m−→ 0 on E. Prove of disprove

fk(x)
a.e−→ 0.

46 (Exercise 7) Let {Ek}k=1 be a sequence of Lebesgue measurable sets on Rd.

Let fk(x)
def
= χEk(x).

(1) Show that fk(x)
m−→ 0 on Rd if and only if m(Ek)→ 0 as k →∞.

(2) Show that fk(x)
a.e−→ 0 on Rd if and only if m (lim supk→∞Ek) = 0.

47 (Exercise 8) Let {Ek}k=1 be a sequence of Lebesgue measurable sets on Rd.

Let fk(x)
def
= χEk(x). Show that {fk(x)}k=1 is a Cauchy sequence in measure if and

only if limk.j→∞m(Ek∆Ej) = 0.

48 (Exercise 9) Let F (x), fn(x)(n ∈ N) be measurable functions defined on R1.
Suppose that |fn(x)| 5 F (x) a.e x ∈ R1. Suppose that ∀ε > 0, we have

m({x ∈ R1 | F (x) > ε}) <∞.

Show that if fn(x)
a.e−→ 0 on R1 then fn(x)

m−→ 0 on R1. Hint.
a.e−→ if and only if

a.u−→
on a finite measure space.
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49 (Exercise 10) Let {fn(x)}n=1 be a sequence of measurable functions on E ∈
M , E ⊂ R1. Suppose that fn(x) 5 fn+1(x) for all n ∈ N. Show that if fn(x)

m−→
f(x) on E then fn(x)

a.e−→ f(x) on E.

§ 3.3 Lebesgue measurable functions vs Continuous functions

(I) Lusin’s Theorem

Lusin’s Theorem states a relationship between a measurable function and a continuous
function.

50 (Theorem 3.18 Lusin) Let f(x) be a Lebesgue measurable function on E ∈
M , E ⊂ Rn. Suppose that |f(x)| <∞ a.e x ∈ E. Show that ∀δ > 0, there exists
a closed set Fδ : m(E \ Fδ) < δ such that f(x) is continuous on Fδ.

51 (Corollary 3.19) Let f(x) be a measurable function defined on E ∈M , E ⊂ Rd.
Suppose that |f(x)| <∞ a.e x ∈ E.

(1) Show that ∃g(x) ∈ C(Rd) (a continuous function on Rd) s.t

m({x ∈ E : f(x) 6= g(x)}) < δ.

Explain that if f(x) is bounded then g(x) is also bounded.

(2) Suppose that E is bounded, Show that there exists g(x) ∈ C(Rd) (a continuous
function on Rd) with a compact support s.t

m({x ∈ E : f(x) 6= g(x)}) < δ.

52 (Corollary 3.20) Let f(x) be a Lebesgue measurable function defined on E ∈
M , E ⊂ Rd. Suppose that |f(x)| <∞ a.e x ∈ E. Show that ∃{gk(x)}k=1 ⊂ C(Rd)
(a sequence of continuous functions defined on Rd) s.t

lim
k→∞

gk(x) = f(x) a.e x ∈ E.

53 (Example 1) Let f(x) be a real-valued Lebesgue measurable function on R.
For all x, y ∈ R, f(x+ y) = f(x) + f(y). Show that f(x) ∈ C(R).

54 (Exercise 1) Let f(x) be a real-valued Lebesgue measurable function on R.
Prove or disprove ∃g(x) ∈ C(R) (a continuous function on R) s.t

m({x ∈ R | |f(x)− g(x)| > 0}) = 0.

55 (Exercise 2) Let f(x) be a Lebesgue measurable function defined on [a, b]. Show
that there exists {Pn(x)}n=1: a sequence of polynominal s.t

lim
n→∞

Pn(x) = f(x) a.e x ∈ [a, b].
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(II) measurability of composite functions

56 (Lemma 3.21) Let f(x) be a real valued function defined on R1. Show that
f(x) is Lebesgue measurable if and only if ∀G ∈ O1 (an open set on R), we have
f−1(G) ∈M .

57 (Supplement to Lemma 3.21) Let f(x) be a real valued function defined on
Rd. Show that f(x) is Lebesgue measurable if and only if ∀B ∈ B(R1) (a Borel
set on R), we have f−1(B) ∈M .

58 (Theorem 3.22) Let f(x) ∈ C(R) and let g(x) be a real valued Lebesgue
measurable function. Show that h(x) = f ◦g(x) is a Lebesgue measurable function
defined on R.

59 (Lemma 3.23, Corollary 3.24) Let T : Rd → Rd be a continuous transfor-
mation. Suppose Z ⊂ Rd,m(Z) = 0 ⇒ T−1(Z) is a measure zero set. Show
that f ◦ T (x) is a Lebesgue measurable funcntion if f(x) is a real valued Lebesgue
measurable function on Rd. (Note. if T is a non-singular linear transformation,
then T is continuous by Example 1 in §2.6, and T−1(Z) is a measure zero set for
an arbitrary measure zero set Z by Theorem 2.25, 2.26.)

60 (Exercise 1) Let f(x), g(x) be Lebesgue measurable on R and let f(x) > 0.
Show that f(x)g(x) is Lebesgue measurable.

61 (Exercise 2) Let f(x) be a Lebesgue measurable function on [a, b] and suppose
that m 5 f(x) 5M and g(x) is monotone increasing on [m,M ]. Show that g◦f(x)
is measurable on [a, b].

62 (Exercise 3) Let f(x) be a Lebesgue measurable function on Rd. Show that
f(x− y) is Lebesgue measurable on Rd × Rd. (= R2d)

63 (Exercise 4) Let f(x, y) be a function on R2. Suppose that ∀x ∈ R, y 7−→
f(x, y) is Lebesgue measurable and suppose that ∀y ∈ R, x 7−→ f(x, y) is a
continuous function. Show that f(g(y), y) is a measurable function on R where
g(y) is a Lebesuge measurable function on R.

64 (Exercise 5) In theorem 3.22, we show that if g(x) is a real valued Lebesgue
measurable function and f(x) is continuous on R, f ◦ g(x) is also Lebesgue mea-
surable. However if f(x) is Lebesgue measurable, g(x) ∈ C(R) where f ◦ g(x) is
not always Lebesgue measurable. Give an example.

§ 3.4 Exercise

65 (Exercise 1) Let I be an index set. Let {fa(x) : a ∈ I} be a family of Lebesgue

measurable function. Prove or disprove S(x)
def
= sup{fa(x) : a ∈ I} is Lebesgue

measurable.
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66 (Exercise 2) Let z = f(x, y) be a continuous function on R2 and let g1(x), g2(x)

be real-valued measurable functions on [a, b] ⊂ R. Show that F (x)
def
= f(g1(x), g2(x))

be a measurable function on [a, b].

67 (Exercise 3) Let f(x) be right-differentiable on [a, b). Show that f ′+(x) is
measurable on [a, b).

68 (Exercise 4) Let f(x) be a measurable function defined on E ∈ M ;E ⊂
Rd;m(E) <∞ and suppose that |f(x)| <∞ a.e x ∈ E. Show that ∀ε > 0, ∃gε(x) :
a bounded measurable function defined on E s.t m({x ∈ E : |f(x)−gε(x)| > 0}) <
ε.

69 (Exercise 5) Let f(x) and fn(x) be measurable functions defined on A ⊂
R, A ∈M and suppose that |f(x)|, |fn(x)| < ∞ a.e x ∈ A. Suppose that ∀ε > 0,
∃Bε ⊂ A,B ∈M : m(A \B) < ε s.t fn(x)

u−→ f(x)(x ∈ B). Show that

fn(x)
a.e−→ f(x) on A.

70 (Exercise 6) Let {fk(x)}k=1 be a sequence of real valued measurable functions

on E ∈ M,E ⊂ R. Suppose that m(E) < ∞. Show that fn(x)
a.e−→ 0 on E if and

only if ∀ > 0

lim
j→∞

m

({
x ∈ E | sup

k=j
{|fk(x)|} = ε

})
= 0.

71 (Exercise 7) Let {f(x)}∪{fk(x)}k=1 be Lebesgue measurable functions defined

on [a, b]. Suppose that |f(x)|, |fk(x)| < ∞ a.e x ∈ [a, b] and fk
a.e−→ f on [a, b].

Show that there exists a sequence of Lebesgue measurable sets {En}n=1 ⊂M :

m ([a, b] \
⋃∞
n=1En) = 0

s.t fk
u−→ f on each En.

72 (Exercise 8) Let {fk(x)} be a sequence of measurable functions and suppose

fk
m−→ f on E. (Similarly suppose that gk

m−→ g.) Show that fk + gk
m−→ f + g on E.

73 (Exercise 9) Suppose that m(E) <∞. Let {f(x)} ∪ {fk(x)}k=1 be measurable

functions on E. Suppose |f(x)|, |fk(x)| < ∞ a.e x ∈ E. Show that fk(x)
m−→ f(x)

if and only if limk→∞ infa>0{a+m({x ∈ E : |fk(x)− f(x)| > a})} = 0.

74 (Exercise 10) Let fn(x) be a monotone increasing function defined on [0, 1].

(So x < x′ ⇒ fn(x) 5 fn(x′) holds for all n ∈ N.) Suppose fn(x)
m−→ f(x) on [0, 1].

Show that ∀x0 ∈ C(f) a continuous point of f , fn(x0)→ f(x0)(n→∞) holds.

75 (Exercise 11) Let f : Rd → R and suppose that ∀ε > 0, ∃Gε ⊂ Rd;Gε ∈
Od,m(Gε) < ε s.t f(x) ∈ C(Rd \ G). Show that f(x) is a Lebesgue measurable
function on Rd.
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76 (Exercise 12) Suppose that fk(x), gk(x)
m−→ 0 on E ∈ M . Show that fk(x) ·

gk(x)
m−→ 0 on E.

77 (Exercise 13) Let fk(x)
m−→ f(x) on [a, b]. Let g(x) ∈ C(R). Show that

g ◦ fk(x)
m−→ g ◦ f(x) on [a, b]. If we change [a, b] to [0,∞), does the statement

above still hold?

78 (Exercise 14) Let E ∈M , E ⊂ Rd and let f(x) be a function defined on E (f is
not necessarily a measurable function). Suppose that ∀δ > 0, ∃Fδ ⊂ E,m(E\F ) <
δ : a closed set s.t f(x) is continuous on F . Show that f(x) is measurable on E.

79 (Exercise 15) Let {fn} be a sequene of measurable functions on [a, b]. Let f(x)
be a real valued function on [a, b] (f is not necessarily a measurable function). For
all ε > 0, we have

lim
n→∞

m∗({x ∈ [a, b] | |fn − f | > ε}) = 0.

Prove of disprove f(x) is a Lebesgue measurable function on [a, b].

80 (Exercise 16) Let f(x), fk(x) be real valued measurable functions defined on
E ⊂ R. Suppose that ∀ε > 0, we have

lim
j→∞

m

(
∞⋃
k=j

{x | |fk(x)− f(x)| > ε}

)
= 0.

Show that ∀δ > 0, ∃e ⊂ E : m(e) < δ s.t fk
u−→ f on E \ e.
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CHAPTER 4

Lebesgue Integral

§ 4.1 Lebesgue Integral: non-negative measurable functions

1 (Definition 4.1) Let f(x) be a non negative measurable simple function on Rd.

f(x) =

p∑
i=1

ciχAi(x), {Ai}pi=1 ⊂M ,

p⋃
i=1

Ai = Rd, Ai ∩ Aj = ∅(i 6= j)

Suppose that E ∈M . Please define Lebesgue Integral
∫
E
f(x)dx.

2 (Theorem 4.1) Let f(x), g(x) be non-negative measurable simple functions on
Rd defined as below.

f(x) = ai(if x ∈ Ai, i = 1, 2 · · · p),
g(x) = bj(if x ∈ Bj, j = 1, 2 · · · q),

where {ai}pi=1 ∪ {bj}
q
j=1 ⊂ [0,∞), {Ai}pi=1 ∪ {Bj}qj=1 ⊂ M , and Rd =

⋃p
i=1Ai =⋃q

j=1Bj. Let E ∈M . Show the following properties.

(1)
∫
E
cf(x)dx = c

∫
E
f(x)dx.

(2)
∫
E

(f(x) + g(x))dx =
∫
E
f(x)dx+

∫
E
g(x)dx.

(3) Show that if f(x) 5 g(x), then
∫
E
f(x)dx 5

∫
E
g(x)dx.

3 (Theorem 4.2) Let {Ek}k=1 ⊂M and suppose that Ek ⊂ Ek+1. Let f(x) be a
non negative simple measurable function on Rd. Show that∫

E

f(x)dx = lim
k→∞

∫
Ek

f(x)dx, where E =
∞⋃
k=1

Ek.

4 (Definition 4.2) Let f(x) be a non-negative integtable function on E ⊂ Rd.
State the definition of

∫
E
f(x)dx. Also state the meaning of integrable function.

40



4.1. LEBESGUE INTEGRAL: NON-NEGATIVE MEASURABLE FUNCTIONS

*

Until now, we have already defined Lesgue integral of non-negative measurable sim-
ple funtions (Definition 4.1) and that of non-negative measurable functions (Definition
4.1). However, non-negative measurable simple functions are also non-negative measur-
able functions, therefore, we can define its integral by Definition 4.2. So let us verify if
the Definition 4.2 does not contradict to Definition 4.1.

5 (Extra Theorem) Show that Definition 4.1 and Definition 4.2 does not con-
tradict for the integral of non-negative simple measurable function.

6 (Some Properties derived from Definition 4.2) Let f(x), g(x) be non-
negative measurable functions defined on E ∈M . Show the following properties
with regard to integral of non-negative Lebesgue measurable functions. We will
use them in proofs of the later theorems.

(1) Suppose that f(x) 5 g(x) on E. Show that
∫
E
f(x)dx 5

∫
E
g(x)dx.

(2) Show that if f(x) 5 g(x), and g(x) is integrable on E, then f(x) is also
integrable on E.

(3) Let A ⊂ E and A ∈M . Show that∫
A

f(x)dx =

∫
E

f(x)χA(x)dx

(4) Show that f(x) = 0 a.e x ∈ E if and only if∫
E

f(x)dx = 0.

(5) Suppose that m(E) = 0. Show that∫
E

f(x)dx = 0.

7 (Theorem 4.3) Show that if f(x) is a non-negative integrable function defined
on E ∈ M , then f(x) is finite almost everywhere on E. (i.e m({x ∈ E | f(x) =
∞}) = 0.)

8 (Theorem 4.4 Monotone Convergence Theorem : Beppo Levi) Let
{fk(x)}k=1 be an increasing sequence of non-negative measurable functions. (i.e
0 5 fk(x) 5 fk+1(x).) Suppose that limk→∞ fk(x) = f(x), x ∈ E. Show that

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx

9 (Theorem 4.5: Linearity of Lebesgue Integral) Let f(x), g(x) be non-
negative measurable functions defined on E. Let α, β be non-negative constants.
Show that ∫

E

(αf(x) + βg(x))dx = α

∫
E

f(x)dx+ β

∫
E

g(x)dx.
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10 (Example 2) Let {fk(x)}k=1 be a decreasing sequence of non-negative integrable
functions. Suppose that limk→∞ fk(x) = f(x) for all x ∈ E. Show that

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

11 (Example 3) Let f(x), g(x) be non-negative measurable functions defined on
E. Suppose f(x) = g(x) a.e x ∈ E. Show that∫

E

f(x)dx =

∫
E

g(x)dx

12 (Supplement to Theorem 4.5 and Example 2) Show that the assumption

fk(x) → f(x) for all x ∈ E can be modified to fk(x)
a.e−→ f(x) on E in Theorem

4.5 (and Example 2).

13 (Exercise 1) Let f1, f2, · · · , fm be a non-negative integrable function on E.
Show the following statements.

(1) F (x) =
(∑m

i=1 (fi(x))2)1/2
is integrable on E.

(2) G(x) =
∑∑

15i,k5m (fi(x)fk(x))1/2 is integrable on E.

14 (Exercise 2) Let {Ek}k=1 be an increasing sequence of point sets on Rd. Suppose
that Ek ↗ E as k →∞. If f(x) is non-negative measurable on E, show that∫

E

f(x)dx = lim
k→∞

∫
Ek

f(x)dx.

15 (Exercise 3) Let {fk}k=1 be a sequence of non-negative measurable functions
defined on E. Suppose that limk→∞

∫
E
fk(x)dx = 0. Show that

lim
k→∞

∫
E

(1− exp(−fk(x))) dx = 0.

Hint. 1− e−t 5 t when t is non-negative.

16 (Exercise 4) Let f(x) be a non-negative integrable funtion defined on E. Show
that for any ε > 0, there exists N > 0 s.t.∫

E

f(x)χ{x∈E | f(x)>N}(x)dx < ε.

17 (Exercise 5) Show that

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n
exp (−2x) dx =

∫
[0,∞)

exp (−x) dx.

18 (Exercise 6) Show that

lim
n→∞

∫
[0,1]

xndx = 0.
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19 (Theorem 4.6 Swap Σ and
∫

) Let {fk(x)}k=1 be a sequence of non-negative
measurable functions defined on E ∈M . Show that∫

E

∞∑
k=1

fk(x)dx =
∞∑
k=1

∫
E

fk(x)dx

20 (Corollary 4.7) Let Ek ∈M (k = 1, 2, · · · ) and suppose that Ei∩Ej = ∅(i 6= j).

Let f(x) be a non-negative measurable function defined on E
def
=
⋃∞
k=1Ek. Show

that ∫
E

f(x)dx =
∑
k=1

∫
Ek

f(x)dx

21 (Example 4) Suppose that E1E2 · · ·En ∈M ([0, 1]) and suppose that ∀x ∈ [0, 1],
#{i = 1, 2 · · ·n | x ∈ Ei } = k. (k 5 n) Show that there exists Ei0(i0 = 1, 2 · · ·n)
s.t m(Ei0) = k

n
.

22 (Theorem 4.8 Fatou’s Lemma) Let {fk}k=1 be non-negative measurable
functions on E ∈M . Show that∫

E

lim inf
k→∞

fk(x)dx 5 lim inf
k→∞

∫
E

fk(x)dx

23 (Example 5: equality does not always hold in Fatou’s lemma) Consider
a sequene of non-negative measurable functions on [0, 1]. Does equality hold for
the Fatou’s lemma?

fn(x) =


0 x = 0

n 0 < x < 1/n

0 1/n 5 x 5 1

24 (Theorem 4.9) Let f(x) be a non-negative measurable function onE ∈M ,m(E) <
∞ and suppose that |f(x)| <∞ a.e x ∈ E. In [0,∞), we consider a segmentation
as below.

0 = y0 < y1 < · · · < yk < yk+1 < · · · → ∞
We suppose that yk+1 − yk < δ. We define Ek as below.

Ek
def
= {x ∈ E |yk 5 f(x) < yk+1} (k = 0, 1, 2 · · · )

(1) Show that f(x) is integrable on E if and only if

∞∑
k=0

ykm(Ek) <∞

(2) Show that

lim
δ↘0

∞∑
k=0

ykm(Ek) =

∫
E

f(x)dx.

*
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In the question above, you may feel that the limit on the left hand side is somewhat
weird because partition {yk}∞k=0 is not unique. Let

P (δ) def
= {{yk}∞k=0 | y0 = 0 < y1 · · · < yn ↗∞ ; yk − yk−1 < δ,∀k ∈ N}.

And for each partition I ∈ P (δ), we define

S(I)
def
=

∞∑
k=0

ykm(Ek), I = {yk}∞k=0.

Note that if δ < δ′, then

sup
I∈P (δ)

S(I) 5 sup
I∈P (δ′)

S(I), inf
I∈P (δ)

S(I) = inf
I∈P (δ′)

S(I).

So limδ↘0 supI∈P (δ) S(I) and limδ↘0 infI∈P (δ) S(I) exist. We need to prove that∫
E

f(x)dx = lim
δ↘0

sup
I∈P (δ)

S(I) = lim
δ↘0

inf
I∈P (δ)

S(I).

25 (Example 6) Let E ∈ M , (E ⊂ R) : m(E) < ∞. Let f(x) be a non-negative
real-valued measurable function on E. (i.e f(x) : E 7→ [0,∞)) Show that f(x) is
integrable on [0,∞] if and only if

∞∑
k=0

m ({x ∈ E| f(x) = k) <∞

26 (Example 7) Let f(x) : [a, b] 7→ [0,∞) be a non-negative real-valued measurable
function. Show that f(x)2 is integrable on [a, b] if and only if

∞∑
n=1

nm ({x ∈ [a, b]| f(x) = n}) <∞.

27 (Exercise 7) Let f(x)3 be a non-negative integrable function on E ∈M ,m(E) <
∞. Show that f(x)2 is also integrable on E.

28 (Exercise 8) Let f(x) : [a, b] 7→ [0.∞) be a non-negative real-valued measurable
function on [a, b]. Show that f(x)3 is integrable on [a, b] if and only if

∞∑
n=1

n2m (x ∈ [a, b]| f(x) = n)

29 (Exercise 9) Let {fk}k=1 be a sequence of non-negative measurable functions
on E ∈M . Suppose that limk→∞ fk(x) = f(x), fk(x) 5 f(x). Show that for any
e ⊂ E, e ∈M , we have

lim
k→∞

∫
e

fk(x)dx =

∫
e

f(x)dx

30 (Exercise 10) Let {En} ⊂ [0, 1] be a sequence of Lebesgue measurable sets. Sup-
pose thatm (lim supEn) = 0. Show that ∀ε > 0,∃A ⊂ [0, 1]; A ∈M ; m ([0, 1] \ A) <
ε s.t

∞∑
n=1

m (A ∩ En) <∞
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§ 4.2 Lebesgue Integral: general measurable functions

(I) Definition of Integral and Basic Properties

In the last section, we defined integral of non-negative measurable functions. From
now on, we study integral of general (not necessarily non-negative) measurable functions.

31 (Definition: integral of general measurable functions) Let f(x) be a
measurable function on E ∈ Rd;E ∈M .

(1) Define
∫
E
f(x)dx. Explain the meaning of

∫
E
f(x)dx exists.

(2) Explain the meaning of f(x) is integrable.

(3) Explain that f(x) is integrable if and only if |f(x)| is integrable.

(4) Explain that
∣∣∫
E
f(x)dx

∣∣ 5 ∫
E
|f(x)| dx

*

From now on, let L(E) be a set of all integrable functions defined on E ∈M .

L(E)
def
=

{
f(x) : measurable |

∫
E

|f(x)| <∞
}

32 (Example 1) Let f(x) be a bounded function on E ∈ M and suppose that
m(E) <∞. Is f(x) integrable on E?

33 (Some Properties) Show the following properties.

(1) Suppose that f(x) ∈ L(E). Show that |f(x)| <∞ a.e x ∈ E.

(2) Let E ∈M . Suppose that f(x) = 0 a.e x ∈ E. Show that
∫
E
f(x)dx = 0.

(3) Let f(x) be a measurable function on E. Let g ∈ L(E). Suppose that |f(x)| 5
g(x). Show that f(x) ∈ L(E).

(4) Let f(x) ∈  L(Rd). Show that

lim
N→∞

∫
{x∈Rd| |x|=N}

|f(x)|dx = 0

34 (Theorem 4.10 Linearity of Lebesgue Integral) Let E ∈ M . Suppose
that f(x) ∈ L(E) and

∫
E
g(x)dx exists (g(x) is not necessarily integrable), and let

C ∈ R.

(1) Show that ∫
E

Cf(x)dx = C

∫
E

f(x)dx

(2) Show that ∫
E

(f(x) + g(x))dx =

∫
E

f(x)dx+

∫
E

g(x)dx
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35 (Example 2) Let f(x) be a measurable function on [0, 1]. Show that f ∈ L([0, 1])
if the following statement holds.∫

[0,1]

|f(x)| ln (1 + |f(x)|) dx <∞.

36 (Example 3) Let {fn(x)} ⊂ L(E) and suppose that limn→∞ fn(x) = f(x)(∀x ∈
E) and fn(x) 5 fn+1(x)(∀n ∈ N,∀x ∈ E). Show that

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx

37 (Example 4) Let g(x) ∈ L(E) and let {fn(x)}n=1 ⊂ L(E). Suppose that
fn(x) = g(x) a.e x ∈ E. Show that∫

E

lim inf
n→∞

fn(x)dx 5 lim inf
n→∞

∫
E

fn(x)dx

38 (Example 5 Jenesen’s inequality) Let w(x) be a positive-valued measurable
function on E ⊂ R;E ∈M and suppose that

∫
E
w(x)dx = 1. Let φ(x) be a convex

function on I = [a, b]. Let f(x) be a measurable function on E and suppose that
R(f) ⊂ I. Show that if f(x) · w(x) ∈ L(E) then we have

φ

(∫
E

f(x) · w(x)dx

)
5
∫
E

φ ◦ f(x)w(x)dx.

39 (Exercise 1) Let f(x), g(x) ∈ L(Rd). Show that min{f(x), g(x)},max{f(x), g(x)}
are integrable.

40 (Exercise 2) Let f(x, y) : [0, 1]2 7→ R

f(x) =

{
1 xy /∈ Q
2 xy ∈ Q

Show that ∫ ∫
[0,1]×[0,1]

f(x, y)dxdy = 1.

41 (Exercise 3) Let f(x) ∈ L(E). Show that

m ({x ∈ E : |f(x)| > k}) = o

(
1

k

)
.

(· · · ) = o( 1
k
) means that the left hand side converges to 0 faster than 1

k
as k →∞.

42 (Exercise 4) Let f(x) ∈ L ((0,∞)). Let fn(x)
def
= f(x)χ(0,n)(x). Show that

fn(x)
m−→ f(x) on (0,∞).
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43 (Exercise 5) Let f(x) ∈ L ([0, 1]) and suppose that exp
(∫

[0,1]
f(x)dx

)
=∫

[0,1]
exp (f(x)) dx. Show that there exists C : a constant s.t f(x) = C a.e x ∈ [0, 1].

Hint. eC(x− C) + eC 5 ex. Equality holds if x = C.

44 (Exercise 6) Let f(x) ∈ L(R1). For ∀I : a bounded interval, we define fI
def
=

1
|I|

∫
I
f(x)dx and EI

def
= {x ∈ I : f(x) > fI}. Show that∫

I

|f(x)− fI |dx = 2

∫
EI

(f(x)− fI) dx

45 (Therorem 4.11: countable additivity about range) Let Ek ∈ M and

suppose that Ei ∩ Ej = ∅ if i 6= j. Let f(x) be a measurable function on E
def
=

∪∞k=1Ek. Suppose
∫
E
f(x)dx exists. Show that∫

E

f(x)dx =
∞∑
k=1

∫
Ek

f(x)dx.

46 (Example 6: test condition to be 0 almost everywhere) Let f(x) ∈
L ([a, b]). Show that if for ∀c ∈ [a, b],

∫
[a,c]

f(x)dx = 0 then,

f(x) = 0 a.e x ∈ [a, b]

47 (Example 7) Let g(x) : E 7→ R be a real-valued measurable function on E ∈M .
Suppose that ∀f(x) ∈ L(E), f(x)g(x) ∈ L(E). Show that ∃Z ∈M with m(Z) = 0
s.t g(x) is bounded on E \ Z.

48 (Therorem 4.12: absolute continuity of integral) Let f(x) ∈ L(E). Show
that ∀ε > 0,∃δ > 0 s.t ∀e ∈ M (e ⊂ E) with m(e) < δ, the following inequality
holds. ∣∣∣∣∫

e

f(x)dx

∣∣∣∣ 5 ∫
e

|f(x)|dx < ε.

49 (Example 8) Let f : E 7→ [0,∞], f(x) ∈ L(E), E ⊂ R;E ∈M . Suppose that
0 < A =

∫
E
f(x)dx <∞. Show that there exists e ∈M ; e ⊂ E s.t∫

e

f(x)dx =
A

3
.

50 (Therorem 4.13: translation of variables in Lebesgue Integral) Suppose
that

∫
Rd f(x)dx exists and let y0 ∈ Rd. Show that f(x+ y0) ∈ L(E) and∫

Rd
f(x+ y0)dx =

∫
Rd
f(x)dx.

.

51 (Example 9) Let f(x) ∈ L(E), E
def
= [0,∞]. Show that

lim
n→∞

f(x+ n) = 0 a.e x ∈ E.

Hint. It is enough to show that limn→∞ f(x + n) = 0 a.e x ∈ [0, 1). You may
consider

∑∞
n=0

∫
[0,1)
|f(x+ n)|dx.
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52 (Example 10) Let I ⊂ R be an interval and let
∫
I
f(x)dx exists. For a 6= 0, we

define J
def
= {x

a
: x ∈ I} and g(x)

def
= f(ax), x ∈ J . Show that

∫
J
g(x)dx exists and∫

I

f(x)dx = |a|
∫
J

g(x)dx.

53 (Exercise 7) Let f(x), g(x) ∈ L(R) and
∫

[a,x]
f(t)dt =

∫
[a,x]

g(t)dt for all x ∈ R.

Show that f(x) = g(x) a.e x ∈ [a,∞).

54 (Exercise 8) Let f(x) ∈ L(R). Let φ be an arbitrary bounded Lebesgue
measurable function. Suppose that

∫
R f(x)φ(x)dx = 0. Show that f(x) = 0 a.e

x ∈ R.

(II) Lebesgue Dominated Convergence Theorem

55 (Therorem 4.14: Lebesgue Dominated Convergence Theorem (L.D.C.T))
Let {fk(x)}k=1 be a sequence of measurable functions on E ∈ M . Suppose that
limk→∞ fk(x) = f(x) a.e x ∈ E and suppose that for every k ∈ N, |fk(x)| 5 g(x)
a.e x ∈ E where g ∈ L(E). Show that

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

Hint. You can try to show that lim supn→∞
∫
E
|fn(x)− f(x)|dx = 0.

56 (Therorem 4.15 L.D.C.T convergence in measure version) Let {fk(x)}k=1

be a sequence of measurable functions defined on E ⊂ Rd, E ∈ M and suppose
that fk(x)

m−→ f(x) on E. We also suppose that ∃g(x) ∈ L(E) s.t |fk(x)| 5 g(x)
a.e x ∈ E. Show that f(x) ∈ L(E) and

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx

57 (Example 12) Show that∫
[0,1]

x sin(x)

1 + (nx)α
dx = o

(
1

n

)
(n→∞, α > 1).

58 (Example 13) Show that∫
[α,∞)

x exp (−n2x2)

1 + x2
= o

(
1

n2

)
(n→∞, α > 0)

59 (Exercise 1) Let f(x), F (x), φ(x), φn(x) be Lebesgue measurable functions de-
fined on [a, b]. Suppose that φn(x) → φ(x) for all x ∈ [a, b] and |f(x)φn(x)| 5
F (x) ∈ L([a, b]). We also suppose that∫

[a,x]

f(t)φn(t)dt = φn(x)− φn(a) ∀x ∈ [a, b],
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Show that ∫
[a,x]

f(t)φ(t)dt = φ(x)− φ(a) ∀x ∈ [a, b].

60 (Exercise 2) Show that

cos(nx) 6m−→ 0 on [−π, π).

Hint. You may use the fact that
∫

[−π,π)
cos(2nx)dx = 0 without proof. We will

study the relationship between Lebesgue integral and Riemann integral in the
following section.

61 (Exercise 3) Let f ∈ L((0,∞)). Show that g(x) is continuous on (0,∞).

g(x)
def
=

∫
(0,∞)

f(t)

x+ t
dt

62 (Exercise 4) Let f ∈ L(E) and let Ek
def
= {x ∈ E : |f(x)| < 1/k}. Show that

lim
k→∞

∫
Ek

|f(x)| dx = 0.

63 (Exercise 5) Let {fk} ∪ {gk} ∪ {f, g} ⊂ L(E). Suppose that |fk(x)| 5M <∞
and

∫
E
|fk(x)− f(x)| dx→ 0,

∫
E
|gk(x)− g(x)| dx→ 0 as k →∞. Show that∫

E

|fk(x)gk(x)− f(x)g(x)| dx→ 0 as k →∞.

64 (Exercise 6) Let {fk(x)} ⊂ L(E) and suppose that fk
u−→ f on E ∈M ;m(E) <

∞. Show that

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

65 (Corollary 4.16) Let fk(x) ∈ L(E), k = 1, 2 · · · . Suppose that
∑∞

k=1

∫
E
|fk(x)| <

∞.

(1) Show that
∞∑
k=1

fk(x) converges a.e x ∈ E.

(i.e
∑∞

k=1 fk(x) exists and is finite a.e x ∈ E.)

(2) Show that
∞∑
k=1

∫
E

fk(x)dx =

∫
E

S(x)dx

where S(x) =
∑∞

k=1 fk(x). S(x) is a measurable function defined a.e x ∈ E, but
is not defined at every x ∈ E. However, we can still regard S(x) as a measurable
function defined on E because it does not have influence on its integral. If you feel
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weird, you can also define S(x) in the following way instead. Then S(x) is defined
at every x ∈ E and is a measurable function on E.

S(x)
def
=

{∑∞
k=1 fk(x) if converges

0 otherwise

This operation is called a measurable modification.

66 (Therorem 4.17 integral and differentiation) Let f(x, y) be a function
defined on E × (a, b). Suppose that f(x, y) as a function of x under fixed y

f|y : x 7→ f(x, y)

is integrable on E for all y ∈ (a, b), and also suppose that f(x, y) as a function of
y under fixed x

f|x : y 7→ f(x, y)

is differentiable respect to y for all x ∈ E. Suppose that ∃F (x) ∈ L(E) s.t∣∣∣ ∂∂yf(x, y)
∣∣∣ 5 F (x) for all (x, y) ∈ E × (a, b). Show that

∂

∂y

∫
E

f(x, y)dx =

∫
E

∂

∂y
f(x, y)dx

67 (Example 14) Let f(x), fn(x) be integrable and real-valued on R. Suppose
∀E ∈M ;E ⊂ R, limn→∞

∫
E
fn(x)dx =

∫
E
f(x)dx. Show that

lim inf
n→∞

fn(x) 5 f(x) 5 lim sup
n→∞

fn(x)

68 (Exercise 7) Let f(x) be non-negative and integrable on [0,∞) and let E ⊂
(0,∞). Suppose that

∫
E
f(x)dx = 1. Show that∫

E

f(x) cos(x)dx 6= 1.

69 (Exercise 8) Let f(x), fn(x) ∈ L(R) and suppose that
∫
R |fn(x)− f(x)| dx 5 1

n2 .
Show that

fn(x)→ f(x) a.e x ∈ R.

70 (Exercise 9) Let {an} be a sequence of real numbers and suppose that |an| <
ln(n). Show that ∫

[2,∞)

∞∑
n=2

ann
−xdx =

∞∑
n=2

an
log n

n−2.

We still do not know the relationship between Lebesgue integral and Rieman improper
integral. In this question, you may suppose that

∫
[2,∞)

n−xdx = 1
n2 logn

.

71 (Exercise 10) Let f(x, y) be a function defined on E × Rd. Suppose that
∀y ∈ Rd, f(x, y) is a Lebesgue measurable function on E and suppose that ∀x ∈ E,
f(x, y) is a continuous function on Rd. Moreover suppose that ∃g ∈ L(E) s.t
|f(x, y)| 5 g(x) a.e x ∈ E. Show that F is continuous on Rd.

F (y)
def
=

∫
E

f(x, y)dx.
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§ 4.3 Integrable functions vs Continuous functions

72 (Theorem 4.18) Let f ∈ L(E);E ⊂ Rn. Show that ∀ε > 0, ∃g(x) ∈ C(Rn)
with a compact support s.t ∫

E

|f(x)− g(x)| dx < ε.

73 (Corollary 4.19; 4.20) Let f ∈ L(E). Show that there exists {gk(x)} ⊂ C(Rn)
with a compact support s.t

(i) lim
k→∞

∫
E

|f(x)− gk(x)| dx = 0;

(ii) lim
k→∞

gk(x) = f(x) a.e x ∈ E.

74 (Example 1) Let f ∈ L(Rn). Suppose that ∀φ(x) ∈ C(Rn) with a compact
support we have ∫

Rn
f(x)φ(x)dx = 0.

Show that
f(x) = 0 a.e x ∈ Rn

75 (Theorem 4.21 Mean Continuity) Let f ∈ L(Rn). Show that

lim
x0→0

∫
Rn
|f(x+ x0)− f(x)| dx = 0.

76 (Example 3) Let E ∈M ;E ⊂ Rn. Show that

lim
|h|→0

m (E ∩ (E + {h}))

77 (Corollary 4.22) Let f ∈ L(E). Show that we may find a sequence of step
functions {φk(x)} s.t

(i) lim
k→∞

φk(x) = f(x) a.e x ∈ E,

(ii) lim
k→∞

∫
E

|f(x)− φk(x)| dx = 0.

78 (Example 4: Extension of Riemann Lebesgue’s Lemma) Suppose that
{gn(x)} is a sequence of Lebesgue measurable functions defined on [a, b] which
satisfies the following two conditions.

(i) |gn(x)| 5M (x ∈ [a, b])

(ii) ∀c ∈ [a, b], lim
n→∞

∫
[a,c]

gn(x)dx = 0.

Show that ∀f ∈ L([a, b]), we have

lim
n→∞

∫
[a,b]

f(x)gn(x)dx = 0.
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79 (Example 5) Let {λn} be a sequence of real numbers. Suppose λn → ∞ as
n→∞. Show that A is a measure zero set.

A
def
=
{
x ∈ R | lim

n→∞
sin(λnx) exists.

}
.

You may use the fact that
∫ b
a

sinλnxdx = −(cos(b ·λn)−cos(a ·λn)) without proof.

80 (Example 6) Let f(x) be a bounded measurable function defined one [0, 1].
Suppose that

In =

∫
[0,1]

xnf(x)dx = 0 (n = 1, 2 · · · ).

Show that f(x) = 0 a.e x ∈ [0, 1].

81 (Example 7) Let f(x) be a non-negative measurable function on R. Show that
there exists an increasing sequence of closed sets {Fn}n=1 s.t

m
(
R \ ∪∞n=1Fn

)
= 0, f(x) ∈ C(Fn).

§ 4.4 Lebesgue Integral vs Riemann Integral

82 (Darboux Theorem) Let f(x) be a bounded function defined on I = [a, b]. We

consider Riemann Integral of f(x) on I = [a, b]. We denote it as (R)
∫ b
a
f(x)dx to

distinguish from Lebesgue integral (L)
∫

[a,b]
f(x)dx.

(1) Let ∆
def
= {x0, x1 · · ·xn} be a partition of the interval [a, b]. (a = x0 < x1 <

· · · < xk = b.) Let S(∆)
def
=
∑k

i=1 supx∈[xi−1,xi]
{f(x)}(xi − xi−1) and let S(∆)

def
=∑k

i=1 infx∈[xi−1,xi]{f(x)}(xi − xi−1). Define
∫ b
a
f(x)dx and

∫ b
a
f(x)dx using S(∆)

and S(∆).

(2) ∀∆1,∆2, S(∆1) 5 S(∆2) (∵ S(∆1) 5 S(∆1 ∪∆2) 5 S(∆1 ∪∆2) 5 S(∆2)), so

we have
∫ b
a
f(x)dx 5

∫ b
a
f(x)dx. Let |∆| def

= max{xi − xi−1}ki=1. Let us consider a

sequence of partition {∆n}n=1 s.t |∆n| ↘ 0. Show that

S(∆n)→
∫ b

a

f(x)dx, S(∆n)→
∫ b

a

f(x)dx.

A sequence of partition {∆n}n=1 with |∆n| ↘ 0 is not unique. However this

theorem assures that S(∆n)→
∫ b
a
f(x)dx and S(∆n)→

∫ b
a
f(x)dx for any sequence

with |∆n| ↘ 0. Therefore it is enough for us to give an arbitrary {∆n}n=1 with
|∆n| ↘ 0 in proofs of later lemmas and theorems.

(3) Explain the meaning of Riemann Integrable.
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83 (Lemma 4.23) Let f(x) be a bounded function defined on [a, b] and let S(f ; [a, b]).

Let ωf (x0)
def
= limδ↘0 supx′,x′′∈B(x0,δ) {|f(x′)− f(x′′)|}. (We have defined this func-

tion in Chapter1.) Show that

(L)

∫
[a,b]

ωf (x)dx =

∫ b

a

f(x)dx−
∫ b

a

f(x)dx.

(L) means that the integral is Lebesgue integral. (R) means that the integral is
Riemann integral. We sometimes add (L) or (R) before

∫
to clarify whether the

integral is Lebesgue integral or Riemann integral.

84 (Theorem 4.24) Let f(x) be a bounded function on [a, b]. Show that f(x) is
Riemann-integrable if and only if

m ({x ∈ [a, b] | f is discontinuous at x}) = 0.

85 (Theorem 4.25) Let f(x) be a bounded function on [a, b]. Show that if f(x) is
Riemann integrable on I = [a, b], f(x) is Lebesgue measurable, Lebesgue integrable
and

(R)

∫ b

a

f(x)dx = (L)

∫
I

f(x)dx.

We may say that Lebesgue integral is an extension of Riemann integral. (1. How-
ever Lebesgue integrability does not imply Riemann integrability. 2. Riemann
improper integral exists does not imply Lebesgue integrable. We consider an inte-
gral of a bounded function defined on a bounded interval now.)

86 (Exercise 1) Let F ⊂ [0, 1] be a closed set and suppose that m(F ) = 0. Show
that χF (x) is Riemann integrable on [0, 1].

87 (Exercise 2) Let f : [0, 1] → [a, b] is a Riemann integrable function and let
g ∈ C([a, b]). Show that g ◦ f is Riemann integrable on [0, 1].

88 (Exercise 3) Let f, g be Riemann integrable functions on [a, b] and let E ⊂
[a, b], E = [a, b]. Suppose that f(x) = g(x),∀x ∈ E. Show that∫ b

a

f(x)dx =

∫ b

a

g(x)dx.

89 (Theorem 4.26) Let {Ek} ⊂ M be an increasing sequence of Lebesgue mea-

surable sets. Let E
def
=
⋃
k=1Ek. Suppose that f ∈ L(Ek), k = 1, 2 · · · and suppose

that limk→∞
∫
Ek
|f(x)| dx exists and is finite (converges). Show that f(x) ∈ L(E)

and ∫
E

f(x)dx = lim
k→∞

∫
Ek

f(x)dx.

Hint. We can easily prove this theorem by using monotone convergence the-
orem and Lebesgue Dominated Convergence Theorem. However, this theorem
teaches us a relationship between Riemann improper integral and Lebesgue in-
tegral. Suppose that f(x) is Riemann integrable on [0, k] for each k ∈ N and
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limk→∞ (R)
∫

[0,k]
|f(x)| dx < ∞. (In otherwords the Riemann improper integral

converges absolutely.) Then we have the following conclusion. First, since Rie-
mann integrability implies Lebesgue integrability, we have

(R)

∫
[0,k]

|f(x)| dx = (L)

∫
[0,k]

|f(x)| dx.

Second, by monotone convergence theorem we have

lim
k→∞

(R)

∫
[0,k]

|f(x)| dx = lim
k→∞

(L)

∫
[0,k]

|f(x)| dx = (L)

∫
[0,∞)

|f(x)| dx <∞

Therefore f(x) ∈ L([0,∞)). Finally, by the conclusion of Theorem 4.26 (let Ek =
[0, k], E = [0,∞)), we have

(L)

∫
[0,∞)

f(x)dx = lim
k→∞

(L)

∫
[0,k]

f(x)dx

= lim
k→∞

(R)

∫
[0,k]

f(x)dx.

90 (Example 1) Give an example of f(x) defined on (0,∞) which is Riemann
improper integralable but is not Lebesgue integrable.

91 (Example 3) Find

I =

∫ 1

0

ln(x)

1− x
dx.

92 (Notice)

(1) Let f be Riemann integrable on [a, b] and let g(x) be bounded on [a, b]. More-
over f(x) = g(x) a.e x ∈ [a, b]. Prove or disprove g(x) is Riemann integrable on
[a, b].

(2) Let f(x) ∈ L([0, 1]) and suppose that f(x) is bounded. Prove or disprove there
exists g(x) : Riemann integrable on [0, 1] s.t f(x) = g(x) a.e x ∈ [0, 1].

(3) Show that there exists E ⊂ [a, b];m(E) = 0 s.t ∀f(x) ∈ R([a, b]) (a Riemann
integrable function on [a, b]), E contains at least one point of continuity of f .

93 (Exercise 4) Let f(x) = sin(x2). Show that f is not Lebesgue integrable on
[0,∞). Hint. ∫ √nπ

√
(n−1)π

|f(x)| dx =
1

2

∫ nπ

(n−1)π

|sin(t)|√
t

dt =
1√
nπ

§ 4.5 Double Integral and Iterated Integral

(I) Fubini’s Theorem

Let F be a family of non-negative Lebesgue measurable functions on Rp × Rq(= Rd)
which satisfy the following conditions.
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• (a) y 7→ f(x, y) is a non-negtive measurable function on Rq for a.e x ∈ Rp.

• (b) F (x)
def
=
∫
Rq f(x, y)dy is a non-negative measurable function on Rp.

• (c)
∫
Rp F (x)dx =

∫
Rd f(x, y)dxdy.

94 (Lemma 4.28) Before we prove the Tonelli’s theore, we prove the following
lemma.

(1) Let f(x, y) ∈ F and a = 0. Show that a · f(x, y) ∈ F .

(2) Let f1(x, y), f2(x, y) ∈ F . Show that f1(x, y) + f2(x, y) ∈ F .

(3) Let f1(x, y), f2(x, y) ∈ F . Suppose that f(x, y) − g(x, y) = 0 and g(x, y) ∈
L(Rd). Show that f(x, y)− g(x, y) ∈ F .

(4) Let fk(x, y) ∈ F and suppose that fk(x, y) ↗ f(x, y) as k → ∞. Show that
f(x, y) ∈ F .

(5) Let fk(x, y) ∈ F and suppose that f1(x, y) ∈ L(Rd) and fk(x, y)↘ f(x, y) as
k →∞. Show that f(x, y) ∈ F .

95 (Theorem 4.27 Tonell’s theorem) Let f(x, y) be a non-negative Lebesgue
measurable function defined on Rp × Rq = Rn. Show that f(x, y) ∈ F .

96 (Theorem 4.28 Fubini’s theorem) Let f(x, y) ∈ L(Rn). (f(x) is not neces-
sarily a non-negative measurable function.) Show the following properties.

• (a∗) y 7→ f(x, y) is a measurable function on Rq for a.e x ∈ Rp.

• (b∗) F (x)
def
=
∫
Rq f(x, y)dy is a measurable function on Rp.

• (c∗)
∫
Rp F (x)dx =

∫
Rd f(x, y)dxdy.

97 (Example 1) Let f ∈ L([0,∞)) and let a > 0. Show that

lim
α→+0,β→∞

∫ β

α

(∫ ∞
0

sin ax · f(y) · e−xydy
)
dx = a

∫ ∞
0

f(y)

a2 + y2
dy.

It is enough for you to prove that we can swap the order of the iterated integrals.

98 (Example 2) Show that ∫ ∞
0

exp(−x2)dx =

√
π

2

99 (Exercise 1) Let f(x, y) ∈ L([0, 1]× [0, 1]). Show that∫ 1

0

(∫ x

0

f(x, y)dy

)
dx =

∫ 1

0

(∫ 1

y

f(x, y)dx

)
dy.

100 (Exercise 2) Let A,B ∈M . Show that∫
Rn
m
(
A−{x} ∩B

)
dx = m(A)m(B).
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(II) Characterization of Lebesgue Integral from a Geometric Viewpoint

101 (Theorem 4.30) Let E ⊂ Rn = Rp × Rq. For each x ∈ Rp, we define E|x
def
=

{y ∈ Rq | (x, y) ∈ E}.

(1) Let E ∈ Mn. Show that E|x ∈ Mq for a.e x ∈ Rp. Notice. Mn : a family of
Lebesgue measurable sets on Rn.

(2) Show that

m(n)(E) =

∫
Rp
m(q)(E|x)dx.

102 (Theorem 4.31) Let E1 ∈Mp and let E2 ∈Mq. (Rn = Rp × Rq)

(1) Show that E1 × E2 ∈Mn.

(2) Show that m(n)(E1 × E2) = m(p)(E1)m(q)(E2)

103 (Corollary 4.32) Let f(x) be a non-negative and real-valued Lebesuge measur-
able function on Rn and let E ∈M ;E ⊂ Rn. We define G(E; f) as below. Show
that m(n+1) (G(E; f)) = 0.

G(E; f)
def
=
{

(x, y) ∈ Rn+1 | x ∈ E, y = f(x)
}
.

104 (Theorem 4.33 - 1) Let f(x) : E 7→ [0,∞) be a non-negative and real-valued
Lebesgue measurable function on E ∈M ;E ⊂ Rn Let

G(E; f)
def
=
{

(x, y) ∈ Rn+1 | x ∈ E, 0 5 y 5 f(x)
}
.

Show that G(E; f) ∈M(n+1) and

m(n+1) (G(E; f)) =

∫
E

f(x)dx.

105 (Theorem 4.33 - 2) Let f(x) : E 7→ [0,∞) be a non-negative and real-valued
function on E ∈M ;E ⊂ Rn. Suppose G(E; f) is Lebesgue measurable on Rn+1.
Show that f is Lebesgue measurable on E.

(III) Convolution and Distribution Function

106 (Definition of Convolution) Let f(x), g(x) be Lebesgue measurable functions
on Rn. State the definition of f ∗ g : convolution of f and g.

107 (Theorem 4.34) Let f, g ∈ L(Rn).

(1) Show that (f ∗ g)(x) is defined and finite a.e x ∈ Rn

(2) Show that (f ∗ g)(x) is a Lebesuge measurable function.
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4.6. EXERCISE

(3) Show that ∫
Rd
|(f ∗ g)(x)| dx 5

∫
Rd
|f(x)| dx

∫
Rd
|g(x)| dx

108 (Example 5) Show that there never exists u(x) ∈ L(R) s.t ∀f ∈ L(R)

(u ∗ f)(x) = f(x), a.e x ∈ R

109 (Definition 4.4) Let f(x) be measurable on E ∈ M . State the definition of
the distribution function of f .

110 (Theorem 4.35) Let f∗(λ), λ > 0 be the distribution function of f . Show that
∀p ∈ [1,∞), ∫

E

|f(x)|p dx = p

∫ ∞
0

λp−1f∗(λ)dλ.

§ 4.6 Exercise

111 (Exercise 1) Let f(x) be a measurable function on E ∈M . Suppose f > 0 a.e
x ∈ E and

∫
E
f(x)dx = 0. Show that m(E) = 0.

112 (Exercise 2) Let f(x) be non-negative and integrable on [0,∞) and suppose
f(0) = 0 and f ′(0) exists. Show that the following integral is finite.∫

[0,∞)

f(x)

x
dx.

113 (Exercise 3) Let f(x) be non-negative and measurable function on E ∈M ;E ⊂
Rn. There exists a sequence of point sets {Ek}k=1, Ek ⊂ E;m(E \ Ek) < 1/k s.t
the following limit converges.

lim
k→∞

∫
Ek

f(x)dx

Show that f(x) ∈ L(E).

114 (Exercise 4) Let f(x) be non-negative and integrable on R. We define

F (x)
def
=

∫
(−∞,x]

f(t)dt, x ∈ R

Suppose that F (x) ∈ L(R). Show that
∫
R f(x)dx = 0.

115 (Exercise 5) Let fk(x) be a sequence of non-negative and integrable functions
on Rn. Suppose ∀E ∈M , we have∫

E

fk(x)dx 5
∫
E

fk+1(x)dx.

Show that

lim
k→

∫
E

fk(x)dx =

∫
E

lim
k→∞

fk(x)dx
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116 (Exercise 6) Let f(x), g(x) be non-negative Lebesgue measurable functions on
E ∈M ;E ⊂ R;m(E) = 1. Suppose that f(x)g(x) = 1 for all x ∈ E. Show that∫

E

f(x)dx

∫
E

g(x)dx = 1

117 (Exercise 7) Let f(x) be a function defined on Rn. Suppose that ∀ε > 0,
∃g, h ∈ L(Rn), s.t g(x) 5 f(x) 5 h(x), x ∈ Rn and∫

Rn
(h(x)− g(x))dx < ε.

Show that f ∈ L(Rn).

118 (Exercise 8) Let {Ek}k=1 be a sequence of Lebesgue measurable sets with finite
measure. Suppose that

lim
k→∞

∫
Rn
|χEk(x)− f(x)|dx = 0.

Show that there exists a Lebesgue measurable set E ∈ M s.t f(x) = χE(x) a.e
x ∈ Rn.

119 (Exercise 9) Let f(x) be a bounded monotone increasing function on [0, 1].
Show that ∀E ⊂ [0, 1];E ∈M ;m(E) = t,∫

[0,t]

f(x)dx 5
∫
E

f(x)dx.

120 (Exercise 10) Let f ∈ L(Rn) and let E : be a compact set on Rn. Show that

lim
|y|→∞

∫
E+{y}

|f(x)|dx = 0.

Notice. E+{y}
def
= {x+ y|x ∈ E}

121 (Exercise 11) Show the following equalities.

(1)

1

Γ(α)

∫
(0,∞)

xα−1

exp(x)− 1
dx =

∞∑
n=1

n−α.

(2) ∫
(0,∞)

sin ax

exp(x)− 1
dx =

∞∑
n=1

a

n2 + a2

122 (Exercise 12) Let f(x) ∈ L(R1) and let a > 0. Let

S(x)
def
=

∞∑
n=−∞

f
(x
a

+ n
)
.
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(1) Show that S(x) absolutely converges a.e x ∈ R1.

(2) S(x) is periodic with period a.

(3) S ∈ L([0, a])

123 (Exercise 13) Let f ∈ L(R) and let p > 0. Show that

lim
n→∞

n−pf(nx) = 0, a.e x ∈ R.

124 (Exercise 14) Suppose that xsf(x), xtf(x), s < t be integrable on (0,∞). Show
that ∫

[0,∞)

xuf(x)dx, u ∈ (s, t)

exists and is a continuous function with respect to u.

125 (Exercise 15) Let f(x) be a positive valued Lebesgue measurable function on
(0, 1). Suppose that ∃c s.t∫

[0,1]

(f(x))ndx = c, (n = 1, 2 · · · ).

First, show that there exists a Lebesgue measurable set E ⊂ (0, 1) s.t f(x) = χE(x)
a.e x ∈ (0, 1). Second, does the same argument hold for f(x) which is not non-
negative?

126 (Exercise 16) Let f(x) ∈ L([0, 1]). Show that

lim
n→∞

∫
[0,1]

n ln

(
1 +
|f(x)|2

n2

)
= 0.

Hint. ln(1 + x2) 5 x, x = 0.

127 (Exercise 17) Let E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃, let E
def
= ∩∞k=1Ek and let f ∈ L(Ek).

Show that

lim
k→∞

∫
Ek

f(x)dx =

∫
E

f(x)dx.

128 (Exercise 18) Let f ∈ L(E) and suppose that f(x) > 0 for all x ∈ E. Show
that

lim
k→∞

∫
E

(f(x))
1
k dx = m(E)

129 (Exercise 19) Let {fn}n=1 ⊂ L([0, 1]) be a sequence of non-negative and inte-

grable functions on [0, 1]. Suppose that fn
m−→ f(x) and

lim
n→∞

∫
[0,1]

fn(x)dx =

∫
[0,1]

f(x)dx.

Show that ∀E ∈M , E ⊂ [0, 1],

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.
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130 (Exercise 20) Let {fk}k=1 ⊂ L(E) be a sequene of non-negative and integrable

functions on E ∈M . Suppose that fk(x)
a.e−→ f(x)

def
= 0 and∫

E

max {f1(x), · · · , fk(x)} dx 5M <∞.

Show that

lim
k→∞

∫
E

fk(x)dx = 0.

131 (Exercise 21 Fatou’s lemma with convergence in measure) Let fk(x) be
a sequence of non-negative measurable functions defined on E ∈M and suppose
that fk

m−→ f . Show that ∫
E

f(x)dx 5 lim inf
k→∞

∫
E

fk(x)dx.

132 (Exercise 22) Show that∫
[0,∞)

e−x
2

cos 2xtdx =

√
π

2
e−t

2

,∀t ∈ R.

133 (Exercise 23) Let f ∈ L(Rn) and let {fk}k=1 ⊂ L(Rn). Suppose that ∀E ∈
M ;E ⊂ Rn, we have∫

E

fk(x)dx 5
∫
E

fk+1(x)dx, (k = 1, 2 · · · )

and

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

Show that
lim
k→∞

fk(x) = f(x), a.e x ∈ Rn.

134 (Exercise 24) Let {fk}∪{gk} be two sequences of measurable functions defined
on E ⊂ R;E ∈ M . Suppose |fk(x)| 5 gk(x) for all x ∈ E, limk→∞ fk(x) =
f(x), limk→∞ gk(x) = g(x) and limk→∞

∫
E
gk(x)dx =

∫
E
g(x)dx <∞. Show that

lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

135 (Exercise 25) Let f(x) be a bounded function on [a, b]. Let D
def
= {x ∈

[a, b] | f is discontinuous at x}. Suppose D′ (limit points of D) is countable.
Show that f(x) is Riemann integrable on [a, b].

136 (Exercise 26) Let f(x) be a bounded function on [a, b]. Suppose that ∀x ∈ R,
limh→0 f(x+h) exists. Show that f(x) is Riemann integrable on any interval [a, b].

137 (Exercise 27) Let E ⊂ [0, 1]. Show that χE(x) is Riemann integrable on [0, 1]

if and only if m(E \ E̊) = 0.

60



4.6. EXERCISE

138 (Exercise 28) Let f be Riemann integrable on [0, 1]. Show that f(x2) is also
Riemann integrable on [0, 1].

139 (Exercise 29) Let f(x), g(x) be Lebesgue measurable on E ⊂ R;E ∈ M and
suppose that m(E) <∞. Suppose f(x) + g(y) is integrable on E ×E. Show that
f(x), g(x) are integrable on E.

140 (Exercise 30) Find the following integrals.

(1) ∫
x>0

∫
y>0

dxdy

(1 + y2)(1 + x2y)
.

(2) ∫ ∞
0

lnx)

x2 − 1
dx

141 (Exercise 31) Let E ⊂ R;E ∈ M ;m(E) > 0 and let f(x) be a non-negative
measurable function on R. Let

F (x)
def
=

∫
E

f(x− t)dt.

Suppose that F (x) is integrable on R. Show that f ∈ L(R).

142 (Exercise 32) Let f(x) ∈ L(R) and suppose xf(x) ∈ L(R). We define

F (x)
def
=

∫ x

−∞
f(t)dt

. Show that if
∫∞
−∞ f(x)dx = 0 then F ∈ L(R).

143 (Exercise 33) Find

lim
n→∞

∫ π
2

0

cosx arctan(nx)dx

144 (Exercise 34) Let I
def
= (0, a), let f ∈ L(I) and let g(x)

def
=
∫ a
x
f(t)
t
dt, (0 < x < a).

Show that g ∈ L(I) and ∫
I

g(x)dx =

∫
I

f(x)dx.
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CHAPTER 5

Differentiation

§ 5.1 Differentiability of Monotone Functions

(I) Vitali’s Covering Theorem

1 (Definition 5.1) Let E ⊂ R. Let Γ
def
= {Ia} be a family of intervals (open,

half-open, closed intervals). What does it mean if we say that Γ is a Vitali cover
of E?

2 (Example 1) Give an example of a Vitali cover of E
def
= [a, b].

3 (Theorem 5.1 Vitali’s Covering Theorem) Let E ⊂ R with m∗(E) < ∞.
E is not necessarily a Lebesgue measurable set. Suppose that Γ is a Vitali cover
of E. Show that there exists a finite number of disjoint I1, I2 · · · , In ∈ Γ s.t.

m∗

(
E \

n⋃
j=1

Ij

)
< ε.

(II) Differentiability of Monotone Functions

4 (Definition 5.2) Let f(x) be a real-valued function defined on R. State the
definition of Dini derivatives (D+f(x0), D+f(x0), D−f(x0), D−f(x0)) at x = x0.
State the definition of differentiability based on Dini derivatives.

5 (Theorem 5.2 Lebesgue’s Theorem) Let f(x) be a real-valued monotone
increasing function defined on [a, b].

(1) Show that f(x) is differentiable a.e x ∈ [a, b]. (Show that the set of non-
differentiable points of f(x) on [a, b] is a Lebesgue measure zero set.)
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(2) Show that ∫
[a,b]

f ′(x)dx 5 f(b)− f(a).

6 (Theorem 5.3 Fubini’s Termwise Differentiation Theorem) Let {fn(x)}
be a sequence of monotone-increasing functions on [a, b]. Suppose that

∑∞
n=1 fn(x)

converges (exists and is finite) on [a, b]. Show that

d

dx

(
∞∑
n=1

fn(x)

)
=
∞∑
n=1

d

dx
fn(x) a.e x ∈ [a, b].

7 (Exercise 1) Let f(x) be a non-negative function defined on [a, b]. Suppose that
f /∈ L([a, b]). Does f(x) have a real-valued primitive function? (i.e exists F (x) s.t
F ′(x) = f(x).)

8 (Exercise 2) Let {fn(x)}n=1 be a sequence of monotone increasing functions
defined on (0, 1). Suppose that limn→∞ fn(x) = 1 a.e x ∈ (0, 1). Show that

lim inf
n→∞

f ′n(x) = 0 a.e x ∈ (0, 1).

9 (Exercise 3) Show that we can modify the conclusion of the Vitali’s Covering
Theorem in the following way. Suppose that Γ is a Vitali cover of E ⊂ R with
m∗(E) < ∞. (E is not necessarily a Lebesgue measurable set.) There exist a
countable number of disjoint intervals {Ij}∞j=1 ⊂ Γ s.t

m∗

(
E \

∞⋃
j=1

Ij

)
= 0.

10 (Exercise 4) Let f(x) ∈ C([a, b]) be a continuous function defined on [a, b].
Show that there exists x0 ∈ (a, b) and a constant k ∈ R s.t

D−f(x0) = k = D+f(x0) or D−f(x0) 5 k 5 D+f(x0).

11 (Exercise 5) Let E ⊂ (a, b) and suppose that m(E) = 0. Construct a continuous
and monotone-increasing function f(x) which is defined on [a, b] with f ′(x) = ∞
for all x ∈ E.

12 (Exercise 6) Construct a strictly monotone increasing function f(x) with
f ′(x) = 0 a.e x ∈ [0, 1].

13 (Exercise 7) Let E ⊂ R. Let Iδ be an open interval whose length is δ > 0 with
x0 ∈ Iδ. If

lim
h→+0

m∗((x− h, x+ h) ∩ Ec)

2h
= 0,

then we say that x0 is a density point of E. Show that if almost every point in
E is a density point, then E is Lebesgue measurable. Hint. We may suppose
that every point in E is a density point because a measure zero set is measurable.

We may also suppose that E ⊂ (a, b) because if En
def
= E ∩ (−n, n) ∈ M then

E =
⋃∞
n=1 En ∈M .
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§ 5.2 Bounded Variation Function

14 (Definition 5.3) Let f(x) be a real-valued function defined on [a, b]. Let us

consider a partition ∆
def
= {a = x0, x1, · · · , xn = b}. Let

v∆
def
=

n∑
i=1

|f(xi)− f(xi−1)|.

Explain what is total variation and what is a bounded variation function defined
on [a, b]. We denote variation of f(x) on [a, b] as

b∨
a

(f).

And we also denote the collection of all bounded variation functions defined on
[a, b] as BV([a, b]).

15 (Example 1) Let f(x) be a monotone function (monotone increasing or mono-
tone decreasing). Find v∆.

16 (Example 2) Let f(x) be a differentiable function defined on [a, b]. Suppose
that |f ′(x)| 5 M < ∞ for all x ∈ [a, b]. Show that f(x) is a bounded variation
function.

17 (Example 3) Let

f(x)
def
=

{
x sin π

x
x ∈ (0, 1]

0 x = 0
.

Show that f(x) is not a bounded variation function defined on [0, 1].

18 (Theorem 5.4) Let f(x) be a real-valued function defined on [a, b] and let
c ∈ (a, b). Show that

b∨
a

(f) =
c∨
a

(f) +
b∨
c

(f).

19 (Theorem 5.5 Jordan’s Decomposition Theorem) Let f(x) be a real-valued
function defined on [a, b]. Let f(x) ∈ BV([a, b]) if and only if f(x) = g(x) − h(x)
where g(x), h(x) are real-valued monotone increasing functions on [a, b]

20 (Example 4) Let f(x) be a real-valued function defined on [a, b]. Suppose that
f(x) ∈ BV([a, b]). Show that f(x) is differentiable a.e x ∈ [a, b] and that

d

dx

(
b∨
a

(f)

)
= |f ′(x)| a.e x ∈ [a, b].

21 (Example 5) Let f(x) be a real-valued function defined on [a, b]. Suppose that
f(x) ∈ BV([a, b]). Let `f be a length of the curve y = f(x) (x ∈ [a, b]). Show that

`f =
∫ b

a

√
1 + {f ′(x)}2.
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22 (Exercise 1) Find
1∨
−1

(x− x3).

23 (Exercise 2) Show that
b∨
a

(f) = 0

if and only if f(x) = C where C is a constant.

24 (Exercise 3) Let f(x), g(x) ∈ BV([a, b]). Show that M(x)
def
= {f(x), g(x)} is a

bounded variation function defined on [a, b].

25 (Exercise 4) Show that f(x) ∈ BV([a, b]) implies that |f(x)| ∈ BV([a, b]),
however |f(x)| ∈ BV([a, b]) does not imply that f(x) ∈ BV([a, b]).

26 (Exercise 5) Let f(x), g(x) ∈ BV([a, b]). Show that

b∨
a

(fg) 5 sup
x∈[a,b]

{f(x)} ·
b∨
a

(g) + sup
x∈[a,b]

{g(x)} ·
b∨
a

(f)

27 (Exercise 6) Let f(x) ∈ BV([a, b]) and let φ(x) be a Lipschitz continuous
function (i.e |φ(x1)−φ(x2)| 5 L|x1−x2| for all x1, x2 ∈ R for some L.) Show that
φ ◦ f(x) ∈ BV([a, b]).

28 (Exercise 7) Let f(x) be a Lipschitz continuous function defined on [a, b]. (i.e
|f(x1)− f(x2)| 5 L|x1 − x2| for all x1, x2 ∈ [a, b] for some L.) Show that

g(x)
def
=

x∨
a

(f).

is also a Lipschitz continuous function defined on [a, b].

29 (Exercise 8) Show that f(x) ∈ BV([a, b]) if and only if there exists a monotone
increasing function F (x) define on [a, b] s.t

|F (x1)− F (x2)| 5 F (x2)− F (x1) (a 5 x1 < x2 5 b)

30 (Exercise 9) Let f(x) ∈ BV([a, b]). Suppose that f(x) has a primitive functgion
on [a, b]. Discuss if f(x) is continuous on [a, b].

31 (Exercise 10) Let f(x) ∈ BV([a, b]). Suppose that

b∨
a

(f) = f(b)− f(a).

Show that f(x) is monotone-increasing on [a, b].

65



5.3. DIFFERENTIATION OF INDEFINITE INTEGRAL

32 (Exercise 11) Let {fn(x)} ⊂ BV([a, b]). Suppose that
∑∞

n=1 fn(x) and
∑∞

n=1

∨x
a(fn)

converges for all x ∈ [a, b]. Show that f(x)
def
=
∑∞

n=1 fn(x) is a bounded variation
function defined on [a, b].

§ 5.3 Differentiation of Indefinite Integral

Let f(x) ∈ L([a, b]) and let F (x)
def
=
∫ x
a
f(t)dt. In this section, we are going to discuss

if d
dx
F (x) = f(x) holds.

33 (Lemma 5.6) Let f(x) ∈ L([a, b]) and let

Fh(x)
def
=

1

h

∫ x+h

x

f(t)dt.

Suppose that f(x) = 0 if x /∈ [a, b]. Show that

lim
h→0

∫ b

a

|Fh(x)− f(x)|dx = 0.

34 (Theorem 5.7) Let f(x) ∈ L([a, b]) and let

F (x)
def
=

∫ x

a

f(t)dt, x ∈ [a, b].

Show that
F ′(x) = f(x) a.e x ∈ [a, b].

35 (Corollary 5.8) Let f(x) ∈ L([a, b]). Show that

lim
h→0

1

h

∫ h

0

|f(x+ t)− f(x)|dt = 0 a.e x ∈ [a, b].

When the equality above holds, we say that x is a Lebesgue point.

36 (Example 1) Let f(x) ∈ L(R). Suppose that∫ b

a

|f(x+ h)− f(x)|dx = o(|h|) as h→ 0,

for x ∈ [a, b]. (= o(|h|) means that the left hand side goes to 0 faster than |h|
when h→ 0.) Show that

f(x) = C (constant)

37 (Example 2) Let f(x) ∈ L([a, b]) and let

F (x)
def
=

∫ x

a

f(t)dt (x ∈ [a, b]).

(1) Show that
F (x) ∈ BV([a, b]).
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(2) Show that
b∨
a

(F ) 5
∫ b

a

|f(x)|dx.

38 (Exercise 1) Let E ⊂ [0, 1] be a Lebesgue measurable set. Suppose that there
exists ` ∈ (0, 1) s.t for any closed interval [a, b] ⊂ [0, 1], the following inequality
holds,

m(E ∩ [a, b]) = `(b− a).

Show that m(E) = 1.

39 (Exercise 2) Let us consider a Dirichlet function χQ(x) defined on x ∈ [0, 1].
Find the Lebesgue points on [0, 1].

§ 5.4 Absolutely Continuous Function and Fundamental Theorem of Calculus

In this section, we are going to discuss if the following equality holds,

f(x)− f(a) =

∫ x

a

f ′(t)dt x ∈ [a, b].

40 (Lemma 5.9) Let f(x) be a function defined on [a, b] and suppose that f(x) is
differentiable a.e x ∈ [a, b] and that f ′(x) = 0 a.e x ∈ [a, b]. Show that if f(x) is not
a constant function, then there exists a positive number ε > 0 s.t for any positive
number δ > 0, we can find a finite number of disjoint open intervals {(xi, yi)}ni=1

satisfying

• yi − xi < δ for all i = 1, 2, · · · , n,

•
∑n

i=1 |f(yi)− f(xi)| > ε.

41 (Definition 5.4) Let f(x) be a real-valued function defined on [a, b]. What
does it mean if we say that f(x) is an absolutely continuous function on [a, b].
We denote the collection of all absolutely continuous functions defined on [a, b] as
AC([a, b]).

42 (Example 1) Let f(x) be a Lipschitz continuous function defined on [a, b].
Verify that f(x) is absolutely continuous on [a, b].

43 (Theorem 5.10) Let f(x) ∈ L([a, b]). Show that

F (x)
def
=

∫ x

a

f(t)dt

is an absolutely continuous function defined on [a, b].

44 (Theorem 5.11) Let f(x) be an absolutely continuous function defined on [a, b].
Show that f(x) is a bounded variation function.
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45 (Corollary 5.12) Let f(x) be an absolutely continuous function defined on
[a, b]. Show that f(x) is differentiable a.e x ∈ [a, b] and also show that f ′(x) is an
integrable function on [a, b].

46 (Theorem 5.13) Let f(x) be an absolutely continuous functions defined on
[a, b] and suppose that f ′(x) = 0 a.e x ∈ [a, b]. Show that f(x) = C (a constant)
on [a, b].

47 (Theorem 5.14 A Fundamental Theorem of Calculus) Let f(x) be an
absolutely continuous function on [a, b]. Show that

f(x)− f(a) =

∫ x

a

f ′(t)dt, x ∈ [a, b].

48 (Example 2) Let gk(x) be an absolutely continuous function on [a, b]. We
suppose that

• there exists c ∈ [a, b] s.t
∑∞

k=1 gk(c) converges,

•
∑∞

k=1

∫ b
a
|g′k(x)|dx <∞.

(1) Show that g(x)
def
=
∑∞

k=1 gk(x) converges on x ∈ [a, b].

(2) Show that g(x) is absolutely continuous on [a, b] and also show that

g′(x) =
∞∑
k=1

g′k(x) a.e x ∈ [a, b].

49 (Example 4) Let f(x) be absolutely continuous on [a, b]. Show that the length
of curve is

`f =

∫ b

a

√
1 + f ′(x)2dx.

50 (Example 5) Let f(x) ∈ L([c, d]) where [a, b] ⊂ [c, d]. (c < a < b < d.) Suppose
that ∫ b

a

|f(x+ h)− f(x)|dx ∼ o(|h|), as h→ 0.

Show that there exists g(x) ∈ BV([a, b]) s.t f(x) = g(x) a.e x ∈ [a, b].

51 (Example 8) Let f(x) be differentiable on R and suppose that |f ′(x)| 5< ∞.
Suppose that {x ∈ R | f ′(x) > 0} and {x ∈ R | f ′(x) < 0} are dense on R. Show
that f ′(x) is not Riemann integrable on [a, b] where [a, b] ⊂ R is an arbitrary closed
interval.

52 (Example 9) Let f(x) be absolutely continuous on [a, b]. Show that m(f(Z)) =
0 for all Z ⊂ [a, b] with m(Z) = 0.

53 (Example 10) Let f(x) ∈ C([a, b])∩BV([a, b]). Suppose that m(f(Z)) = 0 for
all Z ⊂ [a, b] with m(Z) = 0. Shpow that f(x) is absolutely continuous on [a, b].
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54 (Exercise 1) Let f(x) be absolutely continuous on [a, b] and suppose that
|f ′(x)| 5 M < ∞ a.e x ∈ [a, b]. Show that |f(y) − f(x)| 5 M |x − y| for all
x, y ∈ [a, b].

55 (Exercise 2) Let f(x) be a function defined on [a, b]. Suppose that |f(y) −
f(x)| 5M |y − x| for all x, y ∈ [a, b]. Show that |f ′(x)| 5M a.e x ∈ [a, b].

56 (Exercise 3) Let {fn(x)}n=1 be a sequence of absolutely continuous and mono-
tone increasing functions. Suppose that

∑∞
n=1 fn(x) converges on [a, b]. Show that∑∞

n=1 fn(x) is absolutely continuous on [a, b].

57 (Exercise 4) Let f(x) ∈ BV([0, 1]). Suppose that for all ε ∈ (0, 1), f(x) is
absolutely continuous on [ε, 1], and f(x) is continuous at x = 0. Show that f(x)
is absolutely continuous on [0, 1].

58 (Exercise 5) Show that there exist a strictly monotone increasing absolutely
continuous function f(x) and a Lebesgue measurable set E ∈M , E ⊂ [0, 1] with
m(E) > 0 s.t f ′(x) = 0 for all x ∈ E. Hint. Construct a Cantor-Like set Cα with

m(Cα) = 1− α > 0 and let f(x)
def
=
∫ x

0
χ[0,1]\Cα(t)dt.

§ 5.5 Formula of Integral by Parts and Mean Value Theorem of Integral

59 (Theorem 5.15 Formular of Integral by Parts) Let f(x), g(x) be integral

functions defined on [a, b] and let α, β ∈ R. Let F (x)
def
= α +

∫ x
a
f(t)dt and let

G(x)
def
= β +

∫ x
a
g(t)dt. Show that∫ b

a

G(x)f(x)dx+

∫ b

a

g(x)F (x)dx = F (b)G(b)− F (a)G(a).

60 (Theorem 5.16 The First Intermediate Value Theorem in Integral) Let
f(x) ∈ C([a, b]) and let g(x) be a non-negative integrable function defined on [a, b].
Show that there exists ξ ∈ [a, b] s.t∫ b

a

f(x)g(x)dx = f(ξ)

∫ b

a

g(x)dx.

61 (Theorem 5.17 The Second Intermediate Value Theorem in Integral)
Let f(x) ∈ L([a, b]) and let g(x) be a monotone increasing (or monotone decreas-
ing) function defined on [a, b]. Show that there exists ξ ∈ [a, b] s.t∫ b

a

f(x)g(x)dx = g(a)

∫ ξ

a

f(x)dx+ g(b)

∫ b

ξ

f(x)dx.

62 (Exercise 1) Let f(x) ∈ L([a, b]) and let g(x) = f(x)
∫ x
a
f(t)dt. Show that∫ b

a

g(x)dx =
1

2

(∫ b

a

f(x)dx

)2

.
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63 (Exercise 2) Let f(x), g(x) be measurable functions defined on [0,∞). Suppose
that |f(x)| 5 M < ∞ for all x ∈ [1,∞), and that |xg(x)| 5 M < ∞ for all
x ∈ [1,∞). Show that

lim
x→∞

1

x

∫ x

1

f(t)g(t)dt = 0.

64 (Exercise 3) Let g(x) ∈ L(R). Let f(x) ∈ C(2)(R) (twice differentiable and
f ′′(x) is continuous on R) with f(x) = 0 for all x /∈ (a, b). Show that there exists
C > 0 s.t ∣∣∣∣∫

R
g(x)f(x)2dx

∣∣∣∣ 5 C

∫
R

(
f(x)2 + f ′(x)

2
)
dx

65 (Exercise 4) Let f(x) ∈ L([a, b]) and let F (x)
def
=
∫ x
a
f(t) · (x− t)ndt (x ∈ [a, b]).

(1) F (x) is differentiable n times.

(2) Show that F (n) is absolutely continuous on [a, b].

(3) Show that F (n+1)(x) = n!f(x) a.e x ∈ [a, b].

§ 5.6 Change of Variable Formula on R

Let g : [a, b] 7→ [c, d] be differentiable a.e x ∈ [a, b]. We start to discuss if the following
change of variable formula holds or not.∫ g(β)

g(α)

f(x)dx =

∫ β

α

f(g(t))g′(t)dt, [α, β] ⊂ [a, b].

66 (Theorem 5.18) Let f(x) be an absolutely continuous function defined on [a, b],

and let E ⊂ [a, b], E ∈M . Show that f(E)
def
= {f(x) | x ∈ E} ∈M

67 (Lemma 5.19) Let f(x) be a real-valued function on [a, b] and let E ⊂ [a, b].
Suppose that f ′(x) exists at every x ∈ E and |f ′(x)| 5M <∞. Show that

m∗(f(E)) 5Mm∗(E).

68 (Corollary 5.20) Let f(x) be a measurable function on [a, b] and let E ⊂
[a, b], E ∈M . Suppose that f(x) is differentiable on E. Show that

m∗(f(E)) 5
∫
E

|f ′(x)|dx.

69 (Example 1) Let f(x) be differentiable a.e x ∈ [a, b] and suppose that f ′(x) is
integrable on [a, b]. Show that∫ b

a

f ′(x)dx = f(b)− f(a).

70 (Theorem 5.21) Let f(x) be a real-valued function on [a, b] and suppose that
f(x) is integrable on E ∈M , E ⊂ [a, b].
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(1) Show that if f ′(x) = 0 a.e x ∈ E, then m(f(E)) = 0.

(2) Show that if m(f(E)) = 0, then f ′(x) = 0 a.e x ∈ E.

71 (Theorem 5.22 Differentiation of Composite Function) Let g : [a, b] 7→
[c, d] be differentiable a.e x ∈ [a, b]. Let F (x) be differentiable a.e x ∈ [c, d] and
suppose that F ′(x) = f(x) a.e x ∈ [c, d]. Suppose that F ◦ g(t) is differentiable a.e
x ∈ [a, b]. Suppose that m(F (Z)) = 0 for all Z ⊂ [c, d] with m(Z) = 0. Show that

(F (g(t)))′ = f(g(t))g′(t) a.e t ∈ [a, b]

72 (Corollary 5.23) Let g(t), f ◦ g(t) be differentiable a.e x ∈ [a, b] where f(x) is
absolutely continuous on [c, d] and suppose that g([a, b]) ⊂ [c, d]. Show that

(f(g(t)))′ = f ′(g(t))g′(t) a.e x ∈ [a, b]

73 (Theorem 5.24 Change of Variable Formula) Let g(x) be differentiable a.e
x ∈ [a, b] and let f(x) be an integrable function on [c, d]. Suppose that g([a, b]) ⊂
[c, d]. Let F (x)

def
=
∫ x
c
f(t)dt. Show that the following statements are equivalent.

• F (g(t)) is absolutely continuous on [a, b].

• f(g(t)) · g′(t) is integrable on [a, b] and
∫ g(β)

g(α)
f(x)dx =

∫ β
α
f(g(t)) · g′(t)dt.

74 (Corollary 5.25) Let g(x) : [a, b] 7→ [c, d] be an absolutely continuous function
and let f(x) ∈ L([c, d]). Show that each following statement is a sufficient condition
for ∫ g(β)

g(α)

f(x)dx =

∫ β

α

f(g(t)) · g′(t)dt.

(1) g(t) is monotone increasing (or decreasing) on [a, b]

(2) f(x) is bounded on [c, d].

(3) f ◦ g(t) · g′(t) is integrable on [a, b].

75 (Example 2) Let f(x) be a non-negative monotone decreasing function defined
on [0,∞). Suppose that for all A > 0, f(x) is absolutely continuous on [0, A].
Show that

p

∫ ∞
0

(f(x))p · xp−1dx 5

(∫ ∞
0

f(x)dx

)p
, (p = 1)

§ 5.7 Exercises

76 (Exercise 1) Let E ⊂ R be a union of intervals (open, closed or half-open).
Show that E is measurable.

77 (Exercise 2) Let {xn} ⊂ [a, b]. Construct a monotone increasing function whose
points of discontinuity are {xn}.
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78 (Exercise 3) Let f(x) be a monotone increasing function and let E ⊂ (a, b).
Suppose that ∀ε > 0, there exists {(ai, bi)}i∈N with (ai, bi) ⊂ (a, b) s.t

E ⊂
∞⋃
i=1

(ai, bi),
∞∑
i=1

(f(bi)− f(ai)) < ε.

Show that
f ′(x) = 0 a.e x ∈ E.

79 (Exercise 4) f(x) is a bounded variation function on [0, α]. Show that

F (x)
def
=

1

x

∫ x

0

f(y)dy, F (0)
def
= 0,

is a bounded variation function on [0, α].

80 (Exercise 5) Let {fk(x)}k∈N is a sequence of bounded variation functions. Sup-
pose that

b∨
a

(fk) 5M for each k ∈ N,

and
lim
k→∞

fk(x) = f(x), x ∈ [a, b].

Show that f(x) is a bounded variation function on [a, b] and also

b∨
a

(f) 5M

81 (Exercise 6) Let f(x) be a bounded variation function defined on [a, b], and

suppose that x0 ∈ [a, b] is a point of continuity of f(x). Show that g(x)
def
=
∨x
a(f)

is continuous at x = x0.

82 (Exercise 7) Let f : [a, b] 7→ [c, d] be a continuous function and suppose that
for every y ∈ [c, d], f−1({y}) contains at least 10 points. Show that

b∨
a

(f) 5 10(d− c).

83 (Exercise 8) Let f(x) ∈ L([0, 1]) and let g(x) be a monotone increasing function
defined on [0, 1]. Suppose that for every [a, b] ⊂ [0, 1],∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣2 5 (g(b)− g(a)) · (b− a).

Show that f(x)2 is an integrable function on [0, 1].

84 (Exercise 9) Let f(x) be a non-negative absolutely continuous function on [a, b].
Show that f(x)p (p > 1) is an absolutely continuous function on [a, b].
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85 (Exercise 10) Let f(x) be a monotone increasing function on [a, b], and suppose
that ∫ b

a

f ′(x)dx = f(b)− f(a).

Show that f(x) is absolutely continuous on [a, b].

86 (Exercise 11) Let f(x) ∈ BV([a, b]). Suppose that∫ b

a

|f ′(x)|dx =
b∨
a

(f).

Show that f(x) is absolutely continuous on [a, b].

87 (Exercise 12) Let f(x) be a monotone increasing and bounded function on

R. Suppose that f(x) is differentiable on R. Let A
def
= limx→−∞ f(x) and let

B
def
= limx→+∞ f(x). Show that∫

R
f ′(x)dx = B − A.

88 (Exercise 13) Let f(x) be a differentiable function on R and suppose that both
f(x), f ′(x) are integrable on R. Show that∫

R
f ′(x)dx = 0.

89 (Exercise 14) Let f(x, y) be a function defined on [a, b]× [c, d]. Suppose that
there exists y0 ∈ (c, d) s.t f(x, y0) is integrable on [a, b], and suppose that for every
fixed x ∈ [a, b], f(x, y) as a function of y, (i.e y 7→ f(x, y)) is absolutely continuous,

and also suppose that f ′y(x, y)
def
= ∂

∂y
f(x, y) is integrable on [a, b]× [c, d].

(1) Show that

F (y) =

∫ b

a

f(x, y)dx

is absolutely continuous on [c, d].

(2) Show that

F ′(y) =

∫ b

a

f ′y(x, y)dx a.e y ∈ [c, d].

90 (Exercise 15) Let f(x) be absolutely continuous on every [a, b] ⊂ R. Show that
for every y ∈ R, we have

∂

∂y

∫ b

a

f(x+ y)dx =

∫ b

a

∂

∂y
f(x+ y)dx.

91 (Exercise 16) Explain that we can no longer improve the proposition that an
absolutely continuous function is differentiable almost everywhere by giving an
example.
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92 (Exercise 17) Let {gk(x)} be a sequence of absolutely continuous functions
on [a, b] with |g′k(x)| 5 F (x) a.e x ∈ [a, b] where F (x) ∈ L([a, b]). Suppose that
limk→∞ gk(x) = g(x) a.e x ∈ [a, b], and limk→∞ g

′
k(x) = f(x) a.e x ∈ [a, b]. Show

that
g′(x) = f(x) a.e x ∈ [a, b].

93 (Exercise 18) Let f(x) be an absolutely continuous and strictly monotone
increasing function. Let g(y) be absolutely continuous on [f(a), f(b)]. Show that
g ◦ f(x) is absolutely continuous on [a, b].

94 (Exercise 19) Let g(x) be absolutely continuous on [a, b] and suppose that f(x)
is Lipschitz continuous on R. Show that f ◦ g(x) is absolutely continuous on [a, b].

95 (Exercise 20) Suppose that f(x) is differentiable on [a, b]. Show that if f ′(x) = 0
a.e x ∈ [a, b], then f(x) is a constant function.
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CHAPTER 6

Lp space

§ 6.1 Definition of Lp space and some Inequalities

1 (Definition 6.1) Let f(x) be a Lebesgue measurable function on E ⊂ Rd, E ∈
M .

(1) Define ‖f‖p (p ∈ (0,∞)).

(2) Explain what is Lp(E).

(3) Explain what it means if we say that f(x) is essentially bounded on E.

(4) Explain what is essential supremum of f(x) and define ‖f‖∞, L∞(E).

2 (Property) Let f(x) be a Lebesgue measurable function on E ⊂ Rd, E ∈ M
and suppose that m(E) > 0. Show that

lim
p→∞
‖f‖p = ‖f‖∞.

3 (Theorem 6.1) Let f(x), g(x) ∈ Lp(E) where p ∈ (0,∞]. Let α, β ∈ R. Show
that

αf(x) + βg(x) ∈ Lp(E).

4 (Exercise 1) Suppose that E ∈ M , 0 < m(E) < ∞. Let {pk} ⊂ (1,∞) with
1 < p1 < p2 < · · · < pk → ∞ as k → ∞. Suppose that f(x) ∈ Lpk(E) for every
k ∈ N and supk∈N{‖f‖pk} <∞. Show that f(x) ∈ L∞(E).

5 (Exercise 2) Let 0 < p < q. Show that if f(x) ∈ Lp(E) ∩ L∞(E), then
f(x) ∈ Lq(E).

6 (Exercise 3) Let f(x) ∈ L1(E) ∩ L2(E).

lim
p↗p0

∫
E

|f(x)|pdx =

∫
E

|f(x)|p0dx.
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7 (Exercise 4) Let E ∈ M ,m(E) < ∞ and let f(x) be a measurable function
defined on E. Show that

lim
p↘1

∫
E

|f(x)|pdx =

∫
E

|f(x)|dx.

8 (Definition 6.2 Conjugate index) What is a conjugate index (conjugate
indices)?

9 (Theorem 6.2 Hölder’s Inequality) Let p, q be conjugate indices. Suppose
that f(x) ∈ Lp(E), g(x) ∈ Lq(E). (E ∈M ) Show that

‖fg‖ 5 ‖f‖p · ‖g‖q

10 (Notice) Discuss if Hölder’s inequality holds if ‖f‖p =∞ or ‖g‖q =∞ holds.

11 (Example 2) Suppose that m(E) <∞, E ∈M and 0 < p1 < p2 5∞.

(1) Show that Lp2(E) ⊂ Lp1(E).

(2) Show that

‖f‖p1 5 (m(E))1/p1−1/p2 · ‖f‖p2 .

12 (Example 3) Let f(x) ∈ Lr(E) ∩ Ls(E) and let 0 < r < p < s 5 ∞. Let
λ ∈ (0, 1) be a number to satisfy 1

p
= λ

r
+ 1−λ

s
. Show that

‖f‖p 5 ‖f‖λr · ‖f‖1−λ
s .

13 (Example 4) Let 0 < r < p < s < ∞ and let f(x) ∈ Lp(E). (E ∈M ). Show
that for all t > 0, there exists a decomposition f(x) = g(x) + h(x) s.t

‖g‖rr 5 tr−p · ‖f‖pp and ‖h‖ss 5 ts−p‖f‖pp.

14 (Example 5 Inverse Hölder’s Inequality) Let 0 < p < 1, q < 0 and suppose
that 1

p
+ 1

q
= 1. Let f(x) ∈ Lp(E) and g(x) ∈ Lq(E). (E ∈M ). Show that∫

E

|f(x)g(x)|dx = ‖f‖p · ‖g‖q.

15 (Exercise 5) Let f(x), g(x) be measurable functions defined on E ∈M . Sup-
pose that 1

p
+ 1

q
= 1

r
. (1 5 p <∞). Show that

‖fg‖r 5 ‖f‖p · ‖g‖q

16 (Exercise 6) Let f(x) ∈ L2((0,∞)) and f(x) = 0 for all x ∈ (0,∞). Let

F (x)
def
=
∫ x

0
f(t)dt. Show that

F (x) ∼ o(
√
x) (x→ +0).

(F (x) goes to 0 faster than
√
x.)
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17 (Exercise 7) Let f(x) ∈ L2([0, 1]). Show that there exists a monotone increasing
function g(x) s.t for every [a, b] ⊂ [0, 1],∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣2 5 (g(b)− g(a))(b− a).

18 (Exercise 8) Let f(x) ∈ L2([0, 1]) and suppose that ‖f‖2 6= 0. Let F (x)
def
=∫ x

0
f(t)dt, (x ∈ [0, 1]). Show that

‖F‖2 < ‖f‖2

19 (Theorem 6.3 Minkovski’s Inequality) Let f(x), g(x) ∈ Lp(E) where 1 5
p 5∞. Show that

‖f + g‖p 5 ‖f‖p + ‖g‖p.

20 (Example 6 Inverse Mikovski’s Inequality) Let 0 < p < 1 and let f(x), g(x) ∈
Lp(E). (E ∈M ). Show that

‖|f |+ |g|‖p = ‖f‖p + ‖g‖p.

21 (Notice 1) Let f(x) ∈ Lp1(E), g(x) ∈ Lp2(E) where 0 < p1 < p2 < ∞. Show
that

f(x)g(x) ∈ Lp(E) where
1

p
def
=

1

p1

+
1

p2

22 (Notice 2) Let f(x) ∈ L1(R) be a differentiable function and suppose that
f ′(x) ∈ Lp(R) where p > 1. Show that

lim
|x|→∞

f(x) = 0.

23 (Notice 5) Let f(x) ∈ Lp([0, 1]) where p > 0. Show that

lim
p→+0

‖f‖p = exp

(∫ 1

0

ln(|f(x)|)dx
)

24 (Exercise 9) Let 1 5 p 5 ∞ and let {fk(x)}k∈N ⊂ Lp(E). Suppose that∑∞
k=1 fk(x) converges a.e x ∈ E. Show that∥∥∥∥∥

∞∑
k=1

fk

∥∥∥∥∥
p

5
∞∑
k=1

‖fk‖p.

25 (Exercise 10) Let f(x) ∈ Lp(E) where p = 1 and E ∈ M . Let e ∈ M with
e ⊂ E. Show that(∫

E

|f(x)|p
)1/p

5

(∫
e

|f(x)|p
)1/p

+

(∫
E\e
|f(x)|p

)1/p

.
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§ 6.2 Structure of Lp space

Let us recall the definition of a metric space. Let d : X 7→ [0,∞) and suppose that

• d(x, y) = 0 for all x, y ∈ X,

• d(x, y) = 0 if and only if x = y ∈ X,

• d(x, y) = d(y, x) for all x, y ∈ X,

• d(x, y) 5 d(x, z) + d(z, x) for all x, y, z ∈ X.

Then (X, d) is called a metric space.

(I) Lp(E) as a complete metric space

We define

Lp(E)
def
=

{
f(x) |

∫
E

|f(x)|pdx <∞
}
,

where E ∈M and f(x) is a Lebesgue measurable function defined on E.

26 (Theorem 6.4) Let f(x), g(x) ∈ X def
= Lp(E) and let d(f, g)

def
= ‖f − g‖p where

p ∈ [1,∞]. Show that (X, d) is a metric space. If f(x) = g(x) a.e x ∈ E, we regard
f = g as elements of X.

27 (Definition 6.3) Let {fk}k=1 ∪{f} ⊂ Lp(E), E ∈M . What does it mean if we

say that fk converges to f in Lp? We denote it as fk(x)
Lp−→ f(x).

28 (Definition 6.4) Let (X, d) be a metric space where X
def
= Lp(E), E ∈M and

d(f, g)
def
= ‖f − g‖p. What does it mean if we say that {fk}k=1 ⊂ X is a Cauchy

sequence on (X, d)?

29 (Theorem 6.5) Let (X, d) be a metric space where X
def
= Lp(E) and d(f, g)

def
=

‖f − g‖p. Show that (X, d) is a complete metric space.

30 (Exercise 1) Let {fk(x)} ⊂ Lp(E) and suppose that p = 1. Suppose

‖fk+1 − fk‖p 5
1

2k
.

Show that there exists f(x) ∈ Lp(E) s.t

fk(x)
a.e−→ f(x) on E.

31 (Exercise 2) Let {fk(x)}k=1 be a sequence of measurable functions and let
F (x) ∈ Lp(E), p = 1. Suppose that

|fk(x)| 5 F (x), lim
k→∞

fk(x) = f(x) a.e x ∈ E.

Show that
fk(x)

Lp−→ f(x).
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32 (Exercise 3) Let {fn(x)}n=1 ⊂ L2(E), E ∈M and suppose that fn(x)
a.e−→ f(x)

on E and ‖fn‖2 5M <∞. Discuss if fn(x) converges to f(x) in L2.

33 (Exercise 4) Let us consider equivalent classes in Lp(E)mE ∈ M . (If f, g ∈
Lp(E) satisfies f = g a.e x ∈ E, we consider that f ∼ g.)

(1) Show that each class contains at most one continuous function defined on E.

(2) Show that there exists a class which does not contain any continuous functions.

34 (Exercise 5) Let 1 5 q 5 p < ∞ and let E ∈ M with m(E) < ∞. Suppose
that

lim
k→∞

∫
E

|fk(x)− f(x)|pdx = 0.

Show that

lim
k→∞

∫
E

|fk(x)− f(x)|qdx = 0.

35 (Exercise 6) Let {fk(x)} ∪ {f(x)} ⊂ Lp([a, b]) where p = 1. Suppose that

fk(x)
Lp−→ f(x). Show that

lim
k→∞

∫ x

a

fk(t)dt =

∫ x

a

f(t)dt for all x ∈ [a, b].

36 (Exercise 7) Let {fk(x)}∪{f(x)} ∈ Lp(E), E ∈M and let {gk(x)}∪{g(x)} ⊂
Lq(E) where p, q > 1, 1

p
+ 1

q
= 1. Suppose that fk(x)

Lp−→ f(x), gk(x)
Lq−→ g(x).

Show that

lim
k→∞

∫
E

|fk(x)gk(x)− f(x)g(x)|dx = 0.

(II) Lp(E) as a separable metric space

37 (Definition 6.5) Let (X, d) be a metric space where X = Lp(E), E ∈ M ,

d(f, g)
def
= ‖f − g‖p. Let Γ ⊂ X.

(1) What does it mean if we say that Γ is a dense subset of X?

(2) What doest it mean if we say that (X, d) is separable (or a separable metric
space)?

38 (Lemma 6.6) Let f(x) ∈ Lp(E) where E ⊂ Rd, E ∈M ,1 5 p <∞. Let ε > 0
be an arbitrary positive number.

(1) Show that there exists a continuous function g(x) defined on Rd with a compact
support s.t ∫

E

|f(x)− g(x)|pdx < ε.
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(2) Show that there exists a step function ϕ(x) =
∑k

i=1 ciχIi(x) defined on Rd with
a compact support where {Ii}ki=1 are rectangles s.t∫

E

|f(x)− ϕ(x)|pdx < ε.

39 (Theorem 6.7) Show that (X, d) is a seperable metric space where X =

Lp(E), E ∈M , d(f, g)
def
= ‖f − g‖p.

40 (Corollary 6.8) Let 1 5 p <∞, 1 5 r 5∞. Show that Lp(E)∩Lr(E) is dense
in Lp(E).

41 (Theorem 6.9) Let f(x) ∈ Lp(Rd) where 1 5 p <∞. Show that

lim
t→

∫
Rd
|f(x+ t)− f(x)|pdx = 0.

42 (Example 1) Let f(x) ∈ Lp(Rd) where 1 5 p <∞. Show that

lim
t→

∫
Rd
|f(x) + f(x− t)|pdx = 2

∫
Rd
|f(x)|pdx.

43 (Example 2) Let f(x) be Lebesgue measurable on Rd. Show that f(x) is
measurable on any E ⊂ Rd, E ∈ M with m(E) < ∞ if and only if there exists
f1(x) ∈ L1(Rd), f2(x) ∈ L∞(Rd) s.t f(x) = f1(x) + f2(x).

44 (Exercise 1) Let 1 < p < ∞ and let {fn(x)}n=1 ∪ {f(x)} ⊂ Lp(R) with
supn=1 ‖fn‖p 5M <∞. Suppose that

lim
n→∞

∫ x

0

fn(t)dt =

∫ x

0

f(t)dt, x ∈ R.

Show that for all g(x) ∈ Lq(R) where 1
p

+ 1
q

= 1,

lim
n→∞

∫
R
fn(x)g(x)dx =

∫
R
f(x)g(x)dx.

45 (Exercise 2) Show that L∞((0,∞)) is not separable. Hint. Consider ft(x)
def
=

χ(0,t)(x) where 0 < t < 1.

§ 6.3 L2(E) as an inner product space

(I) inner product and orthogonal system

First, let us recall the definition of a vector space. Let X
def
= L2(E), E ∈ M . Let

f, g ∈ X. We define (f + g)(t)
def
= f(t) + g(t), (αf)(t) = α · f(t) (α ∈ R). Then

f + g ∈ X,αf ∈ X. And if f(t) = g(t) a.e x ∈ E, then we regard f and g are equivalent

as elements of X and denote f
X
= g. Then we can regard X as a vector space because
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• f + g
X
= g + f for all f, g ∈ X.

• (f + g) + h
X
= f + (g + h) for all f, g, h ∈ X.

• ∃0 ∈ X s.t f + 0
X
= f for all f ∈ X.

• ∀f ∈ X, ∃g ∈ X s.t f + g
X
= 0.

• 1f
X
= f for all f ∈ X.

• α(βf)
X
= (αβ)f for all f ∈ X and α, β ∈ R.

• (α + β)f
X
= αf + βf and α(f + g)

X
= αf + αg for all f ∈ X and α, β ∈ R.

Next, we define an inner product on X.

< f, g >
def
=

∫
E

f(x)g(x)dx, where f, g ∈ X.

46 (Basic) Answer the following questions.

(1) Does < ·, · >: X×X 7→ R defined above take ±∞? (or < ·, · >: X×X 7→ R?)

(2) Verify that < ·, · > defined above is an inner product on X
def
= L2(E).

47 (Example 1) Let f, g ∈ L2(E). Show that

2‖fg‖1 5 t‖f‖2
2 +

1

t
‖g‖2

2 ∀ t > 0.

48 (Example 2) Let f(x) be a non-negative measurable function defined on [0,∞).
Show that (∫ ∞

0

f(x)dx

)4

dx 5 π2

∫ ∞
0

f(x)2dx ·
∫ ∞

0

x2f(x)2dx.

49 (Example 3) Let R2
+

def
= (0,∞) × (0,∞) and let f(x, y) be a non-negative

measurable function defined on R2
+. Show that(∫∫

R2
+

f(x, y)dxdy

)4

5 C

∫∫
R2

+

f(x, y)2dxdy ·
∫∫

R2
+

(x2 + y2)2f(x, y)2dxdy,

where C = π4

16
.

50 (Example 4) Let f(x) ∈ L2([0, 1]). Suppose that∫ 1

0

xnf(x)dx =
1

n+ 2
, ∀ n ∈ N.

Show that f(x) = x a.e x ∈ [0, 1].
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51 (Theorem 6.10 continuity of inner product) Let {fk}k=1 ∪ {f} ⊂ L2(E).
Show that for all g ∈ L2(E), we have

lim
k→∞

< fk, g >=< f, g > .

52 (Definition 6.6) Answer the following questions.

(1) Let f, g ∈ L2(E). What does it mean if we say that f, g are orthogonal?

(2) Let {ϕα}α∈I ⊂ L2(E). What does it mean if we say that {ϕα}α∈I are orthogonal
systems.

(3) Let {ϕα}α∈I ⊂ L2(E). What does it mean if we say that {ϕα}α∈I are normalized
orthogonal systems.

53 (Example 5) Verify that{
1√
2π
,
cosx√
π
,
sinx√
π
,
cos 2x√

π
,
sin 2x√

π
, · · · cos kx√

π
,
sin kx√

π
, · · ·

}
are normalized orthogonal systems on L2([−π,+π])

54 (Theorem 6.11) Show that any standard orthogonal systems on L2(E), E ∈M
is countable.

55 (Exercise 1) Let f, g ∈ L2(E), E ∈M . Show that

‖f + g‖2
2 + ‖f − g‖2

2 = 2(‖f‖2
2 + ‖g‖2

2).

56 (Exercise 2) Suppose that ‖fn − f‖2 → 0 and ‖gn − g‖2 → 0 as n→∞ where
{fn}n=1 ∪ {gn}n=1 ∪ {f, g} ⊂ L2(E). Show that

| < fn, gn > − < f, g > | → 0.

57 (Exercise 3) Suppose that ‖f‖2 = ‖g‖2 where f, g ∈ L2(E). Show that

< f + g, f − g >= 0.

58 (Exercise 4) Suppose that ‖fn‖2 → ‖f‖2 and < fn, f >→ ‖f‖2
2 as n → ∞

where {fn}n=1 ∪ {f} ⊂ L2(E). Show that

‖fn − f‖2 → 0

(II) Generalized Fourier Series

59 (Definition 6.7) Let {ϕn}n=1 ⊂ L2(E), E ∈ M be normalized orthogonal
systems.

(1) What are generalized Fourier coefficienst? Please explain using {ϕn}n=1.

(2) What are generalized Fourier series? Please explain using {ϕn}n=1.
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60 (Theorem 6.12) Let {ϕn}n=1 ⊂ L2(E), E ∈ M be normalized orthogonal
systems, and let f ∈ L2(E). We define

fk(x)
def
=

k∑
i=1

aiϕi(x),

where ai ∈ R for each i = 1, 2, · · · , n. Show that when ai = ci
def
=< f, ϕi >,

‖f − fk‖2 attains the minimum value.

61 (Theorem 6.13 Bessel’s Inequality) Let {ϕn}n=1 ⊂ L2(E), E ∈M be nor-
malized orthogonal systems, and let f ∈ L2(E). Show that the generalized Fourier

coefficients {ck}k=1 (ck
def
=< f, ϕk >) satisfy

∞∑
k=1

c2
k 5 ‖f‖2

2.

62 (Theorem 6.14 Riesz-Fischer’s Theorem) Let {ϕn}n=1 ⊂ L2(E), E ∈ M
be normalized orthogonal systems. Suppose that {ck}k=1 ⊂ R satisfies

∞∑
k=1

c2
k <∞.

Show that there exists g ∈ L2(E) s.t

< g, ϕk >= ck for each k ∈ N.

63 (Definition 6.8) Let {ϕn}n=1 ⊂ L2(E), E ∈M be orthogonal systems. What
are complete orthogonal systems? Please explain using {ϕn}n=1.

64 (Theorem 6.15) Let {ϕn}n=1 ⊂ L2(E), E ∈ M be complete normalized or-

thogonal systems, let f ∈ L2(E), and let ck
def
=< f, ϕk > for each k ∈ N. Show

that

lim
k→∞

∥∥∥∥∥
k∑
i=1

ciϕi − f

∥∥∥∥∥
2

= 0.

65 (Example 6 trigonometric functions as perfect orthogonal systems) Let

E
def
= [−π, π]. Show that {φk} = {1, cosx, sinx, cos 2x, sin 2x, · · · } are complete

orthogonal systems of L2(E).

66 (Definition 6.9) Let ψ1(x), · · ·ψk(x) be functions defined on E ∈ M . What
does it mean if we say that ψ1(x), · · ·ψk(x) are linearly independent?

67 (Example 7) Explain that orthogonal systems {ϕk}k=1 ⊂ L2(E) are linearly
independent.
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68 (Theorem 6.16) Let {ϕk}k=1 ⊂ L2(E) be normalized orthogonal systems. Let
f ∈ L2(E) and let ε > 0. Show that we can always find a linear combination

g(x)
def
=

k∑
i=1

aiϕki(x),

such that
‖f − g‖2 < ε

69 (Exercise 1) Show that {sinnx}n=1 ⊂ L2([0, π]) are complete orthogonal sys-
tems.

70 (Exercise 2) Let f ∈ L1([−π, π]) and let {ϕn}n=1 be {1, cosx, sinx, cos 2x, sin 2x, · · · }.
Suppose that ∫

[−π,π]

f(x)ϕn(x)dx = 0 for each n ∈ N.

Show that
f(x) = 0 a.e x ∈ [−π, π].

71 (Exercise 3) Let {ϕn} be normalized complete orthogonal systems of L2(A), A ∈
M , and let {ψn} be normalized complete orthogonal systems of L2(B), B ∈ M .
Show that

{fi,j(x, y)}i,j∈N
def
= {ϕi(x) · ψj(x)}i,j∈N

are complete orthogonal systems on L2(A×B).

72 (Exercise 4) Let {ϕk} be normalized orthogonal systems of L2(E) and let
f ∈ L2(E), E ∈M . Show that

lim
k→∞

∫
E

f(x)ϕk(x)dx = 0.

73 (Exercise 5) Let {ϕk}k=1 ⊂ L2([a, b]) be normalized complete orthogonal sys-
tems and let f ∈ L2([a, b]). Let us consider the generalized Fourier series of f with
respect to {ϕk}k=1,

∞∑
k=1

ckϕk(x) where ck
def
=< f, ϕk > .

Let E ⊂ [a, b] be a Lebesgue measurable set. (i.e E ∈M .) Show that∫
E

f(x)dx =
∞∑
k=1

ck

∫
E

ϕk(x)dx.

§ 6.4 Norm of Lp space and Its Formula

74 (Theorem 6.17) Let (p, q) be numbers which satisfy 1
p
+ 1
q

= 1 where 1 5 p <∞.

Let f(x) ∈ Lp(E). Show that there exists g(x) ∈ Lq(E) with ‖g‖q = 1 s.t

‖f‖p =

∫
E

f(x)g(x)dx.
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75 (Theorem 6.18) Let f ∈ L∞(E). Show that

‖f‖∞ = sup
‖g‖1=1

{∣∣∣∣∫
E

f(x)g(x)dx

∣∣∣∣}
76 (Theorem 6.19) Let g(x) be a Lebesgue measurable function defined on E ⊂

Rd. Suppose that there exists M > 0 s.t for any integrable simple function ϕ :
E 7→ R, ∣∣∣∣∫

E

g(x)ϕ(x)dx

∣∣∣∣ 5M‖ϕ‖p,

holds.

(1) Show that g(x) ∈ Lq(E) where 1
p

+ 1
q

= 1.

(2) Show that ‖g‖q 5M .

77 (Theorem 6.20 Generalized Minkovski’s Inequality) Let f(x, y) be a
Lebesgue measurable function on Rd × Rd(= R2d). Suppose that for all y ∈ Rd,
x 7→ f(x, y) ∈ Lp(Rd). (1 5 p <∞ and suppose that∫

Rd

(∫
Rd
|f(x, y)|pdx

)1/p

dy = M <∞.

Show that (∣∣∣∣∫
Rd
f(x, y)dy

∣∣∣∣p dx)1/p

5
∫
Rd

(∫
Rd
|f(x, y)|pdx

)1/p

dy

78 (Notice 1) Consider the following function on R × [0, 2] and derive Theorem
6.3 Minkovski’s Inequality by applying Thorem 6.20 the generalized Minkovski’s
Inequality.

f(x, y)
def
=

{
f(x) 0 5 y < 1

g(x) 1 5 y 5 2

79 (Notice 2) Consider the following function on (0,∞) × [0, 2] and derive the
discrete version of Minkovski’s Inequality by applying Thorem 6.20 the generalized
Minkovski’s Inequality.

f(x, y)
def
=

{
an n 5 x < n < 1

bn n 5 x < n+ 1

80 (Example Hardy’s Inequality) Let 1 < p < ∞ and let f(x) ∈ Lp((0,∞)).
Let us define the function

F (x)
def
=

1

x

∫ x

0

f(t)dt, x > 0.

(1) Show that F (x) ∈ Lp(E).

(2) Show that

‖F‖p 5
p

p− 1
‖f‖p.
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§ 6.5 Convolution

81 (Theorem 6.21 Young’s Inequality) Let f(x) ∈ L1(Rd) and let g(x) ∈ Lp(Rd)
where 1 < p <∞. Show that

‖f ∗ g‖p 5 ‖f‖1 · ‖g‖p.

*

Suppose that K(x) is a function defined on Rd and let ε > 0 be a given positive
number. Let us define the function Kε(x) : Rd 7→ R(or R) based on K(x) as below,

Kε(x)
def
= ε−dK

(x
ε

)
= ε−dK

(x1

ε
,
x2

ε
· · · , xd

ε

)
.

82 (Example 1) Let K(x)
def
= χB(0,1)(x), x ∈ Rd. Find Kε(x).

83 (Theorem 6.22) Let K(x) ∈ L(Rd) with ‖K‖1 = 1 and let f(x) ∈ Lp(Rd)
where 1 5 p <∞. Show that

lim
ε→0
‖Kε ∗ f − f‖p = 0.

84 (Theorem 6.23) Let C(∞)(Rd) be the family of infinitely differentiable functions
defined on Rd. Let us define the family of functions

C
def
=
{
f(x) ∈ C(∞)(Rd) | f(x) has a compact support.

}
Show that C is dense in Lp(Rd).

85 (Theorem 6.24 Urysohn’s Theorem) Let F ⊂ Rd be a compact set and let
G be an open set with F ⊂ G. Show that there exists f(x) ∈ C(∞)(Rd) with

• f(x) = 1, x ∈ F

• supp(f) ⊂ G

• 0 5 f(x) 5 1, x ∈ Rd.

86 (Corollary 6.25) Let p > 1, ε > 0,M > 0, k0 ∈ N. Show that there exists
ϕ(x) ∈ C(∞)(Rd) which satisfies supp(ϕ) ⊂ Rd \B(0, k0) and∫

Rd
ϕ(x)dx = 1, ‖ϕ‖p < ε, 0 5 ϕ(x) 5M (x ∈ Rd).

87 (Example 2) Let 1 < p <∞. Let us define a subset of the family of inifinitely
differentiable functions,

A
def
= {f(x) ∈ C(∞)(Rd) |

∫
Rd
f(x)dx = 0}.

Show that A is dense in Lp(Rd).
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88 (Example 3) Let f(x) ∈ L∞(R) and let ft(x)
def
= f(x− t). Suppose that

lim
t→∞
‖ft − f‖∞ = 0.

Show that exists a uniformly continuous functon g(x) definied on R s.t f(x) = g(x)
a.e x ∈ R.

89 (Example 4) Let E ⊂ R be a Lebesgue measurable set with positive measure.

Show that E − E
def
= {x1 − x2 | x1, x2 ∈ E} ⊃ (−δ, δ) for some δ > 0 using

convolution.

90 (Example 5) Let {ϕk} ⊂ L2(E) be complete orthogonal systems. Show that

∞∑
k=1

‖ϕk‖1 =
∞∑
k=1

∫
E

|ϕ(x)|1dx =∞.

§ 6.6 Weak Convergence

Now we introduce another concept of convergence related to Lp(E).

91 (Definition 6.11) Let 1 5 p, q 5∞ with 1
p

+ 1
q

= 1. Suppose that {fn(x)}n=1∪
{f(x)} ⊂ Lp(E), E ∈ M . What does it mean if we say that fn(x) converges to
f(x) weakly in Lp(E)? We denote it as

fn(x)
w−→ f(x) ∈ Lp(E).

92 (Example) Show that

cosnx
w−→ 0 ∈ L2([0, 2π])

93 (Theorem 6.26) Let E ⊂ Rd and let E ∈M with m(E) < ∞. Suppose that

fn(x)
w−→ f(x) where {fn(x)}n=1 ∪ {f(x)} ⊂ Lp(E). Suppose that limn→∞ fn(x) =

g(x) a.e x ∈ E. Show that f(x) = g(x) a.e x ∈ E.

94 (Theorem 6.27) Let 1 5 p < ∞ and let {fn(x)}n=1 ⊂ Lp(E). Suppose that

fn(x)
w−→ f(x) ∈ Lpart(E).

(1) Show that
lim inf
n→∞

‖fn‖p = ‖f‖p.

(2) Let us consider the case of p =∞. Moreover we suppose that m(E) <∞. Can
we obtain the same inequality?

95 (Theorem 6.28) Let 1 < p 5 ∞ and let {fn(x)}n=1 ⊂ Lp(E). Suppose that
there exists M > 0 s.t ‖fn‖p 5 M < ∞ for all n ∈ N. Show that there exists a
subsequence nk s.t

fnk(x)
w−→ f(x) ∈ Lp(E).
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96 (Theorem 6.29 Radon’s Theorem) Let 1 < p < ∞ and let {fn(x)}n=1 ⊂
Lp(E). Suppose that fn(x)

w−→ f(x) ∈ Lp(E) and suppose that limn→∞ ‖fn‖p =
‖f‖p. Show that

fn(x)
Lp−→ f(x).

§ 6.7 Exercises

97 (Exercise 1) Let f(x) ∈ L∞(E) and let w(x) > 0 and suppose that
∫
E
w(x)dx =

1. Show that

lim
p→∞

(∫
E

|f(x)|pw(x)dx

)1/p

= ‖f‖∞.

98 (Exercise 2) Let g(x) be a Lebesgue measurable funtion defined on E ⊂ R, E ∈
M . Suppose that ∀f(x) ∈ L2(E), we have ‖gf‖2 5M‖f‖2. Show that

|g(x)| 5M <∞ a.e x ∈ E.

99 (Exercise 3) Let f(x) > 0 for all x ∈ (0,∞) and suppose that f(x) is integrable
on (0,∞). Let us pick r ∈ (1,∞) and let E ⊂ (0,∞), E ∈ M with m(E) > 0.
Show that (

1

m(E)

∫
E

f(x)dx

)−1

5

(
1

m(E)

∫
E

1

f(x)r
dx

)1/r

.

100 (Exercise 4) Let f(x) ∈ L2([0, 1]) and let g(x)
def
=
∫ 1

0
f(t)

|x−t|1/2dt x ∈ (0, 1). Show

that (∫ 1

0

g(x)2dx

)1/2

5 2
√

2

(∫ 1

0

f(x)2dx

)1/2

.

101 (Exercise 5) Show that the following two equalities cannot hold simultaneously.∫ π

0

(f(x)− sinx)2dx 5
4

9
,

and ∫ π

0

(f(x)− cosx)2dx 5
1

9
.

102 (Exercise 6) Let f(x) ∈ Lp(R) (p > 1) and suppose that 1
p

+ 1
q

= 1. Let

F (x)
def
=
∫ x

0
f(t)dt where x ∈ R. Show that

|F (x+ h)− F (x)| ∼ o(|h|1/q) as h→ 0.

103 (Exercise 7) Let m(Ek) > 0 for all k ∈ N. Suppose that m(Ek)→ 0 as k →∞.
Let

gk(x)
def
=

χEk(x)

m(Ek)1/q
,

where 1
p

+ 1
q

= 1, p, q > 1. Show that for every f(x) ∈ Lp(Rd), we have

lim
k→∞

∫
Rd
gk(x)f(x)dx = 0.

88



6.7. EXERCISES

104 (Exercise 8) Let f(x), g(x) ∈ L3(E) and suppose that

‖f‖3 = ‖g‖3 =

∫
E

f 2(x)g(x)dx = 1.

Show that
g(x) = |f(x)| a.e x ∈ E.

105 (Exercise 9) Let f1(y, z), f2(x, z), f3(x, y) be non-negative measurable functions

defined on R2. Let Ii
def
= ‖fi‖2

2. Let F (x, y, z)
def
= f1(y, z)f2(x, z)f3(x, y). Show that∫

R3

F (x, y, z)dxdydz 5 (I1 · I2 · I3)1/2.

106 (Exercise 10) Let f(x) ∈ Lp(R) where 1 5 p <∞. Let r, s > 0 with r+ s = p.

Let fh(x)
def
= f(x+ h). Show that

lim
|h|→∞

‖f rhf s‖1 = 0.

107 (Exercise 11) Let fn(x) be absolutely continuous functions defined on [0, 1]
with fn(0) = 0. Suppose that {f ′n(x)}n=1 be a Cauchy sequence on L1([0, 1]).
(limm,n→∞ ‖f ′m − f ′n‖1 = 0.) Show that there exists an absolutely continuous

function f(x) defined on [0, 1] with fn(x)
u−→ f(x).

108 (Exercise 12) Let E ⊂ Rd, E ∈M . Suppose that ‖fk−f‖1 → 0, ‖gk−g‖1 → 0
as k →∞ on E.

109 (Exercise 13) Let fk(x) ∈ Lp([a, b]) where 1 5 p 5∞. Suppose that

∞∑
k=1

‖fk‖p <∞.

Show there exists f(x) ∈ Lp([a, b]) s.t

∞∑
k=1

fk(x) = f(x) a.e x ∈ [a, b],

and
∞∑
k=1

fk(x)
Lp−→ f(x).

110 (Exercise 14) Let {fk(x)}k=1 ∪ {f(x)} ∈ Lp(E) and suppose that

‖fk − f‖p <
1

4−k/p
.

Show that for all δ > 0, there exists Eδ ⊂ E,Eδ ∈M with m(Eδ) < δ s.t

fk(x)
u−→ f(x) on E \ Eδ.

89



6.7. EXERCISES

111 (Exercise 15) Let {ϕk(x)}k=1 ⊂ L2(E) be complete normalized orthogonal
systems. Show that for all f, g ∈ L2(E) we have

< f, g >=
∞∑
k=1

< f, ϕk >< g, ϕk >

112 (Exercise 16) Let {ϕk} ⊂ L2([a, b]) be complete normalized orthogonal systems.
Let {ψk} ⊂ L2([a, b]) be orthogonal systems s.t

∞∑
n=1

∫ b

a

(ϕn(x)− ψn(x))2dx < 1.

Show that {ψk} are complete orthogonal systems in L2([a, b]).

113 (Exercise 17) Let {ϕk} ⊂ L2(E) be normalized orthogonal systems and let
Φ ∈ L2(E) with

|ϕk(x)| 5 |Φ(x)| a.e x ∈ E.

Show that if
∑∞

k=1 akϕk(x) converges a.e x ∈ E, then ak → 0 as k →∞.
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Solutions
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CHAPTER 1

Solutions

§ 1.1

1 (Definition 1.17, 1.18, 1.19, 1.20, 1.21)

(1) diam(E) = supx,y∈E{|x− y|}

(2) diam(E) <∞

(3) B(x0, δ) = {x ∈ Rd : |x − x0| < δ}, C(x0, δ) = {x ∈ Rd : |x − x0| 5 δ}, where

|x| def
= (
∑n

i=1 x
2
i )

1/2.

(4) An open rectangle is defined as
∏d

i=1(ai, bi). A closed rectangle is defined as∏d
i=1[ai, bi]. And a half-open rectangle is defined as

∏d
i=1(ai, bi] or

∏d
i=1[ai, bi).

(5) limk→∞ |xk − x| = 0.

2 (Definition 1.21, 1.22, 1.23, 1.24, 1.25)

(1) Let {xn} ⊂ E, xi 6= xj(i 6= j). Suppose xn → x as n → ∞. Then x is an
accumulation point of E. Let E ′ be a set of accumulation points of E. Let Ē = E ∪ E ′
be the closure of E.

(2) Let x ∈ E. Suppose ∃δ > 0 s.t B(x, δ) ∩ E \ {x} = ∅. Then x is an isolated

point of E. We prove that a set of isolated points is expressed as E \ E ′. Let S
def
= {x ∈

E | ∃δ > 0 s.t B(x, δ) \ {x} = ∅}. We show that S = E \ E ′. (⇔ S ⊂ E \ E ′ and
S ⊃ E \ E ′.)

STEP 1. (S ⊂ E \ E ′) Let x ∈ S. Obviously x ∈ E. By definition of S, there
is no sequence {xn}n=1 ⊂ E s.t xn → x (xi 6= xj if i 6= j) because when n is sufficiently
large (n > N), xn ∈ B(x, δ), hence xn = x for all n > N . (∵ B(x, δ) ∩ E \ {x} = ∅) This
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contradicts to the assumption that xi 6= xj if i 6= j.

STEP 2. (S ⊃ E \ E ′) We show that E \ S ⊂ E ′. Let x ∈ E \ S. Since
E \ S = {x ∈ E | ∀δ > 0, B(x, δ)∩E \ {x} 6= ∅}, this implies that we can find a sequence
{xn}n=1 ⊂ E s.t xn → x. (xi 6= xj if i 6= j.) (We can consider δn > 0 s.t δn ↘ 0 and
xn ∈ B(x, δn) ∩E \ {x}. Moreover δn+1 < |xn − x|. Then we can assure that {xn}n=1 are
different points from each other.) So x ∈ E ′.

(3) E is a closed set meas that E ′ ⊂ E. (Different books use different definition.
We use this definition.)

(4) Ec is closed. Then E is open.

(5) x is an interior point of E means that ∃δ > 0 s.t B(x, δ) ⊂ E. Let E̊ be a set
of interior points of E.

(6) Let ∂E = Ē \ E̊ be a boundary of E. We prove that ∂E = A.

STEP 1. (∂E ⊂ A) Let x ∈ ∂E. Since x /∈ E̊, ∀δ > 0, B(x, δ) 6⊂ E. This implies
that B(x, δ)∩Ec 6= ∅ for all δ > 0. Furthermore, x ∈ E = E ∪E ′. We consider the cases
x ∈ E and x ∈ E ′.

case 1. (x ∈ E) Obviously ∀δ > 0, B(x, δ)∩E 6= ∅ because B(x, δ)∩E contains x.

case 2. (x ∈ E ′) There exists {xn}n=1 ⊂ E s.t xn → x (xi 6= xj if i 6= j.) From this
fact, we find out that ∀δ > 0, B(x, δ)∩E 6= ∅ because for sufficiently large n, |xn−x| < δ,
so B(x, δ) ∩ E contains {xn}n=Nδ where Nδ is a sufficiently large natural number.

STEP 2. (∂E ⊃ A) Let x ∈ A. Since ∀δ > 0, B(x, δ) ∩ Ec 6= ∅, (so B(x, δ) 6⊂ E),
so x is not an interior point of E. So x /∈ E̊. Since ∀δ > 0, B(x, δ)∩E 6= ∅, we have x ∈ E.
The reason is as below. If x ∈ E, the statement holds obviously. So we suppose x /∈ E.
Then we can pick xn ∈ B(x, δn) ∩ E with δn → 0. So xn → x. We may suppose that
xi 6= xj if i 6= j because we can take a subsequence n(k) so that 0 < |xn(k+1)

−x| < |xn(k)
−x|.

So x ∈ E ′. From this argument, we conslude that x ∈ E ∪ E ′.

3 (Theorem 1.13)

STEP 1. (⇒) Since x ∈ E ′, we have {xn}n=1(i 6= j ⇒ xi 6= xj) ⊂ E, xn → x.
For any δ > 0, since xn → x, we can find N s.t |x − xn| < δ(n > N). Therefore
B(x.δ) ∩ E \ {x} ⊃ {xn}n>N .

STEP 2. (⇐) We consider {δn}n=1 s.t δn ↘ 0. We pick x1 ∈ B(x, δ1) ∩ E \ {x}.
Next we pick x2 ∈ B(x, δ2)∩E\{x}. (But we assume that |x−x2| < |x−x1| to assure that
{xn} are different from each other.) In this way we obtain {xn}n=1 ⊂ E(i 6= j ⇒ xi 6= xj)
s.t xn → x. So x ∈ E ′.

4 (Theorem 1.14)
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STEP 1. ((E1 ∪ E2)′ ⊃ E ′1 ∪ E ′2) Since E1 ⊂ E1 ∪ E2, we have E ′1 ⊂ (E1 ∪ E2)′.
(Because if ∃{xn}n=1 ⊂ E1 s.t xn → x, we can say that ∃{xn}n=1 ⊂ E1 ∪E2 s.t xn → x.)
Similarly we have E ′2 ⊂ (E1 ∪ E2)′. So we have the desired result.

STEP 2. ((E1∪E2)′ ⊂ E ′1∪E ′2) Let x ∈ (E1∪E2)′. Let {xn}n=1 ⊂ E1∪E2 where
xi 6= xj(i 6= j) and xn → x. Since {xn}n=1 ⊂ E1 ∪E2, E1 (or E2) contain infinitely many
{xn}. We can choose infinitely many {xn} ⊂ E1. Hence we have a subsequence nk s.t
{xnk}k=1 ⊂ E1. Of course, xnk → x. Hence x ∈ E ′1. From this discussion, x is always
containd in either E ′1 or E ′2. So x ∈ E ′1 ∪ E ′2. Now we have the desired result.

5 (Theorem 1.15 Bolzano-Weierstrass Theorem on Rd) Let {xk,1}k=1 ⊂ E where
xk = (xk,1, xn,2, · · · , xk,d)T . Since E is bounded, |xk,1| 5 M1 <∞, |xk,2| 5 M2 · · · |xk,d| 5
Md for some M1, · · ·Md < ∞. By Bolzano Weierstrass’s theorem for R1, we can find a
subsequence {k1(`)}`=1 s.t xk1(`),1 converges to some x∗1 ∈ R. Next, {xk1(`),2} is bounded,
similarly we can find a subsubsequence {k2(`)} ⊂ {k1(`)} s.t xk2(`),2 converges to some
x∗2 ∈ R. Of course, xk2(`),1 also converges x∗1. By repeating this process, we will finally
obtain {xkd(`)}`=1 s.t xkd(`) → (x∗1, x

∗
2 · · · , x∗d)T .

6 (Theorem 1.15 Supplement)

7 (Exercise 1.4.1) E =
⋃
n∈Z[n, n + 1) ∩ E. Since E is uncountable, there

exists n0 ∈ Z s.t [n0, n0 + 1) ∩ E is an infinite set. (Otherwise E is counable.) Since
[n0, n0 + 1) ∩ E ⊂ [n0, n0 + 1] is bouned, so it has at least one limit point by Bolzano-
Weierstrass theorem. So E ′ 6= ∅. Now the proof is complete.

We present an alternative solution. We prove the contraposition, that is if E ′ = ∅ then
E is not uncountable. (At most countable) Note that E = (E \ E ′) ∪ (E ∩ E ′) = E \ E ′
and E \E ′ is a set of isolated points. A set of isolated points is countable. (See Exercise
1.42) Now the proof is complete.

8 (Exercise 1.4.2)

STEP 1. E = E \E ′ ∪E ∩E ′. Since E ∩E ′ ⊂ E ′ is countable, it is enough for us

to prove that E \E ′ is countable. S
def
= E \E ′. Every point in S is an isolated point. We

show that if S is a set of isolated points then S is countable.

STEP 2. Let Sn
def
=
{
x ∈ [−n, n]d | B

(
x, 1

n

)
∩ S = {x}

}
. We claim that S =⋃∞

n=1 Sn.
First, we prove S ⊂

⋃∞
n=1 Sn. Let x ∈ S. Then there exists sufficiently large n1 ∈ N

s.t x ∈ [−n1, n1]d. There also exists sufficiently large n2 ∈ N s.t B(x, 1
n2

) ∩ S = {x}. Let

n0
def
= max{n1, n2}. Then x ∈ Sn0 .
Next, we prove S ⊃

⋃∞
n=1 Sn. However Sn ⊂ S holds obviously for all n ∈ N.

STEP 3. We claim that Sn is a finite set for every n ∈ N. ∀x1, x2 ∈ Sn, (x1 6= x2),
B(x1,

1
n
)∩B(x2,

1
n
) = ∅. Suppose that Sn is infinite, there exists inifinitely many disjoint

open balls {B(xk,
1
n
)}k=1 s.t B(xk,

1
n
) ⊂ [−n − 1

n
, n + 1

n
]d. However this can not happen
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because [−n− 1
n
, n+ 1

n
]d is bounded and its volume is finite (so it can not contain infinitely

many disjoint open balls whose radius is 1
n
). So we conclude that Sn is finite hence S is

countable.

9 (Exercise 1.4.5) Every point in E is an isolate point. We have alreday proven
that a set of isolated points is a countable set in the previous question.

§ 1.2

10 (Example 2 and 6)

STEP 1. (⇒) Suppose f(x) ∈ C(Rn). It is enough for us to show that E1 is closed
for all t ∈ R. (Here we may fix t ∈ R.) When E ′1 = ∅, E1 is closed. So we suppose that
E ′1 6= ∅. Let us pick x0 ∈ E ′1 and {xn}n=1 ⊂ E1(i 6= j ⇒ xi 6= xj) s.t xn → x0. Then
f(xn) = t. By taking n→∞, limn→∞ f(xn) = t. The left hand side will be f(x0) because
f(x) ∈ C(Rn). So x0 ∈ E1. This implies E ′1 ⊂ E1 for all t ∈ R. Therefore E1 is closed.
Similarly E2 is closed for all t ∈ R.

STEP 2. (⇐) We prove contraposition of the statement. We show f(x) /∈
C(Rn) ⇒ ∃t ∈ R s.t E1 or E2 is not closed. Now f(x) is not continuous, so ∃x0 ∈ Rn

and ∃ε > 0 s.t ∀δ > 0 ∃y ∈ B(x0, δ) s.t |f(y) − f(x0)| = ε. This implies we can pick
{yn}n=1 : yn → x0 s.t |f(yn) − f(x0)| = ε. (You may consider a decreasing sequence of
{δn} : δn ↘ 0) So f(yn) = f(x0) + ε or f(yn) 5 f(x0)− ε. At least one of the conditions
(f(yn) = f(x0) + ε or f(yn) 5 f(x0) − ε) holds for infinitely many n. So we can find a
subsequence nk s.t f(ynk) = f(x0) + ε. Now let t = f(x0) + ε. Then E1 is not closed
because ynk ∈ E1 and ynk → x0 but f(x0) = t (= f(x0) + ε) does not hold. So x0 /∈ E1.

11 (Example 3) We show that B(x0, δ) = C(x0, δ). For simplicity, let B =
B(x0, δ), C = C(x0, δ).

STEP 1. From B ⊂ C, we have B̄ = C̄. Since a closed ball is a closed set, C̄ = C.
So we have B̄ ⊂ C.

STEP 2. Next we show B̄ ⊃ C. Now let x ∈ C. Let xk = (1 − 1
k
)x + 1

k
x0.

|xk−x| = 1
k
|x0−x| 5 δ

k
< δ, hence {xk} ⊂ B and xk → x. Therefore x ∈ B′ ⊂ B′∪B = B̄.

12 (Example 4) Let δ > 0 be an arbitrary small number. Let m ∈ N s.t 10−m < δ.
Let us define c1, c2, · · · and d1, d2, · · · for given natural numbers n1, n2 as

n1a− [n1a] = 0.c1c2c3 · · · cmcm+1 · · ·
n2a− [n2a] = 0.d1d2d3 · · · dmdm+1 · · · ,
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where [x]
def
= max{k ∈ Z|k 5 x}. We can find n1, n2 ∈ N(n1 6= n2) such that

c1 = d1, c2 = d2, · · · , cm = dm,

because the combinations of {c1, c2 · · · cn} have only 10m but there exists infinitely many
natural numbers (n1, n2) ∈ N2. Moreover since a /∈ Q (an irrational number),

|(n1a− [n1a])− (n2a− [n2a])| > 0, (n1 6= n2).

(if = 0, a will be a rational number.) From this fact, we find that we can pick n1, n2 ∈
N, k ∈ Z s.t

0 < |n1a− n2a− k| < 10−m < δ.

Hence we can find p+ aq ∈ Ea s.t p+ aq ∈ (0, δ). Now for any x ∈ R, we can find z ∈ Z
s.t x− δ < z(p+ aq) < x+ δ (because p+ aq is very small). This implies that we can find
a sequence {xn} ⊂ Ea s.t xn → x.

13 (Example 5)

STEP 1. Since cos(x) is a continuous function, ∀x ∈ R, ∃δ > 0 such that ∀y ∈
(x− δ, x+ δ), | cos(x)− cos(y)| < ε. Now choose an arbitrary number c ∈ [−1, 1]. We can
find x ∈ R s.t c = cos(x). Now fix x ∈ R and ε > 0.

STEP 2. Let us be careful of the fact that E = {cos(n)|n ∈ N} = {cos(n +
2mπ)|m,n ∈ N}. Let Y = {m + (2π)n|m,n ∈ N} (Let us recall the previous exercise).
From the previous exercise, we can find y = m + 2nπ ∈ Y s.t |x − y| < δ. (∵ 2π /∈ Q).
Hence | cos(x) − cos(y)| < ε. Now cos(y) = cos(m + 2nπ) = cos(n), therefore we may
conclude that ∀c ∈ [−1, 1],∃n s.t | cos(n) − c| < ε. This implies that for any c ∈ [−1, 1],
we can find a sequence of natural numbers {nk}k=1 s.t limk→∞ | cos(nk)−c| = 0. So c ∈ Ē.

14 (Theorem 1.16)

(1) We have already shown that (F1 ∪ F2)′ = F ′1 ∪ F ′2. Since F1, F2 are closed,
F ′1 ∪ F ′2 ⊂ F1 ∪ F2. Therefore (F1 ∪ F2)′ ⊂ F1 ∪ F2.

(2) F ⊂ Fα(∀α ∈ I). Hence F ′ ⊂ F ′α = Fα(∀α ∈ I). Therefore we have F ′ ⊂
∩α∈IFα = F .

15 (Theorem 1.17) We consider the following two cases.

case 1. (Fk \ Fk+1 6= ∅ for only finite number of k) ∃k0 = 1 such that Fk0+1 =
Fk0+2 = Fk0+3 = · · · . Then

⋂∞
k=1 Fk = Fk0 6= ∅ (∵ assumption). So the statement is true.

case 2. (Fk \ Fk+1 6= ∅ occurs for inifinitely many k.) We can find a subsequence
Fk` \ Fk`+1 6= ∅ for all ` ∈ N. Let us pick x` ∈ Fk` \ Fk`+1. Since {x`}`=1 ⊂ Fk1 ⊂ F1

and F1 is bounded and closed, we can find a subsequence x`(m) s.t x`(m) → x∗ ∈ F1 by
Bolzano-Weierstrass Theorem. And {x`(m)}m=2 ⊂ Fk`(2)

⊂ F2 and F2 is closed, so x∗ ∈ F2.
By similar argument, we have x∗ ∈ Fk for all k ∈ N. So x∗ ∈

⋂∞
k=1 Fk.
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16 (Exercise 1.5.1.4)

STEP 1. (⊃) Since E ∈ {F}F⊃E;F :closed, E ⊃
⋂
F⊃E;F :closed F

STEP 2. (⊂) Let F be a closed set with F ⊃ E. Then E ′ ⊂ F ′ ⊂ F so E =
E ∩ E ′ ⊂ F . Therefore E ⊂

⋂
F⊃E,F :closed.

17 (Exercise 1.5.1.5) Since f(x) is real-valued so F = {x ∈ F | f(x) < ∞} =⋃∞
n=1{x ∈ F | f(x) 5 n}. We prove that for each n ∈ N, {x ∈ F | f(x) 5 n} is a

finite set. Suppose that Fn
def
= {x ∈ F | f(x) 5 n} is not a finite set then we can pick

infinitely many points {x(n)
k } ⊂ Fn (if k 6= `, x

(n)
k 6= x

(n)
` ). Since Fn ⊂ F is bounded, we

can find a subsequence {x(n)
k(m)}m=1 s.t x

(n)
k(m) → x0 by Bolzano Weierstrass theorem. By

assumption limm→∞ f(x
(n)
k(m)) = ∞. This means that we can find m0 s.t f(x

(n)
k(m0)) > n.

So this contradicts to the assumption.

18 (Exercise 1.5.1.6) We show that F ′ ⊂ F . Suppose that F ′ 6= ∅. Let (x0, y0) ∈
F ′. Then {(xn, yn)}n=1 ⊂ F s.t (xn, yn) → (x0, y0) ((xi, yi) 6= (xj, yj) if i 6= j). For each
n, f(xn) = yn. So limn→∞ f(xn) = limn→∞ yn. Since f(x) is continuous, f(x0) = y0. This
means that (x0, y0) ∈ F . So F ′ ⊂ F .

19 (Theorem 1.18)

(1) Gc =
⋂
α∈I G

c
α. Since Gc

α are closed sets, Gc is also a closed set. (See Theorem
1.16) So G is an open set.

(2) (
⋂m
k=1Gk)

c =
⋃m
k=1G

c
k is closed. (∵ Gc

k are closed sets. See Theorem 1.16)

(3) Let F = Gc.

STEP 1. (⇒) We consider its contraposition. We show that ∃x ∈ G,∀δ >
0, B(x, δ)\G 6= ∅ ⇒ G is not open (F is not closed). By assumption, by taking a sequence
of {δn} : δn ↘ 0, we may obtain a sequece of point {xn} ⊂ B(x, δn) \ G = B(x, δn) ∩ F .
(Moreover we may assume that |x− xk+1| < |x− xk|. So xi 6= xj if i 6= j) Since xn → x,
x ∈ F ′ but x ∈ G. This implies F \ F ′ 6= ∅. So F is not closed.

STEP 2. (⇐) We consider its contraposition. We show that G is not open ⇒
∃x ∈ G s.t ∀δ > 0, B(x, δ) \ G 6= ∅. By assumpotion, F is not closed, so there exists
x ∈ F ′ \ F . We may take {xn}n=1 ⊂ F : xn → x ∈ G(/∈ F ). Then ∀δ > 0, there exists N
s.t {xn}n>N ⊂ B(x, δ). This implies that B(x, δ) \G = B(x, δ) ∩ F ⊃ {xn}n>N 6= ∅.

20 (Example 7) We use the result of the previous problem. We pick x0 ∈ H. We
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show that ∃B(x0, δ) ⊂ H. By definition,

ωf (x0) = lim
δ↘0

sup
x1,x2∈B(x0,δ)

{|f(x1)− f(x2)|} < t.

Since · · · < t, there exists sufficiently small δ0 > 0 such that

sup
x1,x2∈B(x0,δ0)

{|f(x1)− f(x2)|} < t.

We pick an arbitrary point x∗ ∈ B(x0, δ0). Since B(x0, δ0) is an open ball, we may
pick δ∗ > 0 such that B(x∗, δ∗) ⊂ B(x0, δ0). Hence supx1,x2∈B(x∗δ∗){|f(x1) − f(x2)|} 5
supx1,x2∈B(x0,δ0){|f(x1)− f(x2)|} < t. So we have limδ↘0 ωf (x

∗) < t for all x∗ ∈ B(x0, δ0).
This implies that B(x0, δ0) ⊂ H. Therefore H is an open set.

21 (Theorem 1.19)

(1) For each x ∈ G, let Ix
def
= (ax, bx) where ax

def
= inf{a | a < x, (a, x) ⊂ G} and

bx
def
= sup{b | b > x, (x, b) ⊂ G}. Since G is an open set, so Ix 6= ∅.

STEP 1. We prove that G =
⋃
x∈G Ix. First, let x0 ∈ G be an arbitrary point in

G. Then x0 ∈ Ix0 and Ix0 ⊂
⋃
x∈G Ix. So G ⊂

⋃
x∈G Ix.

Next, we prove that Ix ⊂ G for all x ∈ G. Let x ∈ G. We can pick {an} s.t
an ↘ ax. Since (an, x) ⊂ G for all n ∈ N,

⋃∞
n=1(an, x) ⊂ G. The left hand side is⋃∞

n=1(an, x) = (axx). So (ax, x) ⊂ G. Similarly, (x, bx) =
⋃∞
n=1(x, bn) ⊂ G where bn ↗ bx.

So Ix = (ax, bx) ⊂ G for all x ∈ G. Therefore
⋃
x∈G Ix ⊂ G.

STEP 2. We prove that if x 6= y (x, y ∈ G) then Ix = Iy or Ix ∩ Iy = ∅. Suppose
that Ix ∩ Iy 6= ∅, x < y. Since [x, y] ⊂ G, we find out that ax = ay and bx = by by their
definitions. So G is a union of disjoint open intervals.

STEP 3. Finally, we explain that G is a countable union of disjoint open intervals.
Since each disjoint interval contains rational numbers, and the number of rational numbers
is countably many, G is a countable union of disjoint open intervals.

(2)

STEP 1. First we prove that G is a countable union of open rectangles. (not
disjoint) Let

In,k
def
=

d∏
i=1

(
ki
2n
,
ki + 1

2n

]
, n ∈ N, k ∈ Zd

We claim that

G =
∞⋃
n=1

⋃
k∈Zd;In,k⊂G

In,k.

First ⊃ is obvious because for each (n, k) ∈ N× Zd, we pick In,k ⊂ G. Next we prove ⊂.
Let us pick x ∈ G. Since G is an open set, there exists δ > 0 s.t B(x, δ) ⊂ G. For each
n ∈ N, there always exists k ∈ Zd s.t x ∈ In,k. By choosing sufficiently large n ∈ N, we

can let diam(In,k) =
√
δ

2n
< δ. So we have x ∈ In,k ⊂ B(x, δ) ⊂ G. Such In,k is contained

in the union of the right hand side. So x ∈
⋃
n,∈N

⋃
k∈Zd;In,k⊂G In,k. Now the proof is

complete.
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STEP 2. Let

Gn =
n⋃

m=1

⋃
k∈Zd;Im,k⊂G

Im,k.

Since Hn
def
= Gn \ Gn−1 can be expressed as disjoint union of open rectangles {In,k}k∈Zd ,

and G =
⋃∞
n=1Hn, we have the desired conclusion.

22 (Exercise 1.5.2.1) Show that E̊ =
(
Ec
)c

.

STEP 1. (E̊ ⊂
(
Ec
)c

) We show that (E̊)c ⊃ Ec = (Ec) ∪ (Ec)′. Since (E̊)c is

closed, it is enough for us to show that (E̊)c ⊃ Ec. However this is obvious because
E̊ ⊂ E.

STEP 2. (E̊ ⊃
(
Ec
)c

) We show that (E̊)c ⊂ Ec. Let x ∈ (E̊)c. We show that

x ∈ Ec.

case 1. (x ∈ Ec) x ∈ Ec ⊂ Ec ∪ (Ec)′ = Ec.

case 2. (x /∈ Ec) Since x /∈ E̊, ∀δ > 0, B(x, δ) 6⊂ E. Therefore ∀δ > 0, B(x, δ) ∩
Ec 6= ∅. Moreover x /∈ Ec, implies that ∀δ > 0, B(x, δ) \ {x} ∩ Ec 6= ∅. So x ∈ (Ec)′.
Therefore x ∈ (Ec) ∪ (Ec)′ = Ec.

23 (Exercise 1.5.2.3)

(1) Let us recall that ∂G = {x ∈ Rd | ∀δ > 0, B(x, δ) ∩ G 6= ∅, B(x, δ) ∩ Gc 6= ∅}
from the previous question. From this, it is easy to find out that ∂G = ∂(Gc).

STEP 1. (G is open ⇒ G∩ ∂G = ∅) Let x ∈ G. Then ∃δ > 0 s.t B(x, δ) ⊂ G. So
B(x, δ) ∩Gc = ∅. Therefore x /∈ ∂G. This implies that G ∩ ∂G = ∅.

STEP 2. (G is open ⇐ G ∩ ∂G = ∅) Let us pick x ∈ G. Since x /∈ ∂G, ∃δ > 0
s.t B(x, δ) ∩ G = ∅ or B(x, δ) ∩ Gc = ∅ holds. x ∈ G, {x} ∈ B(x, δ) ∩ G 6= ∅, so
B(x, δ) ∩Gc = ∅ holds. This implies that B(x, δ) ⊂ G. So G is an open set.

(2) Let G
def
= F c. Then ∂G = ∂F . G is open if and only if F is closed. ∂F ⊂ F ⇔

∂F ∩ F c = ∅ ⇔ ∂G ∩G = ∅ ⇔ G is open. (∵ the previous question.)

24 (Exercise 1.5.2.4) Let a ∈ A. There exists x ∈ G s.t a ∈ B(x, r0). Since G is
an open set, there exists δ > 0 s.t B(x, δ) ⊂ G. We may suppose 0 < δ < r0 − |x − a|.
(|x−a| < r0) We pick x∗ ∈ B(x, δ) ⊂ G. Then |x∗−a| 5 |x−a|+|x−x∗| < |x−a|+δ < r0.
So a ∈ B(x∗, r0) ⊂

⋃
x∈GB(x, r0) = A. This implie that a is an interior point of A. So A

is an open set.
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25 (Exercise 1.5.2.5)

26 (Definition 1.26, Lemma 1.20, Lindelof’s Covering Lemma)

(1) Let E ⊂ Rd. Let Γ = {Gα}α∈I be a family of open sets on Rd. If E ⊂
⋃
α∈I Gα,

we say that Γ is an open cover of E. If Γ′ ⊂ Γ is also open cover of E, then Γ′ is called a
sub cover of Γ.

(2) We fix x ∈ E. We can find r > 0 such that B(x, r) ⊂ E. Since Q is dense in
R, we can find y = (y1, y2, · · · , yd) ∈ Qd s.t |xi − yi| 5 r

4
√
d
. Then |x − y| 5 r

4
. Now we

choose q ∈ Q ∩ (r/4, r/2). Then x ∈ B(y, q) ⊂ B(x, r). Such B(y, q) ∈ A .

(3) For each x ∈ E, we can find at least one α(x) s.t x ∈ Gα(x). We apply the previ-
ous lemma to each Gα(x). Then we may find B(y(x), q(x)) ∈ A such that x ∈ B(y(x), q(x)) ⊂
Gα(x). E =

⋃
x∈E{x} ⊂

⋃
x∈E B(y(x), q(x)). Since {B(y(x), q(x))}x∈E ⊂ A is countable, we

may rewrite it as E ⊂
⋃∞
k=1 B(xk, qk). For each k, we may find αk ∈ I s.t B(xk, qk) ⊂ Gαk .

Therefore E ⊂
⋃
k=1Gαk .

27 (Theorem 1.21 Heine-Borel’s Finite Covering Lemma) Let F ⊂ Rd be a closed
and bounded set. Suppose that there exists an open cover {Gα}α∈I (I is an index set. I
can be countable or uncountable.) Then we can find a finite cover {α1, α2, · · · , αm} ⊂ I
s.t

E ⊂
n⋃
k=1

Gαk .

This is called Heine-Borel’s Finite Covering Lemma.

STEP 1. By Lemma 1.20 Lindelof’s Covering Lemma, we may suppose that

F ⊂
∞⋃
n=1

Gn

without loss of generality.

STEP 2. Let

Hn
def
=

n⋃
k=1

Gk, Ln
def
= F \

n⋃
k=1

Gk

We consider the following two cases.

case 1. (Ln = ∅ for some n ∈ N) This implies that F ⊂
⋃n
k=1 Gn for some n ∈ N.

So the theorem is true for this case.

case 2. (Ln 6= ∅ for all n ∈ N) Note that Ln is a bounded closed set for each n ∈ N,
and Ln ⊃ Ln+1. By Theorem 1.17 Cantor’s Intersection Theorem,

∃x∗ ∈
∞⋂
n=1

Ln (⊂ F )
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x∗ /∈ Gn for all n ∈ N. This implies that x∗ /∈
⋃∞
n=1 Gn. However this contradicts to

the fact that {Gn}n=1 is an open cover of F . (x∗ is a point of F but not is covered by
{Gn}n=1.)

So we conclude that the there exists n ∈ N s.t

F ⊂
n⋃
k=1

Gk

28 (Example 8)

STEP 1. For each x ∈ F , we can find δx > 0 s.t B(x, δx) ⊂ G because x ∈ F ⊂ G.
Obviously,

F =
⋃
x∈F

{x} ⊂
⋃
x∈F

B(x, δx/2).

By Theorem 1.21 Heine-Borel Finite Covering Lemma, we can find finite number of points
in F , {x1, x2, · · · , xn} and positive numbers {δ1, δ2, · · · , δn} s.t

F ⊂
n⋃
k=1

B(xk, δk/2).

STEP 2. Let us pick an arbitrary point x ∈ F . Since F is covered by {B(xk, δk/2)}nk=1

we can find some i s.t x ∈ B(xi, δi/2) Let us pick an arbitrary point y ∈ Gc and x ∈ F .

|x− y|
(∗1)

= |y − xi| − |x− xi|
(∗2)
>

δi
2
= min{δ1/2, · · · , δn/2}.

• (∗1) is obtained by triangular inequality.

• (∗2) is because y ∈ Gc and B(xi, δi) ⊂ G so |y − xi| = δi and x ∈ B(xi, δi/2) so
|x− xi| < δi/2.

The argument above implies that for ∀x ∈ F and ∀z ∈ Rd with |z| < δ∗
def
= min{δ1/2, · · · , δn/2},

x + z ∈ G. (Conversely, if y
def
= x + z ∈ Gc, |y − x| = |z| = min{δ1/2, · · · , δn/2} by the

argument above.) Now the proof is complete.

29 (Theorem 1.22)

STEP 1. (E is bounded) For example, {B(q, 1)}q∈Qd is obviously an open cover
of E. We can pick finite number of {B(qi, 1)}ki=1 s.t

E ⊂
k⋃
i=1

B(qi, 1),

by assumption. Let r
def
= maxi=1,2··· ,k{|qi|} + 1. Then

⋃k
i=1B(qi, 1) ⊂ B(0, r). So E is

bounded.
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STEP 2. (E is closed) We prove that E ′ ⊂ E. Let us fix an arbitrary point y ∈ Ec.
For each x ∈ E, x 6= y ⇒ |x− y| > 0. So we can find δx > 0 s.t

B(x, δx/2) ∩B(y, δx/2) = ∅.

Since {B(x, δx/2)}x∈E is an open cover of E, we can find {B(xi, δxi/2)}ni=1 s.t

E ⊂
n⋃
i=1

B(xi, δxi/2).

Let δ∗
def
= min{δx1/2, · · · , δxn/2}. Let us choose an arbitrary point x ∈ E. Then we can

find i ∈ {1, · · · , n} s.t x ∈ B(xi, δxi/2). Note that

|y − x|
(∗1)

= |y − xi| − |xi − x|
∗2
> δxi/2 = δ∗

• (∗1) is obtained by triangular inequality.

• (∗2) is because |y−xi| > δxi (∵ B(xi, δxi/2)∩B(y, δxi/2) = ∅) and x ∈ B(xi, δxi/2).

This implies that we can not find {xn}n=1 ⊂ E s.t xn → y. So y is not limit point of
E. In other words, y ∈ Ec ⇒ y /∈ E ′. So

Ec ⊂ (E ′)c

and this implies that E ′ ⊂ E.

30 (Exercise 1.5.2.9) Please refer to the Example 19 in the next section. Let F
be a non-empty closed set and suppose that F ′ does not contain any isolated point. Then
F ′ ⊂ F and F \F ′ = ∅. So F = F \F ′ ∪F ′ = ∅∪F ′. When F = F ′, F is called a perfect
set. A perfect set is known to be an uncountable set.

31 (Exercise 1.5.2.10) Let ε > 0 be an arbitrary positive number and let us fix ε.

STEP 1. Let xi ∈ F be an arbitrary point in F . Since fk(xi) → +0 as k → ∞,
we can find Ni ∈ N s.t 0 5 fNi(xi) <

ε
2
. Moreover fNi(x) is a continuous function, there

exists δi > 0 s.t

|fNi(x)− fNi(xi)| <
ε

2
, ∀x ∈ B(xi, δi).

So we have
fNi(x) < ε, ∀x ∈ B(xi, δi).

STEP 2. Note that
F ⊂

⋃
x∈F

B(x, δx),

where δx is defined in the same way in STEP 1. By Theorem 1.21 Heine-Borel Finite
Covering Lemma, we have

F ⊂
n⋃
i=1

B(xi, δi).
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STEP 3. Let k > max{N1, N2, · · ·Nn}. Note that

sup
x∈F

fk(x)
(∗1)

5 sup
x∈

⋃n
i=1B(xi,δi)

fk(x)

(∗2)
= max

i=1,2··· ,n
sup

x∈B(xi,δi)

fk(x)

(∗3)

5 max
i=1,2··· ,n

sup
x∈B(xi,δi)

fNi(x)

(∗4)

5 max
i=1,2··· ,n

ε = ε.

• (∗1) F ⊂
⋃n
i=1B(xi, δi).

• (∗2) See below.

• (∗3) fk(x) is decreasing with respect to n.

• (∗4) fNi(x) < ε for all x ∈ B(xi, δi).

This holds for all n > max{N1, · · · , Nn}. Hence we have lim supk→∞ supx∈F fk(x) 5
supx∈F fk(x) < ε, so we conclude that

fk(x)
u−→ 0 on F.

Finally, we present the proof of (∗2). First, supx∈⋃ni=1 B(xi,δi)
fk(x) = supx∈B(xi,δi)

fk(x),
for all i = 1, 2, · · ·n. So

sup
x∈

⋃n
i=1B(xi,δi)

fk(x) = max
i=1,··· ,n

sup
x∈B(xi,δi)

fk(x).

Second, for all x ∈
⋃n
i=1 B(xi, δi), we can find i s.t x ∈ B(xi, δi). So fk(x) 5 supx∈B(xi,δi)

fk(x) 5
maxi=1,··· ,n supx∈B(xi,δi)

fk(x). By taking supx∈⋃ni=1B(xi,δi)
of the left hand side, we have

sup
x∈

⋃n
i=1B(xi,δi)

fk(x) 5 max
i=1,··· ,n

sup
x∈B(xi,δi)

fk(x).

32 (Definition 1.27) f(x) is continuous at x0 ∈ E means that

∀ε > 0,∃δ > 0 s.t ∀x ∈ B(x0, δ) ∩ E, |f(x)− f(x0)| < ε.

Equivalently,
lim
δ→+0

sup
x∈B(x0,δ)∩E

|f(x)− f(x0)| = 0,

or
lim
δ→+0

sup
x∈B(x0,δ)∩E

f(x) = lim
δ→+0

inf
x∈B(x0,δ)∩E

f(x) = f(x0).

(i.e limx→x0 f(x) = f(x0).) Note that when x0 is an isolated point of E (i.e x0 ∈ E \E ′),
then f(x) is continuous at x0 by the definition above. When f(x) is continuous at all
x0 ∈ E, we say that f(x) is continuous on E and denote it as f(x) ∈ C(E).
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33 (Example 9) Suppose that there is not x ∈ F s.t f(x) = x. Since |f(x)− f(y)| <
|x− y|, f(x) is continuous on F . Let g(x)

def
= |f(x)− x| : F → [0,∞). g(x) is also

continuous on F . And F is bounded and closed. g(x) has a minimum value on F .
Suppose that g(x) takes the minimum value at x0 ∈ F . Since f(x0), x0 ∈ F , we have
g(f(x0)) = |f ◦ f(x0)− f(x0)| < |f(x0)− x0| = g(x0) > 0. (> 0 holds because f(x0) 6= x0

by assumption.) Let x1
def
= f(x0) ∈ F . Now g(x1) < g(x0). (contradiction!!)

34 (Exercise 1.5.2.11) Let A
def
= {x ∈ F | f(x) = 0}. We show that A′ ⊂ A.

When A′ = ∅, A′ ⊂ A holds obviously so we may suppose that A′ 6= ∅. Let a0 ∈ A′, then
there exists {an} ⊂ A with an → a0. Since f(an) = 0, we have limn→∞ f(an) = 0. Since
f(x) is continuous, limn→∞ f(an) = f(a0). So f(a0) = 0. And a0 ∈ F ′ ⊂ F . So a0 ∈ A.
∴ A is a closed set.

35 (Exercise 1.5.2.12) Let x0 ∈
⋃∞
n=1En. We can find n0 ∈ N s.t x0 ∈ En0 . We

may suppose that n0 = 1 without loss of generality. Since E1 is an open set, if δ > 0 is
sufficiently small, then B(x0, δ) ⊂ E1. So

lim
δ→+0

sup
x∈B(x0,δ)∩

⋃∞
n=1 En

|f(x)− f(x0)|

= lim
δ→+0

sup
x∈B(x0,δ)∩E1

|f(x)− f(x0)| = 0, ∵ f(x) ∈ C(E1)

36 (Exercise 1.5.2.13)

(1) Let f(x) = |x|. Then f(x) is continuous on E. Since f(x) = x ∈ E is bounded,
E is bounded.

Suppose that E is not closed. So E ′\E is not empty. Let x0 ∈ E ′\E. Let f(x)
def
= 1
|x−x0| .

f(x) is continuous and well-defined on E because x0 /∈ E. However, x0 ∈ E ′ means that
we can find {xn} ⊂ E s.t xn → x0. So f(x) → ∞ as xn → x0. This contradicts to the
fact that f(x) is bounded. Therefore we conclude that E is closed.

(2) The functions above are non-negative so they have the maximum value means
that they are bounded. So we have the same conclusion as the previous question by the
same argument.

37 (Exercise 1.5.2.14) Let x0 ∈ E be an arbitrary point in E. If x0 is an isolated
point (x0 ∈ E \ E ′), f(x) is continuous at x0. So we suppose that x0 ∈ E ∩ E ′. Let

{xn}n=1 ⊂ E be an arbitrary sequence with xn → x0. Since K
def
= {xn}n=1 ∪ {x0} is a

compact set, we have limn→∞ f(xn) = f(x0). Now the proof is complete.

38 (Definition 1.28) If a set is a countable union of closed sets, then it is called
a Fσ set. If a set is a countable intersection of open sets, then it is called Gδ set. (F :
closed, G: open, σ: countable union, δ: countable intersection)
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39 (Example 11) A set of continuity of f(x) on G is

{x ∈ G | ωf (x) = 0} =
∞⋂
n=1

{
x ∈ G | ωf (x) <

1

n

}
,

where
ωf (x)

def
= lim

δ→+0
sup

x1,x2∈B(x,δ)

|f(x1)− f(x2)| ,

which is defined in Example 7 of the previous subsection. In Example 7, we have already
verified that

{x ∈ G | ωf (x) < t}

is an open set for all t ∈ R when G is an open set. So the proof is complete.

40 (Example 12) Let

A
def
= {x ∈ Rd | f is continuous at x},

B
def
=

∞⋂
m=1

∞⋃
k=1

E̊k

(
1

m

)
,

Ek(ε)
def
=

{
x ∈ Rd | |f(x)− fk(x)| 5 ε

}
.

We claim that
A = B.

STEP 1. (A ⊂ B) Let x0 ∈ A. We prove that x0 ∈ B. First, x0 is a point of
continuity of f(x), we have ∀ε, there exists δ > 0 s.t

|f(x)− f(x0)| < ε/3, ∀x ∈ B(x0, δ).

Second, since fk(x0)→ f(x0), there exists sufficiently large k0 ∈ N s.t

|fk0(x0)− f(x0)| < ε/3.

Third, since fk0(x) is a continuous function, there exists δ′ > 0 s.t

|fk0(x)− fk0(x0)| < ε/3, ∀x ∈ B(x0, δ
′).

Now let δ∗
def
= min(δ, δ′) and we have

|f(x)− fk0(x)| = |f(x)− f(x0) + f(x0)− fk0(x0) + fk0(x0)− fk0(x)|
5 |f(x)− f(x0)|+ |f(x0)− fk0(x0)|+ |fk0(x0)− fk0(x)|
5 ε/3 + ε/3 + ε/3 = ε,∀x ∈ B(x0, δ

∗).

This implies that
B(x0, δ

∗) ⊂ Ek0(ε).

Moreover the left hand side is an open set, so we have

B(x0, δ
∗) ⊂ E̊k0(ε).
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It is easy to see that

B(x0, δ
∗) ⊂

∞⋃
k=1

E̊k(ε).

Now we have

x0 ∈
∞⋃
k=1

E̊k(ε), ∀ε > 0.

Therefore

x0 ∈
∞⋂
m=1

∞⋃
k=1

E̊k

(
1

m

)
STEP 2. (B ⊂ A) Let x0 ∈ B. We prove that x0 ∈ A. Our goal is to prove that

∀ε > 0, ∃δ > 0 s.t
|f(x)− f(x0)| < ε, ∀x ∈ B(x0, δ).

First we take m0 ∈ N s.t 1
m0

< ε
3
. Note that

x0 ∈
∞⋃
k=1

E̊k

(
1

m0

)
.

We can find k0 s.t

x0 ∈ E̊k0

(
1

m0

)
.

Since the right hand side is a set of interior points, we can find δ0 > 0 s.t

B(x0, δ0) ∈ E̊k0

(
1

m0

)
.

Also note that

E̊k0

(
1

m0

)
⊂ Ek0

(
1

m0

)
.

So we find out that

|fk0(x)− f(x)| 5 1

m0

<
ε

3
, ∀x ∈ B(x0, δ0).

Note that x0 ∈ B(x0, δ0), so we have

|fk0(x0)− f(x0)| 5 1

m0

<
ε

3
.

Let us recall that fk0(x) is a continuous function on Rd. So fk0(x) is continuous at x0.
This implies that there exists δ1 > 0 s.t

|fk0(x)− fk0(x0)| < ε

3
, ∀x ∈ B(x0, δ1).

Finally let δ
def
= min{δ0, δ1}. We have

|f(x)− f(x0)| = |f(x)− fk0(x) + fk0(x)− fk0(x0) + fk0(x0)− f(x0)|
5 |f(x)− fk0(x)|+ |fk0(x)− fk0(x0)|+ |fk0(x0)− f(x0)|
< ε/3 + ε/3 + ε/3 = ε, ∀x ∈ B(x, δ)
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STEP 3. (A is a Gδ set) A = B and B is obviously a Gδ set. Now the proof is
complete.

41 (Definition 1.29, 1.30, 1.31)

(1) Let A be a collection of point sets. (∀A ∈ A , A is a point set.) If A satisfies
the following conditions, we say that A is a σ-algebra.

• ∅ ∈ A

• if ∀A ∈ A , then Ac ∈ A

• if {An}∞n=1 ⊂ A , then
⋃∞
n=1An ∈ A

(2) Let Σ be a collection of point sets. And let {Ai}i∈I be a collection of σ-algebras

with Σ ⊂ Ai, ∀i ∈ I. Then A
def
=
⋂
i∈I Ai is also a σ-algebra. (the proof is easy.) We also

denote A as σ [Σ]. This is called a σ−algebra generated from Σ. We can also say that
this is the smallest σ−algebra that contains Σ.

(3) Let Od be a collection of all open set on Rd. Then σ
[
Od
]

is called Borel algebra,
or Borel sigma algebra. Each element in σ

[
Od
]

is called a Borel set. We often denote it

as B
def
= σ

[
Od
]
.

42 (Exercise 1) We claim that

A
def
= {x ∈ [a, b] | f(x) < t} = B

def
=

∞⋃
k=1

∞⋃
n=1

∞⋂
m=n

{
x ∈ [a, b] | fm(x) 5 t− 1

k

}
.

STEP 1. (A ⊂ B) Let x0 ∈ A. Since f(x0) < t, there exists sufficiently large
k0 ∈ N s.t

f(x0) < t− 1

k0

Since fn(x0)→ f(x0), there exists n0 ∈ N s.t ∀m = n0,

fm(x0) < t− 1

k0

.

This implies that

x0 ∈
∞⋂

m=n0

{
x ∈ [a, b] | fm(x) 5 t− 1

k0

}
and note that

∞⋂
m=n0

{
x ∈ [a, b] | fm(x) 5 t− 1

k0

}
⊂

∞⋃
n=1

∞⋂
m=n

{
x ∈ [a, b] | fm(x) 5 t− 1

k0

}

⊂
∞⋃
k=1

∞⋃
n=1

∞⋂
m=n

{
x ∈ [a, b] | fm(x) 5 t− 1

k

}
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So x0 ∈ B.

STEP 2. (B ⊂ A) Let x0 ∈ B. There exists k0, n0 ∈ N s.t

fm(x0) 5 t− 1

k0

,∀m = n0.

This implies that

f(x0) = lim sup
n→∞

fn(x0) 5 t− 1

k0

< t.

So x0 ∈ A.

STEP 3. Since every fn(x) is a continuous function,

∞⋂
m=n

{
x ∈ [a, b] | fm(x) 5 t− 1

k

}
is a closed set for each n ∈ N, k ∈ N. (See Theorem 1.16 and Example 2 in the previous
section.) So B is a Fσ set.

43 (Exercise 2) We show that

A =
{
x ∈ F | lim inf

n→∞
fn(x) > a

}
, (a ∈ R)

is a Fσ set. (Then the rest proof is easy.) To prove the above statement, we claim that
A = B where

B =
∞⋃
k=1

∞⋃
n=1

∞⋂
m=n

{
x ∈ F | fm(x) = a+

1

k

}
.

(It is easy to prove that B is a Fσ set.)

STEP 1. (A ⊂ B) First suppose that x0 ∈ A. Then

lim inf
n→∞

fn(x0) > a.

This implies that we can find k0 ∈ N s.t

lim inf
n→∞

fn(x0) > a+
1

k0

Let us define
gn(x)

def
= inf

m=n
fm(x).

Note that

lim inf
n→∞

fn(x0) = lim
n→∞

gn(x0) > a+
1

k0

Since gn(x0) is monotone increasing with respect to n, we can find n0 s.t

gn0(x0) > a+
1

k0

.
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So

fm(x0) > a+
1

k0

, ∀m = n0.

This implies that

x0 ∈
∞⋂

m=n0

{
x ∈ F | fm(x) > a+

1

k0

}
⊂

∞⋂
m=n0

{
x ∈ F | fm(x) = a+

1

k0

}

⊂
∞⋃
n=1

∞⋂
m=n

{
x ∈ F | fm(x) = a+

1

k0

}
⊂

∞⋃
k=1

∞⋃
n=1

∞⋂
m=n

{
x ∈ F | fm(x) = a+

1

k

}
= B

STEP 2. (B ⊂ A) Let x0 ∈ B. There exists k0, n0 ∈ N s.t

fm(x0) = a+
1

k0

, ∀m = n0.

This implies that

inf
m=n0

fm(x0) = a+
1

k0

,

and hence

lim inf
n→∞

fn(x0) = inf
m=n0

fm(x0) = a+
1

k0

> a.

This implies that x0 ∈ A.

STEP 3. (Proof of the rest part)

{x ∈ F | fn(x) converges at x}

=

{
x ∈ F | lim sup

n→∞
fn(x) = lim inf

n→∞
fn(x)

}
∗1
=

{
x ∈ F | lim sup

n→∞
fn(x) > lim inf

n→∞
fn(x)

}c
∗2
=

(⋃
r∈Q

∞⋃
n=1

{
x ∈ F | lim sup

n→∞
fn(x) = r +

1

2n
and r − 1

2n
= lim inf

n→∞
fn(x)

})c

=
⋂
r∈Q

∞⋂
n=1

{
x ∈ F | lim sup

n→∞
fn(x) < r +

1

2n
or r − 1

2n
< lim inf

n→∞
fn(x)

}

=
⋂
r∈Q

∞⋂
n=1

{
x ∈ F | lim sup

n→∞
fn(x) < r +

1

2n

}
∪
{
x ∈ F | r − 1

2n
< lim inf

n→∞
fn(x)

}

• (∗1) Note that lim sup = lim inf alway holds.

• (∗2) This is because if a, b ∈ R, a < b holds, then we can find a r ∈ Q (the set of
rational numbers is dense in R.) and sufficiently large n ∈ N s.t [r−1/2n, r+1/2n] ⊂
[a, b]. (The converse also holds obviously.)
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Finally, {
x ∈ F | r − 1

2n
< lim inf

n→∞
fn(x)

}
is a Fσ set by the previous result. And also note that{

x ∈ F | lim sup
n→∞

fn(x) < r +
1

2n

}
=

{
x ∈ F | −r − 1

2n
< lim inf

n→∞
(−fn(x))

}
.

A union of two Fσ sets is also a Fσ set. So we conclude that the set above is a countable
intersection of Fσ sets, which is called a Fσ,δ set.

44 (Exercise 3) The proof is somewhat similar to that of Example 11. Let

ω̃(x)
def
= lim

δ→+0
sup

x1,x2∈B(x,δ)\{x}
|f(x1)− f(x2)| .

Note that limx→x0 f(x) exists if and only if

ω̃(x0) = 0.

Since {
x ∈ R | lim

y→x
f(y) exists

}
=
∞⋂
n=1

{
x ∈ R | ω̃(x) <

1

n

}
,

it is enough for us to show that

{x ∈ R | ω̃(x) < t} is open , ∀t > 0.

Suppose that x0 ∈ {x ∈ R | ω̃(x) < t} (We assume that t > 0 is now fixed.). Since

sup
x1,x2∈B(x,δ)\{x}

|f(x1)− f(x2)|

is monotone decreasing with respect to δ > 0, if ω̃(x0) < t, then we can find δ0 > 0 s.t

sup
x1,x2∈B(x0,δ0)\{x0}

|f(x1)− f(x2)| < t

We prove that
B(x0, δ0) ⊂ {x ∈ R | ω̃(x) < t},

and then the proof is complete. Let us pick an arbitrary point x∗ ∈ B(x0, δ0).

case 1. (x∗ = x0) x∗ = x0 ∈ ω{x ∈ R | ω̃(x) < t} by assumption.

case 2. (x∗ 6= x0) We can find sufficiently small δ∗ > 0 s.t x0 /∈ B(x∗, δ∗). Note that

ω̃(x∗)
def
= lim

δ→+0
sup

x1,x2∈B(x∗,δ)\{x∗}
|f(x1)− f(x2)|

∗
5 sup

x1,x2∈B(x∗,δ∗)\{x∗}
|f(x1)− f(x2)|

5 sup
x1,x2∈B(x∗,δ∗)

|f(x1)− f(x2)|

5 sup
x1,x2∈B(x0,δ0)\{x0}

|f(x1)− f(x2)| < t,
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because

B(x∗, δ∗) \ {x∗} ⊂ B(x∗, δ∗) = B(x∗, δ∗) \ {x0} ⊂ B(x0, δ0) \ {x0}.

• (∗) Note that supx1,x2∈B(x∗,δ)\{x∗} |f(x1)− f(x2)| decreases as δ → +0.

Now the proof is complete.

45 (Theorem 1.23 Baire) We suppose that E =
⋃∞
k=1 Fk has an interior point

and derive a contradiction. Let us pick an interior point x0 ∈ E. There exists δ0 > 0 s.t

B(x0, δ0) ⊂ E.

This is possible because we can pick δ∗0 > 0 s.t B(x0, δ
∗
0) ⊂ E and pick δ0 ∈ (0, δ∗0) again,

then we have B(x0, δ0) ⊂ B(x0, δ
∗
0) ⊂ E.

STEP 1. (pick x1) We pick x1 ∈ B(x0, δ0)\F1. B(x0, δ0)\F1 is not empty because
B(x0, δ0) ⊂ F1 can not occur. Otherwise, x0 is an interior point of F1 and this contradicts
to the assumption that F1 has no interior point.

Since B(x0, δ0) is an open set, we can find δ1 > 0 s.t

B(x1, δ1) ⊂ B(x0, δ0).

Moreover, by taking sufficiently small δ1 > 0, we can satisfy

B(x1, δ1) ∩ F1 = ∅,

at the same time. Otherwise, for all small δ1 > 0, B(x1, δ1) ∩ F1 6= ∅ implies that we can
find a sequence {x1,n} ⊂ F1 s.t x1,n → x1. So x1 ∈ F ′1 ⊂ F1 and this contradicts to the
fact that x1 ∈ B(x0, δ0) \ F1.

STEP 2. (pick x2) Let us repeat a similar argument. Let us pick x2 ∈ B(x1, δ1)\F2.
B(x1, δ1) \ F2 is not an empty set because B(x1, δ1) 6⊂ F2 can not happen because F2 has
no interior point. We can find small δ2 > 0 s.t

B(x2, δ2) ⊂ B(x1, δ1), and B(x2, δ2) ∩ F2 = ∅,

because B(x1, δ1) is an open set and if the second statement does not hold, we can find
{x2,n} ⊂ F2 s.t x2,n → x2 ∈ F ′2 ⊂ F2 and this contradicts to the fact that x2 /∈ F2.

STEP 3. (pick xk) Simiarly, we can find xk and δk s.t

B(xk, δk) ⊂ B(xk−1, δk−1) ⊂ E, and B(xk, δk) ∩ Fk = ∅.

Without loss of generality, we may suppose that

0 < δk <
1

k
,

because the conditions above hold as long as δk is small enough. We claim that {xk} ⊂ R
is a Cauchy sequence. Let us consider ` = k. Then x` ∈ B(xk, δk). So |x` − xk| 5 1

k
and

hence
lim

k,`→∞
|xk − x`| = 0.

By completeness of R, xk converges to x ∈ R.
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STEP 4. (derive contradiction) Let ` = k = 1. By triangular inequality and since
x` ∈ B(xk, δk), we have

|x− xk| 5 |x− x`|+ |xk − x`|
5 |x− x`|+ δk

This holds for all ` = k. By taking `→∞, |x− xk| 5 δk. So x ∈ B(xk, δk) ⊂ B(x0, δ0) ⊂
E. However, since x ∈ B(xk, δk), x /∈ Fk for all k = 1 (because B(xk, δk) ∩ Fk = ∅) , and
hence x /∈

⋃∞
k=1 Fk = E. This contradicts to the fact that x ∈ E.

46 (Example 13) When A ⊂ R and A
def
= A ∪ A′ = R, we say that A is dense in

R.

STEP 1. First we prove that if A is dense in R, then Ac
def
= Rd \A has no interior

point. We consider its contraposition. If Ac has an interior point, then A is not dense.
This is obvious because there exists x ∈ Ac and δ > 0 s.t B(x, δ) ⊂ Ac. Then we can not
take {an} ⊂ A s.t an → x because when n is sufficiently large, |an − x| < δ, but then
an ∈ B(x, δ) ⊂ Ac and this contradicts to the fact that {an} ⊂ A.

STEP 2. Suppose that Q is a Gδ set. So there exists a countable number of open
sets {Gk}k=1 s.t

Q =
∞⋂
k=1

Gk.

From this equation, we find out that Q ⊂ Gk for all k = 1. Since Q is a dense set, Gk

is also dense in R. Let Fk
def
= R \ Gk (By STEP 1, Fk has no interior point.) and let⋃∞

n=1{qn}
def
= Q. (For each n ∈ N, a single point {qn} is also a closed set with no interior

point.) Note that

R = (R \Q) ∪Q =
∞⋃
k=1

Fk ∪
∞⋃
k=1

{qk},

so R is a countable union of closed sets with no interior point. By Theorem 1.23 (Baire),
R has no interior point. (contradiction!!) Now the proof is complete.

47 (Definition 1.32)

(1) Suppose A ⊂ Rd and A
def
= A ∪ A′ = Rd. Then we say that A is dense in Rd. If

A ⊂ E and A = E, then we say that A is dense in E.

(2) Let E ⊂ Rd. Suppose that E̊ = ∅ (E has no interior point). Then we say that
E is a nowhere dense set.

(3) If E is a countable union of nowhere dense sets, then we say that E is a meagre
set or a set of first category. If E is not a meagre set, we say that E is a set of second
category.
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48 (Example 14)

STEP 1. Let A ⊂ Rd. Suppose that Ac
def
= Rd \ A has no interior point, then A is

dense in Rd. (Equivalently, A is not dense in Rd, then Ac has at least one interior point.)
Let us fix an arbitrary point x ∈ Ac. Since Ac has no interior point, ∀δ > 0, B(x, δ) 6⊂ Ac.
This implies that B(x, δ) \ Ac = B(x, δ) ∩ A 6= ∅. By taking small δ > 0, we can find a
sequence {xn} ⊂ A s.t xn → x (xi 6= xj if i 6= j). In other words, Ac ⊂ A′. So we have
Rd = A ∪ Ac ⊂ A′ ∪ A = A. (Now we find out that A is dense if and only if Ac has no
interior point. Also see Example 13.)

STEP 2. Let Fk
def
= Rd\Gk. Suppose that

⋂∞
k=1 Gk is not dense. Then (

⋂∞
k=1Gk)

c
=⋃∞

k=1 Fk has at least one interior point.
Since every Gk is dense, Fk has no interior point. (See Example 13.) By Theorem 1.32

(Baire),
⋃∞
k=1 Fk has no interior point. This contradicts to the fact stated above. Now

the proof is complete.

49 (Example 15) In Example 12, we have already shown that

{x ∈ Rd | f is continuous at x} =
∞⋂
m=1

∞⋃
k=1

E̊k(1/m),

where
Ek(ε)

def
=
{
x ∈ Rd | |fk(x)− f(x)| 5 ε

}
.

Let G(ε)
def
=
⋃∞
k=1 E̊k(ε), and we show that G(ε)c is a meagre set. Then

⋃∞
m=1G(1/m)c is

a meagre set.

STEP 1. Let us fix ε > 0, which is an arbitrary positive numbers. Let

Fk(ε) =
∞⋂
`=1

{x ∈ Rd | |fk(x)− fk+`(x)| 5 ε}.

Note that Fk(ε) is closed because fk(x), fk+`(x) are closed and an intersection of closed
sets is also closed. We claim that

Rd =
∞⋃
k=1

Fk(ε).

Let us pick arbitrary point x ∈ Rd and fix x for now. Note that

lim
k,j→∞

|fk(x)− fj(x)| 5 lim
k,j→∞

|fk(x)− f(x)|+ |fj(x)− f(x)| = 0,

because fk(x)→ f(x). This implies that there exists sufficiently large k0 ∈ N s.t

|fk(x)− fj(x)| 5 ε, ∀k, j = k0.
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This also implies that
|fk0(x)− fk0+`(x)| 5 ε, ∀` = 1.

So we have

x ∈
∞⋂
`=1

{x ∈ Rd | |fk0(x)− fk0+`(x)| 5 ε}

⊂
∞⋃
k=1

∞⋂
`=1

{x ∈ Rd | |fk(x)− fk+`(x)| 5 ε}

=
∞⋃
k=1

Fk(ε)

STEP 2. We claim that
Fk(ε) ⊂ Ek(ε).

Let x ∈ Fk(ε), then we have.

|fk(x)− f(x)| 5 |fk(x)− fk+`(x)|+ |fk+`(x)− f(x)|
5 ε+ |fk+`(x)− f(x)| → ε as `→∞.

So x ∈ Ek(ε). This implies that Fk(ε) ⊂ Ek(ε).

STEP 3. Note that

F̊k(ε) ⊂ Fk(ε) ⊂ Ek(ε) ⊂ G(ε),

so we have
∞⋃
k=1

F̊k(ε) ⊂ G(ε),

therefore,

G(ε)c = Rd \G(ε) ⊂ Rd \
∞⋃
k=1

F̊k(ε)

=
∞⋃
k=1

Fk(ε) \
∞⋃
k=1

F̊k(ε)

⊂
∞⋃
k=1

Fk(ε) \ F̊k(ε)

=
∞⋃
k=1

∂Fk(ε)

We show the following two facts, and then the proof is complete.

• ∂F is a nowhere dense set when F is a closed set.

• A subset of a meagre set is also a meagre set.
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STEP 4. (∂F is a nowhere dense set if F is closed) We show that ∂F has no
interior point. Note that ∂F = F \ F̊ is a closed set. So ∂F = ∂F . We show ∂F has no
interior point. Suppose ∂F has an interior point. Then there exists B a non-empty open
set s.t B ⊂ ∂F ⊂ F . From this, we find out that

B ⊂ ∂F, and B ⊂ F̊ .

(B is an open set and B is a subset of F . We can say that every point of B is an interior
point of F . So B ⊂ F̊ .) So

B ⊂ ∂F ∩ F̊ .

But the right hand side is an empty set. (contradiction!!) So we concldue ∂F has no
interior point.

STEP 5. (A subset of a meagre set is also a meagre set.) Suppose that A is a
meagre set. Then there exist nowhere dense sets {Ek}k=1 s.t A =

⋃∞
k=1Ek. Let B ⊂ A.

Then B =
⋃∞
k=1Ek ∩B. Since Ek ∩B ⊂ Ek, Ek ∩B is also a nowhere dense set.

50 (Cantor Set: Definition and Properties) Let us define {Cn}n=1 in the following
way.

• C0
def
= [0, 1].

• C1
def
= [0, 1/3] ∪ [2/3, 1].

• C2
def
= [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

• Cn
def
=
⋃2n

k=1 In,k.

The rule is easy. Cn consists of 2n closed intervals. We divide each closed interval into
three peaces, and then remove the one in the middle. For example, if n = 1, we divide
C0 = [0, 1] into [0, 1/3]∪ [1/3, 2/3]∪ [2/3, 1] and remove [1/3, 2/3]. Note that Cn+1 ⊂ Cn.
Finally

C
def
=

∞⋂
n=1

Cn.

C is called a Cantor set defined on [0, 1].

(1) Obviously, C ⊂ [0, 1]. So C is bounded. Since Cn is closed for all n ∈ N, their
countable intersection C =

⋂∞
n=1Cn is also closed. (Theorem 1.16)

(2) Since C is closed, C ′ ⊂ C. We show that C ⊂ C ′. Let us pick an arbitrary
point x ∈ C. Then x ∈ Cn for all n ∈ N and there exists k (1 5 k 5 2n) s.t x ∈ In,k. Let
us pay attention to the fact that the edge points of In,k are contained in C. Therefore at
least one of the edge point of In,k is not x. Let xn ∈ In,k be the edge point of In,k with
xn 6= x.

Now we have a sequence of {xn}n=1 with 0 < |xn − x| 5 1
3n

. (because the length
of interval is 1

3n
.) From this inequality, we can assume that xn are different each other,
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because we can find a subsequence so that {xn} are different from each other. (Even if
xn = xn+1 · · · , we can take larger n∗ such that |xn∗ − x| 5 1

3n∗
< |xn − x|.) Note that

{xn} ⊂ C s.t xn → x. Therefore x ∈ C ′. So we conclude that C ⊂ C ′.

(3) Let x ∈ C and let δ > 0 be an arbitrary small positive number. Let us take
sufficiently large n such that 1

3n
< δ. x ∈ Cn for all n = 1 and we can find k (1 5 k 5 2n)

s.t x ∈ In,k. When constructing Cn+1, the middle part of In,k will be removed and the
removed part is not contained in C. This implies that B(x, 1

3n
) ⊂ B(x, δ) contains points

which are not in C. So x is not an interior point of C. We conclude that C has no interior
point.

51 (Example 17 Cantor function)

(1) Let us construct a sequence of continuous functions {Φn(x)} defined on [0, 1]
shown in the figures below. (See the figures.) Let us recall how to construct a Cantor set.

STEP 1. In constructing C1, we remove (1/3, 2/3). So Φ1(x) = 1/2 for x ∈
(1/3, 2/3). And we connect (0, 0) with (1/3, 1/2) and (2/3, 1/2) with (1, 1) so that Φ1(x)
becomes a continuous function on [0, 1].

STEP 2. Since (1/3, 2/3) is already removed, we use the same definition on the
removed part. (i.e Φ2(x) = 1/2 for x ∈ (1/3, 2/3).) And we update the definition on
other parts. In constructing C2, we remove (1/9, 2/9) and (7/9, 8/9). So Φ2(x) = 1/4 for
x ∈ (1/9, 2/9) and Φ2(x) = 3/4 for x ∈ (7/9, 8/9). And we connect the dots again so that
the Φ2(x) becomes a continuous function on [0, 1].

STEP 3. We continue the similar procedure and obtain {Φn(x)}n=1 ⊂ C([0, 1]).

Finally, Φ(x)
def
= limn→∞Φn(x). (We will prove why this limit exists and that Φ(x) is

continuous.) Φ(x) is called a Cantor function.

(2) We prove that Φn(x)
u−→ Φ(x) (converge uniformly) on [0, 1]. It is easy to see

that

|Φn(x)− Φn−1(x)| 5 1

2n
.

Therefore
∑∞

n=1 |Φn(x)− Φn−1(x)| < ∞. Absolute convergence implies convergence. (i.e∑∞
n=1 |an| <∞ implies

∑∞
n=1 an converges.) So

lim
n→∞

n∑
k=1

(Φk(x)− Φk−1(x)) + Φ0(x)

converges. So we conclude that

lim
n→∞

Φn(x) converges.
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Let Φ(x)
def
= limn→∞Φn(x). Note that

|Φn(x)− Φ(x)| = lim
m→∞

|Φn(x)− Φm(x)|

= lim
m→∞

|Φn(x)− Φn+1(x) + Φn+1(x)− · · ·+ Φm(x)|

5 lim
m→∞

m∑
k=n+1

|Φk(x)− Φk−1(x)|

5 lim
m→∞

m∑
k=n+1

1

2k

=
∞∑

k=n+1

1

2k
=

1

2n

This implies that

sup
x∈[0,1]

|Φn(x)− Φ(x)| 5 1

2n
→ 0 as n→∞.

Since Φn(x)
u−→ Φ(x) on [0, 1] and {Φn(x)}n=1 ⊂ C([0, 1]), Φ(x) ∈ C([0, 1]). (Recall that if

a sequence of continuous functions uniformly converges, then the limit is also a continuous
function.)

x

y

O

y = x

1

1

Figure 1.1: Φ0(x)

52 (Example 18)

STEP 1. (⇒) Suppose that E is a perfect set. E = E ′ implies that E ′ ⊂ E so
E is a closed set. Therefore Ec ⊂ R is an open set. By Theorem 1.19, we there exists
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Figure 1.2: Φ1(x)
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Figure 1.3: Φ2(x)

countable number of disjoint open intervals s.t

Ec =
∞⋃
n=1

(an, bn).

We show that {(an, bn)} have no common edge point. We suppose that {(an, bn)} have a
common edge point. Assume that (a1, b1), (a2, b2) have the common edge point b1 = a2.

Let x∗
def
= b1 = a2. Then x∗ is not contained in Ec so x∗ ∈ E. x∗ is an isolated point

of E because for any small δ > 0, B(x∗, δ) ∩ E = {x∗}. However, a perfect set does not
have an isolated point because E \E ′ = ∅ (E = E ′). (Let us recall that E \E ′ is a set of
isolated point of E.) Now the proof of ⇒ is complete.
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STEP 2. (⇐) Suppose that

Ec def
=

∞⋃
n=1

(an, bn),

where {(an, bn)} have no common edge point. We show that E is a perfect set. From the
equality above, Ec is an open set. (A countable union of open sets is also an open set.)
Therefore E is a closed set, and we have E ′ ⊂ E. It is enough for us to prove that E ⊂ E ′.
To prove this, suppose that E \ E ′ 6= ∅ (isolated points). Let x ∈ E \ E ′. Since x is an
isolated point of E, ∃δ > 0 s.t B(x, δ)∩E = {x}. So B(x, δ)\{x} = (x−δ, x)∪(x, x+δ) ⊂
Ec. This implies that there exists (ai, bi) and (aj, bj) which have the common edge point
{x}. This contradicts to the assumption. Now the proof of ⇐ is complete.

53 (Example 19) Suppose that E
def
= {xn}n=1 (i.e E is a countable set) and we

derive a contradiction.

STEP 1. (pick y1, δ1) Let us pick y1 ∈ E \ {x1}. Let us take δ1 ∈ (0, |x1 − y1|).

STEP 2. (pick y2, δ2) Note thatB(y1, δ1)∩E\{y1} is not empty because y1 ∈ E and
a perfect set E does not have an isolated point. We can pick y2 ∈ B(y1, δ1)∩E \{y1}( 6= ∅)
with y2 6= x2. (Otherwise, it follows that B(y1, δ1) ∩ E \ {y1} = {x2}. If we take
δ∗1 < |x2 − y1|, then B(y1, δ

∗
1) ∩ E \ {y1} = ∅, hence y1 is an isolated point of E, which

contradicts to the fact that a perfect set E has no isolated point.) Let us take δ2 with
0 < δ2 < |y2 − x2|.

STEP 3. (pick y3, δ3) Let us continue the same procedure. Note that B(y2, δ2)∩E\
{y2} is not empty because y2 ∈ E and E is a perfect set (it has no isolated point). We can
pick y3 ∈ B(y2, δ2)∩E\{y2} with y3 6= x3. (Otherwise, it follows that B(y2, δ2)∩E\{y2} =
{x3} and if we change δ2 change to δ∗2 ∈ (0, |x3 − y2|), then y2 turns out to be an isolated
point.) Let us take δ3 with 0 < δ3 < |y3 − x3|.

STEP 4. (derive contradiction) By continuing the same procedure, we obtain

B(yn, δn). Note that B(yn, δn) ∩ E is a bounded and no-empty closed set. Let Fn
def
=⋂n

m=1 B(ym, δm) ∩ E. Then Fn+1 ⊂ Fn and Fn is also a bounded closed set. So

∞⋂
n=1

B(yn, δn) ∩ E =
∞⋂
n=1

Fn 6= ∅,

by Theorem 1.17 Cantor’s Intersection Theorem.
However, let us recall that B(yn, δn) does not contain {xn} because δn < |xn− yn|. So

the
⋂∞
n=1B(yn, δn) does not contain any xn (n = 1). Hence the

⋂∞
n=1B(yn, δn) ∩ E = ∅

and it contradicts to the fact above.

54 (Exercise 1) Fix x ∈ E. Let us consider A
def
= {x− y | y ∈ E}. Obviously, A

is an uncountable set because E is uncountable. (There is a bijective mapping between A
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and E, so the cardinality is the same.) So A ⊂ Q can not happen. We can pick a ∈ A\Q.
Then x− a ∈ E is the desired y.

55 (Exercise 4) Let C be a Cantor set defined on [0, 1]. In constructing Cn+1 we
remove 2n intevals from Cn. Let {Jn,k}2n

k=1 be the intervals that are removed from Cn to

construct Cn+1. Let cn,k be the center of Jn,k and define E
def
=
⋃∞
n=1

⋃2n

k=1 cn,k. Then E is
the desired set. Obviously, each x ∈ E is an isolated point of E. We prove that E ′ = C.
(C is a perfect set.)

STEP 1. (C ⊂ E ′) Let δ > 0 be an arbitrarily small positive number and let us
pick arbitrary point x ∈ E. Let us recall that x ∈ Cn for all n. We take large n ∈ N so
that 1

2
· 1

3n
< δ. We can find k s.t x ∈ In,k. In constructing Cn+1, the middle part of In,k

is also removed. Let the removed interval be Jn,k∗ . Then |cn,k∗ | 5 1
2
· 1

3n
< δ. This implies

that we can find a sequence of {cn} ⊂ E s.t cn → x. So x ∈ E ′.

STEP 2. (E ′ ⊂ C) Let x ∈ E ′. There exists {xn}n=1 ⊂ E s.t xn → x. First,
|xn− xn′| 5 |xn− x|+ |xn′ − x| → 0 as n, n′ →∞, so {xn} is a Cauchy sequence. We can
take a subsequence {nm} s.t

|xn(m) − xn(m+1)| 5
1

2
· 1

3m

For simplicity, we define x∗m
def
= xn(m). Then |x∗m − x∗m+1| 5 1

2
· 1

3m
and note that x∗m → x.

Let us recall that x∗m is a center of an interval J which is removed when constructing C.
If the length of J is larger than 1

3m
, then the above inequality does not hold. So if Jn(m),k(m)

is the interval that contains x∗m, then the index number n(m) > m. Let us consider the
intervals In(m)+1,∗ beside to Jn(m),k(m) which are the components of Cn(m)+1. Note that
the edge points of In(m)+1,∗ are contained in C. So we pick the nearest one from x∗m, and
denote it as ym. Then |x∗m−ym| 5 1

2
· 1

3m
. Finally, |ym−x| 5 |ym−x∗m|+|x∗m−x| 5 1

3m
→ 0.

So we have {ym}m=1 ⊂ C s.t ym → x. This implies that x ∈ C ′ = C.

§ 1.3

56 (Definition 1.33 and Theorem 1.24)

(1)

dist(E1, E2)
def
= inf

y1∈E1,y2∈E2

{|y1 − y2|}.

(2) By the definition of dist(x0, F ), we can find a sequence of points {yn} ⊂ F
s.t |x0 − yn| → dist(x0, F ). Obviously dist(x0, F ) < ∞. (If we arbitrarily pick y ∈ F ,

then |x0− y| <∞) Let d
def
= dist(x0, F ). Without loss of generality, we may suppose that

|x0 − yn| < d+ 1
n
. By triangular inequality, we have |yn| 5 |x0|+|yn−x0| 5 |x0|+d+1 <∞.

So {yn}n=1 ⊂ F is bounded. By Bolzano-Weierstrass’s Theorem, we have a subsequence nk
s.t ynk → y0 ∈ F ′ ⊂ F . Finally |x0 − y0| 5 |x0 − ynk |+|ynk − y0| < d+ 1

nk
+|ynk − y0| → d.
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57 (Theorem 1.25) Let x, y ∈ Rd. Let ε > 0 be an arbitrary positive number.
By the definition of dist(y, E), we can find e ∈ E s.t |y − e| < dist(y, E) + ε. Since
dist(x,E) 5 |x− e| 5 |x− y|+ |y − e| < |x− y|+ dist(y, E) + ε. So we habe dist(x,E)−
dist(y, E) < |x− y|+ ε. Therefore dist(x,E)− dist(y, E) 5 |x− y|. By swapping x, y we
have |dist(x,E)− dist(y, E)| 5 |x− y|. This implies that ∃δ = ε s.t ∀ε > 0,∀x, y ∈ Rd

with |x− y| < δ, |dist(x,E)− dist(y, E)| < ε. Now the proof is complete.

58 (Corollary 1.26) Suppose that F1 is bounded. There exist sequences {x1,k} ⊂
F1, {x2,k} ⊂ F2 s.t

|x1,k − x2,k| → dist(F1, F2) <∞.

Without loss of generality, we may suppose that

|x1,k − x2,k| < dist(F1, F2) +
1

k
.

By assumption, {x1,k} is bounded (|x1,k| 5 M1), so by Bolzano-Weierstrass’s theorem,
there exists a subsequnce k` s.t x1,k` → x0 ∈ F ′1 ⊂ F1. By triangular inequality, |x2,k`| 5
|x2,k` − x1,k`|+ |x1,k` | 5 dist(F1, F2) + 1 +M1, so x2,k` is also bounded. Again by Bolzano-
Weierstrass’s Theorem, there exists a further subsequence k`m s.t x2,k`m

→ x2 ∈ F ′2 ⊂
F2. Finally, dist(F1, F2) 5 |x1 − x2| 5

∣∣x1,k`m
− x1

∣∣ +
∣∣x2,k`m

− x2

∣∣ +
∣∣x1,k`m

− x2,k`m

∣∣ →
dist(F1, F2). Now the proof is complete.

59 (Example 2)

f(x)
def
=

dist(x, F2)

dist(x, F1) + dist(x, F2)
.

Notice. dist(x, F1) + dist(x, F2) 6= 0 because if dist(x, F1) = 0, dist(x, F2) = 0, then
x ∈ F1, x ∈ F2. (By Theorem 1.24) However, F1, F2 are disjoint.

60 (Theorem 1.27)

STEP 1. (g1(x)) Let us divide F into the following three parts.

• A1 = {x ∈ F |M/3 5 f(x) 5M}.

• B1 = {x ∈ F | −M 5 f(x) 5 −M/3}.

• C1 = {x ∈ F | −M/3 < f(x) < M/3}.

case 1. (A1, B1 6= ∅) Let us define

g1(x)
def
=
M

3
· dist(x,A1)− dist(x,B1)

dist(x,A1) + dist(x,B1)
.

We claim that

• g1(x) is continuous on Rd. (Of course, well-defined. i.e dist(x,A1)+dist(x,B1) 6= 0)

• |g1(x)| 5 M
3

on Rd.

• |f(x)− g1(x)| 5 2M
3

on F .
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Continuity of g1(x) is shown using Theorem 1.25. When x ∈ A1, M/3 5 f(x) 5 M
and g1(x) = M/3, so 0 5 f(x) − g1(x) 5 2M/3. When x ∈ B1, the proof is similar.
When x ∈ Rd \ (A1 ∪ B1), −M/3 5 g1(x) 5 M/3. Of course, x ∈ C1 ⊂ Rd \ (A1 ∪ B1),
−M/3 5 g1(x) 5M/3 holds, hence |f(x)− g1(x)| 5 2M/3.

case 2. (A1 6= ∅, B1 = ∅) Let us define

g1(x)
def
=
M

3
.

Note that g1(x) is continuous on Rd, |g1(x)| 5 M
3

on Rd and |f(x) − g1(x)| 5 2M
3

on F .
The proof is easy. (We show that last part.) Since B1 is empty, −M/3 < f(x) 5 M for
all x ∈ F . Therefore |f(x)− g1(x)| 5 2M/3 on F .

case 3. (A1 = ∅, B1 6= ∅) Let us define

g1(x)
def
= −M

3
.

Note that g1(x) is continuous on Rd, |g1(x)| 5 M
3

on Rd and |f(x) − g1(x)| 5 2M
3

on F .
The proof is completely same as the previous one.

case 4. (A1, B1 = ∅) Let us define

g1(x)
def
= 0.

Note that g1(x) is continuous on Rd, |g1(x)| 5 M
3

on Rd and |f(x) − g1(x)| 5 2M
3

on F .
The proof is easy. (We show the last part.) Since both A1, B1 are empty, this implies
that −M/3 < f(x) < M/3 on F . So |f(x)− g1(x)| = |f(x)| < M/3 5 2M/3 on F .

In conslusion, we can find a function g1(x) defined on Rd s.t

• g1(x) ∈ C(Rd),

• |g1(x)| 5M/3 on Rd,

• |f(x)− g1(x)| 5 2M/3 on F .

STEP 2. (g2(x)) Let f̃(x)
def
= f(x)− g1(x) and let us repeat the similar argument

with the previous step. Let us divide F into the following three parts.

• A2 = {x ∈ F | 2M/9 5 f̃(x) 5 2M/3}.

• B2 = {x ∈ F | −2M/3 5 f̃(x) 5 −2M/9}.

• C2 = {x ∈ F | −2M/9 < f̃(x) < 2M/9}.

case 1. (A2, B2 6= ∅) Let us define

g2(x)
def
=

2M

9
· dist(x,A2)− dist(x,B2)

dist(x,A2) + dist(x,B2)
.
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case 2. (A2 6= ∅, B2 = ∅) Let us define

g2(x)
def
=

2M

9
.

case 3. (A2 = ∅, B2 6= ∅) Let us define

g2(x)
def
= −2M

9
.

case 4. (A2 6= ∅, B2 = ∅) Let us define

g2(x)
def
= 0.

In this way, we have a function defined on g2(x) s.t

• g2(x) ∈ C(Rd),

• |g2(x)| 5 2M/9 on Rd,

• |f̃(x)− g2(x)| = |f(x)− g1(x)− g2(x)| 5 (2/3)2 ·M on F .

STEP 3. (g(x)) From the arguments above, we can obtain a sequence of functions
{gn(x)} satisfying

• gn(x) ∈ C(Rd),

• |gn(x)| 5 1/3 · (2/3)n−1 ·M on Rd,

• |f(x)−
∑n

k=1 gk(x)| 5 (2/3)n ·M on F .

We prove that

g(x)
def
=

∞∑
n=1

gn(x)

is the desired continuous function on Rd.
First, we prove that

∑∞
n=1 gn(x) converges (the limit exists and is finite). Note that

∞∑
n=1

|gn(x)| 5
∞∑
n=1

1

3
·
(

2

3

)n−1

·M

= M, (∀x ∈ Rd) · · · (∗).

Since absolute convergence implies convergence, (i.e
∑∞

n=1 |an| < ∞ ⇒
∑∞

n=1 an exists
and finite.) g(x) is well-defined and is finite. Therefore,

|f(x)− g(x)| = lim
n→∞

∣∣∣∣∣f(x)−
n∑
k=1

gk(x)

∣∣∣∣∣
5 lim

n→∞

(
2

3

)n
·M = 0.
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From (∗), we also have

|g(x)| 5
∞∑
n=1

|gn(x)| 5M <∞, (∀x ∈ Rd).

Second, we prove that g(x) is continuous on Rd. Let Gn(x)
def
=
∑n

k=1 gk(x). Since
Gn(x) is a finite sum of continuous functions, Gn(x) is continuous on Rd. We prove that
Gn(x)

u−→ g(x) (converges uniformly) on Rd. Then g(x) is continuous on Rd. (Let us recall
that if fn(x) is continuous and fn(x)

u−→ f(x), then f(x) is also continuous.)

|Gn(x)− g(x)| = |Gn(x)− lim
m→∞

Gm(x)|

= lim
m→∞

|Gn(x)−Gm(x)|

= lim
m→∞

∣∣∣∣∣
n∑
i=1

gi(x)−
m∑
i=1

gi(x)

∣∣∣∣∣
5 lim

m→∞

∣∣∣∣∣
m∑

i=n+1

gi(x)

∣∣∣∣∣
5 lim

m→∞

m∑
i=n+1

|gi(x)|

5 lim
m→∞

m∑
i=n+1

1

3
·
(

2

3

)i−1

·M

=

(
2

3

)n
·M, (∀x ∈ Rd)

From the inequality above, we have

lim sup
n→∞

sup
x∈Rd
|Gn(x)− g(x)| 5 lim

n→∞

(
2

3

)n
·M = 0

So Gn(x)
u−→ g(x) on Rd and we conclude that g(x) is continuous on Rd.

61 (Extension of Theorem 1.27) Let

f ∗(x)
def
= arctan f(x).

Note that f ∗(x) is continuous and bounded on F . We apply Theorem 1.27 to f ∗(x) and
then obtain g∗(x) ∈ C(Rd) with f ∗(x) = g∗(x) on F . Let

g(x)
def
= tan g∗(x).

Then g(x) ∈ C(Rd) and f(x) = g(x). So g(x) is the desired function. (We should prove
that g∗(x) 6= ±π

2
. We will supplement the proof in the future.)
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62 (Exercise 1) We show that E ′ ⊂ E (so E ′\E = ∅). We suppose that E ′\E 6= ∅
and derive a contradiction. Let x ∈ E ′ \ E. Since x ∈ E ′, there exists {yn}n=1 ⊂ E s.t
yn → x as n→∞. Since x ∈ Ec, there exists y ∈ E s.t |x− y| = dist(x,E). Note that

0 5 |x− y| = dist(x,E) 5 |x− yn|,

because yn ∈ E. By taking n→∞, we have |x− y| = 0. This implies that x = y. x ∈ Ec

but y ∈ E. (contradiction!!) Now the proof is complete.

63 (Exercise 2) Let us recall Corollary 1.26. Apply Corollary 1.26 to the closed
sets F and Gc. There exists x1 ∈ F and x2 ∈ Gc s.t

|x1 − x2| = dist(F,Gc).

Let us take r
def
= |x1 − x2| and let x ∈ Rd. If dist(x, F ) < r, then x /∈ Gc because if

x ∈ Gc, then dist(x, F ) = r. So dist(x, F ) < r ⇒ x /∈ Gc ⇔ x ∈ G. Now we conclude
that {x ∈ Rd | dist(x, F ) < r} ⊂ G.

§ 1.4

64 (Exercise 8) Let us pick y∗ = f(x∗) ∈ E. By assumption, we have δ∗ > 0 s.t
f(x) = f(x∗) for all x ∈ (x∗ − δ∗, x∗ + δ∗). So f(x) takes the minimum value at x = x∗ if
x ∈ (x∗−δ∗, x∗+δ∗). We can find and choose r∗1, r

∗
2 ∈ Q s.t x∗ ∈ (r∗1, r

∗
2) ⊂ (x∗−δ∗, x∗+δ∗).

Now we have a map {y∗}y∗∈E 7→ {(r∗1, r∗2)}. Conversely, if we are given (r∗1, r
∗
2), then f(x)

takes the minimum value at some x∗ ∈ (r∗1, r
∗
2), so we can determine y∗ = f(x∗). So

y∗ ∈ E and (r∗1, r
∗
2) are one-to-one. Obviously, there exists only a countable number of

(r∗1, r
∗
2), hence E is also countable.

65 (Exercise 9) Let us define the surface

S(x, r)
def
= {y ∈ Rd | |x− y| = r}, (d = 3).

First, let us pick x1 ∈ E and note that

E =
⋃

r1∈Q∩[0,∞)

S(x1, r1) ∩ E,

because the distance of any two points is rational number. (Q: a collection of all rational
number.) From the discussion above, it is enough for us to prove that S(x1, r1) ∩E is at
most countable (countable of finite) for each r1 ∈ Q ∩ [0,∞).

Second, let us pick x2 ∈ S(x1, r1) ∩E with x2 6= x1. (If we fail to choose such x2, this
means that S(x1, r1) ∩ E = {x1}. And it is a finite set.) Note that

S(x1, r1) ∩ E =
⋃

r2∈Q∩[0,∞)

S(x2, r2) ∩ S(x1, r1) ∩ E.

So it is enough for us to prove that S(x2, r2)∩S(x1, r1)∩E is at most countable for each
r2 ∈ Q ∩ [0,∞).
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Third, let us pick x3 ∈ S(x2, r2) ∩ S(x1, r1) ∩E with x3 6= x2, x1. (If we fail to choose
such x3, this means that S(x2, r2)∩S(x1, r1)∩E ⊂ {x1, x2}, hence it is finite.) Note that

S(x2, r2) ∩ S(x1, r1) ∩ E =
⋃

r3∈Q∩[0,∞)

S(x3, r3) ∩ S(x2, r2) ∩ S(x1, r1) ∩ E.

The right hand side are intersection points of three surfaces. The number of intersection
points of three surfaces are at most 2. Now the proof is complete.

66 (Exercise 11)

67 (Exercise 13) We show that E ′ ⊂ E. When E ′ = ∅, the statement holds
obviously, we suppose that E ′ 6= ∅. Let us fix ε > 0 which is an arbitrary positive
number. Let us take x ∈ E ′. There exists {xn} ⊂ E s.t xn → x. For sufficiently
large n, |xn − x| < ε

2
. Then x + ε = x − xn + xn + ε > − ε

2
+ xn + ε = xn + ε

2
, and

x − ε = x − xn + xn − ε < ε
2

+ xn − ε = xn − ε
2
. Since f(x) is monotone increasing,

f(x + ε)− f(x− ε) = f(xn + ε/2)− f(xn − ε/2) > 0, because xn ∈ E hence ∀ε∗(= ε/2),
f(xn + ε∗) − f(xn − ε∗) > 0 So x ∈ E. Now we conclude that E ′ ⊂ E and the proof is
complete.

68 (Exercise 14.1) E is an infinite set, and E ⊂ F implies that E is also bounded.
By Bolzano-Weierstrass Theorem, E has at least one limit point. So E ′ 6= ∅. And
E ′ ⊂ F ′ = F . So E ′ ∩ F 6= ∅.

69 (Exercise 14.2)

STEP 1. (F is closed) Let us pick x ∈ F ′. Then there exists {xn}n=1 ⊂ F s.t

xn → x (xi 6= xj if i 6= j). Let E
def
= {xn}. And E ′ = {x}, · · · (∗). So E ′ ∩ F 6= ∅ implies

that x ∈ F , and we conclude that F is closed.
(∗) It is easy to show that y (6= x) can not be y ∈ E ′. For sufficiently large n > N ,

|xn − x| < |x−y|
2

. By triangular inequality, |xn − y| = |x− y| − |xn − x| = |x−y|
2

> 0. Now

let δ
def
= min{|x1 − y|, · · · , |xN − y|, |x− y|/2}, and then B(y, δ) \ {y} ∩ {xn} = ∅.

STEP 2. (F is bounded) Suppose that F is not bounded. Then we can take

{xn} ⊂ F s.t |xn| → ∞. Let E
def
= {xn}. Then E ′ = ∅, and it contradicts to the

assumption. So F is bounded.

70 (Exercise 15) We show that E ′ ⊂ E. If E ′ = ∅, then the statement holds
immediately, so we assume that E ′ 6=. Let us take t ∈ E ′. There exists {tn} ⊂ E s.t
tn → t as n → ∞. By assumption, there exists xn ∈ F s.t |tn − xn| = F . When n
is sufficiently large (say n = N for some N ∈ N), |tn − t| 5 δ for some δ > 0. So
|tn| 5 |tn − t| + |t| 5 δ + |t| < ∞ for all n = N . Therefore, we may suppose that |tn| is
bounded. And |xn| = |xn − tn + tn| 5 |tn − xn| + |tn| = r + |tn| 5 r + δ + |t| < ∞. So
{xn} ⊂ F is bounded. By Bolzano-Weierstrass’ Theorem, we can find a subsequence nk
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s.t xnk → x, and x ∈ F because F is closed. Note that

|t− x| = |t− tnk + tnk − xnk + xnk − x|
5 |t− tnk |+ |tnk − xnk |+ |x− xnl |
= |t− tnk |+ r + |x− xnk | → r, as k →∞

and

|t− x| = |t− tnk + tnk − xnk + xnk − x|
= −|t− tnk |+ |tnk − xnk | − |x− xnl |
= −|t− tnk |+ r − |x− xnk | → r, as k →∞

(The inequalities above are obtained by triangular inequality. |a + b| 5 |a| + |b| and
|a+ b| = |a| − |b|. Moreover |a+ b+ c| 5 |a|+ |b|+ |c| and |a+ b+ c| = −|a|+ |b| − |c|.)
Now we have t ∈ E. So E ′ ⊂ E and we conclude that E is a closed set.

71 (Exercise 17) Let us fix y ∈ R. If Ey is an empty set, then E ′y = ∅ ⊂ Ey = ∅,
so the statement holds. Suppose that Ey 6= ∅. We prove that E ′y ⊂ Ey. If E ′y = ∅, then
E ′y ⊂ Ey. So E ′y is closed. We assume that E ′y 6= ∅. Let us pick x ∈ E ′y. Then we
have {xn} ⊂ Ey s.t xn → x. By definition, (xn, y) ∈ E. Note that (xn, y) → (x, y) and
(x, y) ∈ E because E is a closed set. This implies that x ∈ Ey. So we have E ′y ⊂ Ey and
we conclude that Ey is closed.

72 (Exercise 18)

STEP 1. (⊂) Note that f (
⋂∞
k=1 Fk) ⊂ f (Fk) for all k = 1. Therefore,

f

(
∞⋂
k=1

Fk

)
⊂
∞⋂
k=1

f (Fk)

holds immediately.

STEP 2. (⊃) Let us pick y0 ∈
⋂∞
k=1 f (Fk). Then y0 ∈ f(Fk) for all k = 1. There

exists xk ∈ Fk s.t f(xk) = y0. Since {xk} ⊂ F1 (because Fk is a decreasing sequence)
and F1 is bounded and closed, we can find a subsequence k` s.t xk` → x0 ∈ F1. Note
that xk` ∈ F2 if ` = 2, so xk` → x0 ∈ F2. By repeating the same arguments, we conclude
that x0 ∈ Fk for all k = 1. So x0 ∈

⋂∞
k=1 Fk, hence f(x0) ∈ f (

⋂∞
k=1 Fk). Moreover,

f(xk`) → f(x0) because f(x) ∈ C(R), and f(xk`) = y0 for all ` = 1, so f(x0) = y0. We
conclude that y0 ∈ f(

⋂∞
k=1 Fk).

73 (Exercise 19)

STEP 1. We prove that

E1
def
= {x ∈ R | f(x) > t}, E2

def
= {x ∈ R | f(x) < t}

are open for all t ∈ R. (See Example 2 and 6.) However it is enough for us to prove that

E1
def
= {x ∈ R | f(x) > r}, E2

def
= {x ∈ R | f(x) < r}
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are open for all r ∈ Q. This is because for all t ∈ R, we can find a sequence of rn ∈ Q s.t
rn ↘ t (or rn ↗ t for E2), hence

E1
def
= {x ∈ R | f(x) > t} =

∞⋃
n=1

{x ∈ R | f(x) > rn}.

(Note that a countable union of open sets is also open.)

STEP 2. Let r ∈ Q be an arbitrary rational number and let us fix r. Let E1
def
=

{x ∈ R | f(x) > r}, E2
def
= {x ∈ R | f(x) < r}. By assumption, E1∪E2 is open. We prove

that E1 and E2 are also open. Let us pick x0 ∈ E1. Since x0 ∈ E1 ∪ E2 and E1 ∪ E2 is
open, there exists δ0 > 0 s.t B(x0, δ0) ⊂ E1 ∪ E2.

STEP 3. Suppose that B(x0, δ0) ∩ E2 6= ∅. Let us pick y0 ∈ B(x0, δ0) ∩ E2. Note
that |x0 − y0| < δ. Since f(x0) > r and f(y0) < r, there exists z ∈ B(x0, |x0 − y0|) s.t
f(z) = r by assumption. However, z ∈ B(x0, δ0) ⊂ E1∪E2. So f(z) > r or f(z) < r. This
contradicts to the fact that f(z) = r. Therefore, B(x0, δ0)∩E2 = ∅, hence B(x0, δ0) ⊂ E1.
So E1 is open. Similarly, E2 is also open.

74 (Exercise 20) Let x ∈ E1 and let y ∈ E ′2. Note that E1 = E1 ∪ E ′1.

case 1. (x ∈ E1 and y ∈ E ′1) There exists {yn} ⊂ E1 (yi 6= yj if i 6= j) s.t yn → y.
{x+yn} ⊂ E1 +E2 and x+yn → x+y. And x+yi 6= x+yj if i 6= j. So x+y ∈ (E1 +E2)′.

case 2. (x ∈ E ′1 and y ∈ E ′1) There exist {xn} ⊂ E1 and {yn} ⊂ E2 s.t xn → x and
yn → y. {xn+yn} ⊂ E1 +E2 and xn+yn → x+y. However, we have to consider the case
xn + yn = x + y for all n > N where N is some integer. In such a case, we can consider
{xn + yn+1}. Then xn + yn+1 are different from each other for sufficiently large n. (Let
a = xn + yn for n > N . xn + yn+1 = xn + yn+1 − a + a = yn+1 − yn + a. And note that
yn+1 − yn 6= 0 but yn+1 − yn → 0.) From this argument, xn + yn+1 → x+ y ∈ (E1 +E2)′.
Now the proof is complete.

75 (Exercise 21) ∂E = ∅ implies that E = E̊ = E. From this relationship, E is
both open and closed. We prove that if E is open and closed (hence Ec is also open and
closed), then E = Rd or ∅. We suppose that E 6= ∅ and E 6= Rd. We can take x ∈ E and
y ∈ Ec. (We will supplement the proof in the future.)

76 (Exercise 22) We suppose that G1 ∩ G2 6= ∅ and derive a contradiction. We
can take x0 ∈ G1 ∩ G2. Then x0 ∈ G1. So x0 /∈ G2 because G1 and G2 are disjoint,
and note that x0 ∈ G2, so x0 ∈ G′2. We can take {xn} ⊂ G2 s.t xn → x0. Since G1 is
open, there exists δ > 0 s.t B(x0, δ) ⊂ G1. When n is sufficiently large, |xn − x0| < δ. So
xn ∈ B(x0, δ) ⊂ G1. This contradicts to the assumption that {xn} ⊂ G2.

77 (Exercise 23) Let E
def
= Gc = Rd \ E. Then G ∩ Gc ⊂ (G ∩Gc) = ∅. So

G ∩ Gc = ∅. This implies that G and Gc are disjoint, hence Gc ⊂ Gc. Therefore Gc is
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closed. So we conclude that G is open.

78 (Exercise 25)

STEP 1. (⇒) Suppose that f(x) ∈ C(R). We prove that G1, G2 are open. The
procedure of proof is similar for G1 and G2, we only prove that G1 is open. Let us pick
(x0, y0) ∈ G1, then y0 < f(x0). Since f(x) is continuous at x = x0, there exists δ0 > 0 s.t

|f(x)− f(x0)| < ε0
def
= f(x0)−y0

2
, ∀x ∈ B(x0, δ0). Especially, we have

f(x0)− ε0 < f(x), ∀x ∈ B(x0, δ0), · · · (∗)

Let r
def
= min{δ0, ε0}. We claim that B((x0, y0), r) ⊂ G1, hence G1 is open. Let us pick an

arbitrary point (x, y) ∈ B((x0, y0), r).

y < y0 + r
(∗1)
= (f(x0)− 2ε0) + r

= (f(x0)− ε0) + (r − ε0)
(∗2)

5 f(x0)− ε0 + 0
(∗3)
< f(x)

• (∗1) ε0 = f(x0)−y0

2
by definition. So y0 = f(x0)− 2ε0.

• (∗2) r = min{δ0, ε0} 5 ε0.

• (∗3) See (∗).

So y < f(x) and we conclude that (x, y) ∈ G1 for all (x, y) ∈ B((x0, y0), r).

STEP 2. (⇐) Suppose that G1, G2 are open. We prove that f(x) is continuous at
all x0 ∈ R. Let x0 ∈ R and let ε > 0 be an arbitrary positive number. Let us note that

(x0, f(x0)− ε) ∈ G1, and (x0, f(x0) + ε) ∈ G2.

Furthermore, G1 and G2 are open sets. We can find sufficiently small δ0 > 0 satisfying
both

B((x0, f(x0)− ε) , δ0) ⊂ G1 and B((x0, f(x0) + ε) , δ0) ⊂ G2

Now let us pick arbitrary x ∈ B(x0, δ0). Since |x− x0| < δ0, note that

(x, f(x0)− ε) ∈ B((x0, f(x0)− ε) , δ0) ⊂ G1,

so (x, f(x0)− ε) ∈ G1. Therefore, f(x0)− ε < f(x) ⇔ −ε < f(x)− f(x0). Similarly,

(x, f(x0) + ε) ∈ B((x0, f(x0) + ε) , δ0) ⊂ G2.

so (x, f(x0) + ε) ∈ G2. Therefore, f(x0) + ε > f(x)⇔ f(x)−f(x0) < ε. Now we conclude
that ∀x ∈ B(x0, δ0), |f(x)− f(x0)| < ε, hence f(x) is continuous at x0.
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79 (Exercise 27) We prove the contraposition. We show that if
⋂
α∈I Fα = ∅,

then there exists a finite number of {α1, α2, · · · , αm} ⊂ I s.t
⋂m
i=1 Fαi = ∅.

Let Gα
def
= F c

α = Rd \ F . Note that⋃
α∈I

Gα = Rd.

We arbitrarily pick α0 ∈ I. Then Fα0 ⊂
⋃
α∈I Gα. Gα is open for all α ∈ I. By Heine-

Borel’s Covering Theorem, we can find a finite number of {α1, · · · , αm} ⊂ I s.t

Fα0 ⊂
m⋃
i=1

Gαi .

By taking the complement of the both sides, we have

m⋂
i=1

Fαi ⊂ F c
α0
.

Therefore,
m⋂
i=0

Fαi ⊂ Fα0 ∩ F c
α0

= ∅.

Now the proof is complete.

80 (Exercise 28) Let F
def
= Gc = Rd \G. F is closed. Let F ∗α = Fα ∩ F , then F ∗α

is also bounded closed. Note that

∅ =

(⋂
α∈I

Fα

)
∩Gc =

(⋂
α∈I

Fα

)
∩ F

=
⋂
α∈I

(Fα ∩ F )

=
⋂
α∈I

F ∗α.

By the conclusion of Exercise 27 (contraposition of the original statement), we can find a
finite number of {α1, · · · , αm} ⊂ I s.t

m⋂
i=1

F ∗αi = ∅.

So
m⋂
i=1

F ∗αi =
m⋂
i=1

(Fαi ∩ F )

=

(
m⋂
i=1

Fαi

)
∩ F = ∅.

This implies that
⋂m
i=1 Fαi and F = Gc are disjoint. So

⋂m
i=1 Fαi ⊂ F c = G. (if A and B

are disjoint, then A ⊂ Bc and B ⊂ Ac.) Now the proof is complete.
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81 (Exercise 29) We consider the negation of the statement. So we suppose that
∀ε0 > 0, ∃x0 ∈ K s.t ∀k = 1, B(x0, ε0) 6⊂ Gk. Let us put ε ← 1

n
. For each n ∈ N, there

exists xn ∈ K s.t B(xn,
1
n
) 6⊂ Gk for all k = 1. Note that {xn} ⊂ K and K is bounded and

closed, we can find a subsequence xni → x∗ ∈ K. Since {Gk}k=1 covers K, and x∗ ∈ K,
there exists k∗ ∈ N s.t x∗ ∈ Gk∗ . Gk∗ is an open set, we can find ε∗ s.t B(x∗, ε∗) ⊂ Gk∗ .
Now let us choose sufficiently large n ∈ N s.t |xn − x∗| < 1

2ε∗
and 1

2n
< ε∗. Then

B

(
xn,

1

n

)
⊂ B (x∗, ε∗) ⊂ Gk∗ .

This contradicts to the fact that for each n ∈ N, B(xn,
1
n
) 6⊂ Gk for all k = 1. Now the

proof is complete.

82 (Exercise 30) The proof is the same as Exercise 19. All we have to do is to
prove that f ′(x) has intermediate value property. It is known that if f(x) is differentiable,
f ′(x) has intermediate value property.

Suppose that a < b and f ′(a) < f ′(b) holds. (The proof for the case f ′(a) > f ′(b)
is similar.) We prove that ∀µ ∈ (f ′(a), f ′(b)), there exists c ∈ (a, b) s.t f ′(c) = µ. Let

F (x)
def
= f(x) − µx, (x ∈ [a, b]) . Since f(x) is differentiable, F (x) is also differentiable.

Note that F ′(a) = f ′(a) − µ < 0 and F ′(b) = f ′(b) − µ > 0. This implies that F (x) is
decreasing around a and increasing around b. Furthermore F (x) is continuous on [a, b],
so F (x) has a minimum value at some c ∈ (a, b). Then F ′(c) = 0 = f ′(c) − µ. Now the
proof is complete.

83 (Exercise 31) We prove that R(f)
def
= {f(x) | x ∈ R} is open and closed. Then

R(f) = ∅ or R by the conclusion of Exercise 21.

STEP 1. (R(f) is closed) We show that R(f)′ ⊂ R(f). When R(f)′ = ∅, R(f)′ ⊂
R(f) holds obviously, so we suppose that R(f)′ 6= ∅. Let us pick y∗ ∈ R′(f). There exists
{yn} ⊂ R(f) s.t yn → y∗ ∈ R. Since yn ∈ R(f), there exists xn ∈ R s.t yn = f(xn). Now
by assumption,

|f(xn)− f(xm)| = a|xn − xm|.
By taking n,m→∞,

0
(∗)
= lim

n,m→∞
|f(xn)− f(xm)| = lim sup

n,m→∞
a|xn − xm|.

• (∗) f(xn), f(xm)→ y∗ ∈ R.

So {xn}n=1 is a Cauchy sequence. (By completeness of real number,) a Cauchy sequence

converges. Let x0
def
= limn→∞ xn, (x0 ∈ R) . Since f(x) is continuous, we have

lim
n→∞

yn = lim
n→∞

f(xn) = f(x0).

The left hand side is y∗. So y∗ = f(x0). This implies that y∗ ∈ R(f). Now the proof for
this part is complete.

STEP 2. (R(f) is open) Since

|f(x)− f(y)| = a|x− y|,
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if f(x) = f(y), then |x− y| = 0⇔ x = y. So f(x) is one-to-one. Since f(x) is continuous

and one-to-one, f(x) is strictly monotone increasing (or decreasing). Let g(x)
def
= f−1(x).

Note that R(f)
def
= {f(x) | x ∈ R} = {g−1(x) | x ∈ R} = g−1(R). When f(x) is strictly

monotone increasing and continuous, g(x) = f−1(x) is also continuous. Since R is an
open set, so g−1(R) is also open. Now the proof is complete.

STEP 3. (Supplement (I)) We prove that if f(x) : R 7→ R is continuous and
one-to-one, then f(x) is either strictly monotone increasing (or decreasing).

First, we claim that if f(x) : R 7→ R is continuous and one-to-one, and suppose a < c <
b and f(a) < f(b), then f(a) < f(c) < f(b). Suppose that f(c) < f(a) < f(b). Let us pick
α ∈ (f(c), f(a)). By intermediate value theorem, there exists x, y (a < x < c < y < b)
s.t α = f(x) = f(y). However, this contradicts to the fact that f(x) is one-to-one. So
f(c) < f(a) can not happen. Similarly, f(a) < f(b) < f(c) also can not happen. So we
conclude that f(a) < f(c) < f(b).

By applying the same argument to [a, c] and [c, b], if a < g < b < h < c, then
f(a) < f(g) < f(c) < f(h) < f(b). And we conclude that f(x) is strictly monotone
increasing (or decreasing) on any interval [a, b], so on (−∞,∞).

STEP 4. (Supplement (II)) We prove that if f(x) : R 7→ R is continuous and
strictly monotone increasing (or decresing), then f−1(x) is also continuous. Let ε > 0 be an
arbitrary positive number, and let y0 = f(x0). We show that ∃δ > 0 s.t ∀y ∈ B(f(x0), δ),
|f−1(y)− f−1 ◦ f(x0)| < ε. Since f(x) is strictly monotone incresing, f(x0− ε) < f(x0) <
f(x0 + ε). Let δ > 0 with δ < min{f(x0 + ε)− f(x0), f(x0)− f(x0 − ε)}. Then we have

f(x0 − ε) < f(x0)− δ < f(x0) + δ < f(x0 + ε).

If y ∈ (f(x0) − δ, f(x0) + δ) = B(f(x0), δ), then f−1(y) ∈ (x0 − ε, x0 + ε), because f(x)
is strictly monotone increasing. So |f−1(y) − x0| = |f−1(y) − f−1 ◦ f(x0)| < ε. Now the
proof is complete.

84 (Exercise 32) The proof is quite similar to Example 13 (E = Q). Suppose
that E = {en}n=1 is a Gδ set. Then there exists a countable number of open sets {Gn}n=1

s.t

E =
∞⋂
n=1

Gn.

Since E ⊂ Gn, Gn is also dense in R. Let Fn = Gc
n. Fn is a closed set and Fn has no

interior point (∗). Finally,

R = (R \ E) ∪ E =
∞⋃
n=1

Fn ∪
∞⋃
n=1

{en},

so R is a countable union of closed sets with no interior point. By Baire’s theorem, R has
no interior point.(contradiction!!)

(∗) We prove that if G is dense then F = Gc has no interior point. Suppose that F
has an interior point, then ∃x0 ∈ F and ∃δ0 > 0 s.t B(x0, δ0) ⊂ F . Since G is dense, there
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exists a sequence {xn} ⊂ G s.t xn → x0. However, when n is large enough, |xn−x0| < δ0,
so xn ∈ B(x0, δ0) ⊂ F , and this contradicts to the assumption that xn ∈ G.

85 (Exercise 34) Let us recall that the set of points of continuity of f(x) is a Gδ

set. (See Example 11.) And we also show that Q is not a Gδ set. (See Example 13.)
From these two facts, it follows that f(x) can not be continuous on Q and discontinuous
on R \Q. Now the proof is complete.

86 (Exercise 37) We show that every closed set F on Rd is a Gδ set. Let

f(x)
def
= dist(x, F ).

We claim that
F = {x ∈ Rd | dist(x, F ) = 0}.

First, ⊂ is obviously holds. Second, let us recall that if F is a non-empty closed set,
then for all x ∈ Rd, there exists y ∈ F s.t |x − y| = dist(x, F ). (See Theorem 1.24.) So
dist(x, F ) = 0 implies that |x− y| = 0 for some y ∈ F , hence x = y ∈ F . Now the proof
for the claim above is complete.

Since

{x ∈ Rd | dist(x, F ) = 0} =
∞⋂
n=1

{
x ∈ Rd | dist(x, F ) <

1

n

}
,

and dist(x, F ) is (uniformly) continuous (Theorem 1.25), so
{
x ∈ Rd | dist(x, F ) < 1

n

}
is

an open set on Rd for each n ∈ N, hence the right hand side is a Gδ set. Now the proof
is complete.

87 (Exercise 38)

STEP 1. Let {an}n=1 a sequence. First we explain that we can find a subsequence

nk s.t ank → lim supn→∞ an. Let a
def
= lim supn→∞ an. Let us recall that

a = lim sup
n→∞

an
def
= lim

n→∞
sup
m=n

am.

Let bn
def
= supm=n am, then bn ↘ a. Since bn = supm=n am, we can find a subsequence nk

s.t ank 5 bk 5 ank + 1
k
. Finally, 0 5 bk − ank 5 1

k
→ 0 and bk → a, so ank → a.

STEP 2. Let us pick x0 ∈ [0, 1] and let us consider an arbitrary sequence {xn} ⊂
[0, 1] s.t xn → x0. Note that {(xn, f(xn))} ⊂ Gf . Let us pick a subsequence xnk
s.t f(xnk) → lim supn→∞ f(xn) < ∞. (< ∞ holds because Gf is bounded.) Since
Gf is closed, (xnk , f(xnk)) → (x0, lim supn→∞ f(xn)) ∈ Gf . This implies that f(x0) =
lim supn→∞ f(xn). By repeating a similar argument, we also have f(x0) = lim infn→∞ f(xn).

88 (Exercise 39) We prove the contraposition. Suppose that F is not closed, and
we prove that there exists a continuous function f(x) ∈ C(F ) which has no continuous
extension. Since F ′ 6⊂ F , F ′ \ F 6= ∅. We can pick x0 ∈ F ′ \ F . Let us define

f(x)
def
=

1

|x− x0|
, (x ∈ F )
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Obviously, f(x) is continuous on F . (Note that x0 /∈ F .) Suppose that there exists
g(x) ∈ C(R) with f(x) = g(x) for all x ∈ F . Let us pick {xn} ⊂ F s.t xn → x0.
(x0 ∈ F ′). Then

g(x0)
(∗1)
= lim

n→∞
g(xn)

(∗2)
= lim

n→∞
f(xn) =∞

• (∗1) g(x) is continuous on R.

• (∗2) g(x) = f(x) on F and note that xn ∈ F for all n = 1.

This implies that f(x) has no continuous extension on R.
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CHAPTER 2

Solutions

§ 2.1

1 (Definition 2.1) We define m∗(E) as below.

inf
Γ

{∑
I∈Γ

|I| | E ⊂
⋃
I∈Γ

I, Γ is a collection of at most a countable number of open rectangles.

}

• Note that in the definition above, Γ is a collection of at most a countable number
of open rectangles, so we also allow Γ to be a collection of a finite number of open
rectangles.

• Note that m∗(E) = 0 holds obviously for any E ⊂ Rd.

2 (Example 1) This problem claims that a set which consists of a single point
has measure zero. Let

In
def
=

{∏d
i=1

(
x0 − ε

2
, x0 + ε

2

)
n = 1

∅ n = 2
.

Note that

{x0} ⊂
∞⋃
n=1

In,

and {In}n=1 is a collection of a countable number of open rectangles. So by the definition
of m∗({x0}), we have

0 5 m∗({x0})
(∗)
5

∞∑
n=1

|In| = |I1| =
d∏
i=1

ε = εd.
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(∗) holds because according to the definition (See Definition 2.1) of m∗({x0}), we take
infimum of

∑
I∈Γ |I| with respect to Γ, so m∗({x0}) is less than or equal to

∑
I∈Γ |I| for

any Γ which is a cover of {x0}. Since ε > 0 is an arbitrary positive number, we have the
desired result by taking ε→ 0.

3 (Example 2)

(1)

STEP 1. Let ε > 0 be an arbitrary positive number and let

J
def
=

d∏
i=1

(
ai −

ε

2
, bi +

ε

2

)
.

Note that I ⊂ J . Let Γ
def
= {J}, then Γ is a finite cover of I. By Definition 2.1,

m∗(I) ≤ |J | =
d∏
i=1

(bi − ai + ε).

Since ε > 0 is an arbitrary positive number, by taking ε→ 0, we have

m∗(I) 5
d∏
i=1

(bi − ai) = |I| .

STEP 2. Let us consider an open cover of I ⊂
⋃∞
n=1 In Since I is bounded and

closed, we can find a finite subcover. (Theorem 1.21 Heine-Borel’s Covering Theorem.)
So I ⊂ I ⊂

⋃K
k=1 Ink . Since the number of open rectangles which cover I is finite, we have

|I|
(∗1)

5
K∑
k=1

|Ink |
(∗2)

5
∞∑
n=1

|In| .

Finally let us take infimum of the right hand side with respect to an open cover {In}∞n=1.
By Definition 2.1, we have

|I| 5 m∗(I).

• (∗1) As we have stated in the question part, we suppose that if I ⊂
⋃k
n=1 In (I, In:

open rectangles, k is finite.), then |I| 5
∑k

n=1 |Ik|.

• (∗2) This holds obviously.

Someone may feel that this solution is roundabout (or doing something unnecessary).
However, when I ⊂

⋃∞
n=1 In, we can not directly conclude that |I| 5

∑∞
n=1 |In|. So we

first need to find a finite cover of I.

(2) The solutions is similar to the previous case.

STEP 1. Similarly let J
def
=
∏d

i=1

(
ai − ε

2
, bi + ε

2

)
. Then I ⊂ J and let Γ

def
= {J}.

Since Γ is a finite cover of I, we have m∗(I) 5 |J | =
∏d

i=1(bi − ai + ε). By taking ε→ 0,

we have m∗(I) 5
∏d

i=1(bi − ai) = |I|.
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STEP 2. Similarly consider the cover of I. Suppose that I ⊂
⋃∞
n=1 In. Let Iε =∏d

i=1

(
ai + ε

2
, bi − ε

2

)
. Note that Iε ⊂ Iε ⊂ I ⊂

⋃∞
n=1 In. Since Iε is bounded and closed,

and Iε ⊂
⋃∞
n=1 In, we can find a finite subcover s.t

Iε ⊂
K⋃
k=1

Ink .

Since

Iε ⊂
K⋃
k=1

Ink ,

we have

|Iε| 5
K∑
k=1

|Ink | 5
∞∑
n=1

|In|.

By taking infimum with respect to {In}n=1 on the right hand side, we have

|Iε| 5 m∗(I).

Note that the left hand side is

|Iε| =
d∏
i=1

(bi − ai − ε).

Finally, by taking ε→ 0, we have |Iε| → |I|, hence

|I| 5 m∗(I).

4 (Theorem 2.1)

(1) Suppose E ⊂
⋃
n=1 In. For all open covers,

∑
n=1 |In| = 0. So m∗(E) = 0. Let

I with |I| < ε. ∀I, ∅ ⊂ I. So m∗(I) 5 |I| < ε

(2) Let us consider an open cover of B, ΓB. Let ΓB
def
= {I(B)

n }∞n=1. B ⊂
⋃∞
n=1 I

(B)
n .

Of course, A ⊂
⋃
n=1 I

(B)
n . So m∗(A) 5

∑∞
n=1

∣∣∣I(B)
n

∣∣∣ for any ΓB. Take infimum of the right

hand side with respect to ΓB. Then we have m∗(A) 5 m∗(B).

(3) For each n = 1, 2 · · · , suppose An ⊂
⋃
m=1 In,m with m∗(An) 5

∑
m=1 |In,m| <

m∗(An) + ε
2n

. Since
⋃
n=1

⋃
m=1 In,m is an open cover of

⋃
n=1An, we have m∗(

⋃
n=1An) 5∑

n=1

∑
m=1 |In,m| <

∑∞
n=1

(
m∗(An) + ε

2n

)
=
∑

n=1m
∗(An) + ε. Finally by taking ε↘ 0,

we have the desired result.
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5 (Corollary 2.2) We present a proof in the case of d = 1. (Extension to the

general case is easy.) Suppose E
def
= {xk}∞k=1. Let us consider Ik

def
=
(
xk − ε

2k+1 , xk + ε
2k+1

)
.

Let us pay attention to the fact that E ⊂
⋃∞
k=1 Ik. Then we have m∗(E) 5

∑∞
k=1

ε
2k

= ε
by the definition of outer measure. This implies that m∗(E) = 0.

6 (Lemma 2.3) We show m∗(E) 5 m∗δ(E) and m∗(E) = m∗δ(E).

(1) m∗(E) 5 m∗δ(E) holds obviously from their definitions because A ⊂ B ⇒
inf A = inf B holds. (Let {In}∞n=1 be a cover of E and suppose that the edge length
of each In < δ. In the definition of m∗(E), we also consider such {In} because it also
covers E. So m∗(E) 5

∑∞
k=1 |Ik|. By taking the infimum of the right hand side, we have

m∗(E) 5 m∗δ(E).)

(2)

STEP 1. Let us consider a cover of E. Suppose that E ⊂
⋃∞
n=1 In (In are open

rectangles). For each In, we devide In into smaller disjoint open rectangles {In,k}(k =
1 · · ·Kn) whose edge length is all less than δ

2
. (You can easily imagine that you can do so

when d = 1. Of course so is d > 1.)
However {In,k}(k = 1 · · ·Kn) does not actually cover In because the boundary points

are lost. So we enlarge each In,k by λ ∈ (1, 2) times without moving its center so that

{λIn,k}Knk=1 will cover In. Now we have E ⊂
⋃
n=1 In ⊂

⋃
n=1

⋃Kn
k=1 λIn,k.

STEP 2. From the fact that E ⊂
⋃
n=1

⋃Kn
k=1 λIn,k, we have

m∗δ(E) 5
∞∑
n=1

Kn∑
k=1

|λIn,k| = |λ|d|
∞∑
n=1

Kn∑
k=1

|In,k|.

Let us be careful of the fact that |In| =
∑Kn

k=1 |In,k|. (If you do not know why, let us
consider a simpler case. |(a, b)|+ |(b, c)| = (b− a) + (c− b) = c− a = |(a, c)|.) Therefore,

|λ|d|
∞∑
n=1

Kn∑
k=1

|In,k| = |λ|d|
∞∑
n=1

|In|.

By taking the infimum with respect to {In}∞n=1, we have m∗δ(E) 5 |λd|m∗(E). The
argument above holds for all λ ∈ (1, 2). Finally by taking λ ↘ 1, we have the desired
conclusion.

7 (Theorem 2.4)

(1)

STEP 1. By Theorem 2.1 (and Lemma 2.3), we have

m∗δ(E1 ∪ E2) 5 m∗δ(E1) +m∗δ(E2).

STEP 2. Next we prove that

m∗δ(E1) +m∗δ(E2) 5 m∗δ(E1 ∪ E2).
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Let δ
def
= 1√

d
dist(E1, E2) > 0. If the edge length of In is less than δ, then we have

diam(In) <

(
d∑
i=1

(
1√
d

dist(E1, E2)

)2
)1/2

= dist(E1, E2).

Let us consider a cover of E1 ∪ E2 by a countable number of open rectangles {Ik}k=1

whose edge length is less than δ. (i.e E1 ∪ E2 ⊂
⋃∞
k=1 Ik.) Without loss of generality, we

may suppose (E1 ∪ E2) ∩ Ik 6= ∅ for every k ∈ N. (If E1 ∪ E2 ∩ Ik = ∅, we may get rid of
it from the cover.)

Note that E1 ∩ Ik = ∅ or E2 ∩ Ik = ∅, and In can not have a common point with both
E1 and E2 simultaneously because diam(In) is less than dist(E1, E2). So we can always

separate {Ik}k=1 into
{
I

(1)
k

}
k=1
∪
{
I

(2)
k

}
k=1

where E1 ⊂
⋃∞
k=1 I

(1)
k and E2 ⊂

⋃∞
k=1 I

(2)
k .

Also note that

m∗δ(E1) 5
∞∑
k=1

∣∣∣I(1)
k

∣∣∣ , m∗δ(E2) 5
∞∑
k=1

∣∣∣I(2)
k

∣∣∣ ,
hence,

m∗δ(E1) +m∗δ(E2) 5
2∑
i=1

∞∑
k=1

∣∣∣I(i)
k

∣∣∣ =
∞∑
n=1

|In|.

Finally, by taking infimum on the right hand side with respect to {In}n=1, we have

m∗δ(E1) +m∗δ(E2) 5 m∗δ(E1 ∪ E2).

(2) Since

m∗

(
∞⋃
n=1

En

)
5

∞∑
n=1

m∗(En)

holds by sub-additivity of outer measure (Theorem 2.1), it is enough for us to prove that

∞∑
n=1

m∗(En) 5 m∗

(
∞⋃
n=1

En

)
.

For each N ∈ N,
⋃N
n=1En ⊂

⋃∞
n=1En, so we have

m∗

(
N⋃
n=1

En

)
5 m∗

(
∞⋃
n=1

En

)
,

by monotonicity of outer measure (Theorem 2.1). We claim that the left hand side

m∗

(
N⋃
n=1

En

)
=

N∑
n=1

m∗ (En) .

If this holds, then
N∑
n=1

m∗ (En) 5 m∗

(
∞⋃
n=1

En

)
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for all N ∈ N. By taking N → ∞, we have the desired result. Now we prove the claim
above. First we show that dist(E1,

⋃N
n=2En) > 0. If this is true, then

m∗

(
N⋃
n=1

En

)
= m∗

(
E1 ∪

N⋃
n=2

En

)
= m∗ (E1) +m∗

(
N⋃
n=2

En

)
,

from the previous result. By repeating the similar argument, we have m∗
(⋃N

n=1En

)
=∑N

n=1m
∗ (En). So all we have to do is to prove that

dist(E1,

N⋃
n=2

En) > 0.

By definition,

dist(E1,
N⋃
n=2

En) = inf
x∈E1,y∈

⋃N
n=2 En

|x− y|

(∗)
= min

n=2,··· ,N
inf

x∈E1,y∈En
|x− y|

= min
n=2,··· ,N

dist(E1, En) > 0

Finally, we explain (∗). By the definition of infimum, we can find a sequence {xk} ⊂
E1, {yk} ⊂

⋃N
n=2En s.t

|xk − yk| ↘ inf
x∈E1,y∈

⋃N
n=2 En

|x− y|

And there exists some n0 ∈ {2, · · · , N} s.t yk ∈ En0 for infinitely many k. So we can find
a subsequence k` s.t yk` ∈ En0 . Finally,

lim
k→∞
|xk − yk| = lim

`→∞
|xk` − yk` |

= inf
x∈E1,y∈En0

|x− y|

= min
n=2,··· ,N

inf
x∈E1,y∈En

|x− y|.

Now the proof is complete.

8 (Theorem 2.5 (a)) Suppose E ⊂
⋃∞
n=1 In. ThenE+x0 ⊂

⋃∞
n=1 In+x0

. m∗(E+x0)) 5∑∞
n=1 |In+x0

| =
∑∞

n=1 |In|. Finally let us take infimum of the right hand side. In the same
way we may prove =.

9 (Theorem 2.5 (b)) E ⊂
⋃∞
n=1 In. Then λE ⊂

⋃∞
n=1 λIn. So we have m∗(λE) 5∑∞

n=1 |λ|d|In|. By taking infimum, we have m∗(λE) 5 |λ|dm∗(E).
This holds even if we change λ to 1

λ
. So we have m∗( 1

λ
E) 5 1

|λ|dm
∗(E) We can also

change E to λE. Then m∗(E) 5 1
|λ|dm

∗(λE). Now we have the desired conclusion.
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10 (Generalized definition of outer measure) µ∗ : 2X → [0,∞] is an outer measure
when it satisfies the following conditions.

(3) (non-negtative) ∀A ⊂ X,µ∗(A) = 0 and µX(∅) = 0.

(4) (monotone) If A ⊂ B(⊂ X), µ∗(A) 5 µ∗(B).

(5) (countable sub-additive)Let An ⊂ X for all n = 1. Then µ∗
(⋃

n=1An

)
5∑

n=1 µ
∗(An).

11 (Exercise 1) Note that A ∪B = A ∪ (B \ A) = B ∪ (A \B).

m∗(B)
∗1
5 m∗(A ∪B) = m∗(A ∪ (B \ A))

∗2
5 m∗(A) +m∗(B \ A)
∗3
= m∗(B \ A)
∗4
5 m∗(B).

• (∗1) B ⊂ A ∪B. Theorem 2.1: m∗(·) is monotone.

• (∗2) Theorem 2.1: sub-additivity

• (∗3) m∗(A) = 0.

• (∗4) B \ A ⊂ B. Theorem 2.1: m∗(·) is monotone.

Similarly,

m∗(B) 5 m∗(A ∪B) = m∗(B ∪ (A \B))

5 m∗(B) +m∗(A \B)
∗5
= m∗(B).

• (∗5) m∗(A) = 0 and A \B ⊂ A. So m∗(A \B) = 0.

12 (Exercise 2) By sub additivity and monotonicity, we have

m∗(A) = m∗(A \B ∪ A ∩B)

5 m∗(A \B) +m∗(A ∩B)
(∗)
5 m∗(A∆B) +m∗(B).

• (∗) A \B ⊂ A∆B, A ∩B ⊂ B.
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So m∗(A)−m∗(B) 5 m∗(A∆B). Swap A,B we have |m∗(A)−m∗(B)| 5 m∗(A∆B).

13 (Exercise 3) E =
⋃
x∈E{x} ⊂

⋃
x∈E B(x, δx). By Lindelof’s covering theorem,

we can always find a countable subcover. So E ⊂
⋃∞
n=1B(xn, δxn). And E ∩ E = E ⊂

(=)
⋃∞
n=1B(xn, δxn) ∩ E. By Theorem 2,1, countable sub-additivity of Lebesgue outer

measure, we have

m∗(E) 5
∞∑
n=1

m∗ (B(xn, δxn) ∩ E) = 0

14 (Exercise 4) f(x)
def
= m∗([a, x] ∩ E), (x ∈ [a, b]). Then f(x) is a continuous

function on [a, b]. First f(x) is monotone increasing on [a, b]. Next,

f(x+ h) = m∗([a, x+ h] ∩ E)
∗1
5 m∗([a, x] ∩ E) +m∗([x, x+ h] ∩ E)
∗2
5 m∗([a, x] ∩ E) +m∗([x, x+ h])
∗3
= m∗([a, x] ∩ E) + h

= f(x) + h.

• (∗1) Theorem 2.1, sub-additivity

• (∗2) Theorem 2.1, monotonicity

• (∗3) Example 2

So 0 5 f(x+ h)− f(x) 5 h. This implies that f is continuous. Finally we may prove the
statement by intermediate value theorem.

15 (Exercise 5) Let C ⊂ [0, 1] be a Cantor set constructed in Chapter 1. Let us

recall that C =
⋂∞
n=1 Cn ⊂ Cn. Cn =

⋃2n

k=1 In,k. So by Theorem 2.1 (monotonicity and
sub-additivity) and also by Example 2, we have

m∗(C) 5 m∗(Cn) 5
2n∑
k=1

m∗(In,k) =

(
2

3

)n
.

Finally by taking n↗∞, we have the desired conclusion.

§ 2.2

16 (Definition 2.2) Let E ⊂ Rd. If the following inequality holds for all B ⊂ Rd,
we call that E is Lebesgue measurable. Let M be a collection of Lebesgue measurable
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sets on Rd. (In the inquality below, 5 always holds by sub additivity of an outer measure.
So we may use = instead of =.)

m∗(B) = m∗(B ∩ E) +m∗(B ∩ Ec).

17 (Example 1) We show that for all N ⊂ Rd : m∗(N) = 0, N ∈ M . By
monotonicity of an outer measure, we have

m∗(B ∩N) +m∗(B ∩N c) 5 m∗(N) +m∗(B).

In the inequality above, m∗(N) = 0, so we have the desired result.

18 (Theorem 2.6)

(1) Since m∗(∅) = 0, ∅ ∈M . (See Example 1.)

(2) If E ∈M , for all B ⊂ Rd,

m∗(B ∩ E) +m∗(B ∩ Ec) 5 m∗(B).

So
m∗(B ∩ Ec) +m∗(B ∩ (Ec)c) 5 m∗(B).

Hence Ec ∈M

(3)

STEP 1. (E1 ∪ E2 ∈ M ) Let B,C ⊂ Rd be an arbitrary subset of Rd. E1 is
Lebesgue measurable, so we have

m∗(E1 ∩ C) +m∗(Ec
1 ∩ C) 5 m∗(C).

Since C is arbitrary, so we may change C → B ∩ Ec
2. So we have

m∗(B ∩ E1 \ E2) +m∗(B ∩ (E1 ∪ E2)c) 5 m∗(B ∩ Ec
2).

Recall that E2 is also measurable, so

m∗(B ∩ E2) +m∗(B ∩ Ec
2) 5 m∗(B).

So we have

m∗(B ∩ E1 \ E2) +m∗(B ∩ E2) +m∗(B ∩ (E1 ∪ E2)c) 5 m∗(B)

Finally, by sub additivity of an outer measure,

m∗(B ∩ (E1 ∪ E2)) 5 m∗(B ∩ E1 \ E2) +m∗(B ∩ E2).

And we have the desired result.

STEP 2. (E1 ∩E2, E1 \E2) The rest is easy. Recall that Ec
1, E

c
2 ∈M . E1 ∩E2 =

(Ec
1 ∪ Ec

2)c ∈M . E1 \ E2 = E1 ∩ Ec
2 ∈M .
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(4)

STEP 1. Let A1
def
= E1, A2

def
= E2 \ E1, A3

def
= E3 \ (E1 ∪ E2) · · · . {An}n=1 are

disjoint and
⋃∞
n=1An =

⋃∞
n=1En and ∪Nn=1An =

⋃N
n=1En for all N ∈ N. By the previous

result
⋃N−1
n=1 An ∈M . So we have, for all C ⊂ Rd,

m∗(C) = m∗

(
N−1⋃
n=1

An ∩ C

)
+m∗

((
N−1⋃
n=1

An

)c

∩ C

)
.

Since C is arbitrary, we may change C → B ∩
⋃N
n=1 An where B ⊂ Rd is also arbitrary.

So we have

m∗

(
B ∩

N⋃
n=1

An

)
= m∗(B ∩ AN) +m∗

(
B ∩

N−1⋃
n=1

An

)
.

By reating the similar argument, (
⋃N−2
n=1 An ∈M ), we will have

m∗

(
B ∩

N⋃
n=1

An

)
=

N∑
n=1

m∗ (B ∩ An) .

STEP 2. Since
⋃N
n=1An ∈M and by the result from the previous STEP,

m∗(B) = m∗

(
B ∩

N⋃
n=1

An

)
+m∗

(
B ∩

(
N⋃
n=1

An

)c)

=
N∑
n=1

m∗(B ∩ An) +m∗

(
B ∩

(
N⋃
n=1

An

)c)

Moreover, B ∩ (∪Nn=1An)c ⊃ B ∩ (
⋃∞
n=1 An)

c
, we have

m∗(B) =
N∑
n=1

m∗(B ∩ An) +m∗

(
B ∩

(
∞⋃
n=1

An

)c)
.

This holds for all N = 1, 2 · · · , so we have

m∗(B) =
∞∑
n=1

m∗(B ∩ An) +m∗

(
B ∩

(
∞⋃
n=1

An

)c)
.

Finally, by sub additivity of an outer measure, we have

m∗(B) =
∞∑
n=1

m∗(B ∩ An) +m∗

(
B ∩

(
∞⋃
n=1

An

)c)

= m∗

(
B ∩

∞⋃
n=1

An

)
+m∗

(
B ∩

(
∞⋃
n=1

An

)c)
.

Since ∪n=1An =
⋃
n=1En we have

⋃∞
n=1En ∈M .
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STEP 3. If {En} are disjoint, An = En. In the last inequality, let us consider
B ←

⋃∞
n=1An. And we have

m∗

(
∞⋃
n=1

An

)
=

∞∑
n=1

m∗(An).

By sub additivity of an outer measure, we always have

m∗

(
∞⋃
n=1

An

)
5

∞∑
n=1

m∗(An).

So we have the desired conclusion.

19 (Theorem 2.7)

STEP 1. (∃k ∈ N s.t m(Ek) =∞) Obviously the both sides are infinite.

STEP 2. (m(Ek) < ∞ for all k ∈ N) It is easy to verify that A,B ∈ M , A ⊂
B,m(A) <∞, then

m(B)−m(A) = m(B \ A).

First, m(B) = m(B \ A ∪ A) = m(B \ A) + m(A). Since m(A) < ∞, we can subtract
m(A) from the both sides. So we have m(B)−m(A) = m(B \ A).

Let Ak
def
= Ek \ Ek−1, E0

def
= ∅.

m

(
∞⋃
k=1

Ek

)
= m

(
∞⋃
k=1

Ak

)
∗
=

∞∑
k=1

m(Ak)

= lim
k→∞

k∑
m=1

m(Ek \ Ek−1)

= lim
k→∞

k∑
m=1

(m(Ek)−m(Ek−1))

= lim
k→∞

m(Ek)

• (∗) Since Ak are disjoint and measurable, m (
⋃∞
k=1 Ak) =

∑∞
k=1 m(Ak).

20 (Corollary 2.8) Let E∞
def
=
⋂∞
k=1Ek. Let Ak = E1 \ Ek. Then Ak ↗ E1 \ E∞.

By the previous resultm(E1)−m(E∞) = m(E1\E∞) = limk→∞m(Ak) = limk→∞(m(E1)−
m(Ek)). Since m(E1) <∞, so may subtract m(E1) from the both sides.
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21 (Example 2) Let Am =
⋃∞
k=mEk. By sub-additivity of an outer measure, we

have m(A1) = m (
⋃∞
k=1 Ek) <∞.

m

(
∞⋂
m=1

∞⋃
m=k

Em

)
= m

(
∞⋂
m=1

Am

)
= lim

m→∞
m(Am)

By sub-additivity,

= lim
m→∞

m

(
∞⋃
k=m

Ek

)
5 lim

m→∞

∞∑
k=m

m (Ek) = 0.

Notice. Let an = 0 and
∑∞

n=1 an <∞. Then limk→∞
∑∞

n=k an = 0.

22 (Corollary 2.9)

(1) Let An
def
=
⋂∞
m=nEm. An is an increasing sequence of measurable sets. So we

have

m

(
∞⋂
n=1

An

)
= lim

k→∞
m(Ak).

The left and side is m(lim infk→∞Ek). Moreover,

m(Ak) 5 m(Ek),∀k = 1.

So we have
lim inf
k→∞

m(Ak) 5 lim inf
k→∞

m(Ek), ∀k = 1.

The left hand side is limk→∞m(Ak) because limk→∞m(Ak) exists. Now the proof is
complete.

(2) Let E
def
=
⋃∞
m=1Em. Let us apply the previous result to E∗k

def
= E \ Ek.

m
(

lim inf
k→∞

E∗k

)
5 lim inf

k→∞
m (E∗k) .

Since m(E∗k) = m(E \ Ek) = m(E) −m(Ek), (∵ m(Ek) < ∞), we can rewrite the right
hand side as

lim inf
k→∞

(m(E)−m (Ek)) = m(E)− lim sup
k→∞

m(Ek).

Note that lim infk→∞E\Ek = E\lim supk→∞Ek, and also note that m (lim supk→∞) <∞.
Now we can rewrite the left hand side as

m

(
E \ lim sup

k→∞
Ek

)
= m(E)−m

(
lim sup
k→∞

Ek

)
Finally since m(E) < ∞, so we may subtract m(E) < ∞ from the both sides. And we
have the desired result.
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23 (Exercise 1)

STEP 1. (m∗(A) + m∗(B) 5 m∗(A ∪ B) + m∗(A ∩ B)) Since A ∈ M , for all
B0 ⊂ Rn we have

m∗(B0 ∩ A) +m∗(B0 ∩ Ac) 5 m∗(B0).

Since B0 is arbitrary, we substitute B0 ← A ∪B. So we have

m∗(A) +m∗(B \ A) 5 m∗(A ∪B).

By adding m∗(A ∩B) to the both sides,

m∗(A) +m∗(B \ A) +m∗(A ∩B) 5 m∗(A ∪B) +m∗(A ∩B).

By subadditivity, the left hand side is larger than m∗(A) +m∗(B), so

m∗(A) +m∗(B) 5 m∗(A ∪B) +m∗(A ∩B).

STEP 2. (m∗(A ∪B) +m∗(A ∩B) 5 m∗(A) +m∗(B)) Since A ∈M , we have

m∗(A ∩B) +m∗(Ac ∩B) 5 m∗(B).

By adding m∗(A) to the both sides, we have

m∗(A ∩B) +m∗(Ac ∩B) +m∗(A) 5 m∗(A) +m∗(B).

By subadditivity, m∗(Ac ∩B) +m∗(A) in the left hand side is larger than m(A ∪B), so

m∗(A ∪B) +m∗(A ∩B) 5 m∗(A) +m∗(B).

24 (Exercise 2) 5 always holds by sub additivity of an outer measure. In the
proof of Theorem 2.6, we have already shown that for all B ⊂ Rd,

m∗(B) =
∞∑
n=1

m∗(B ∩ An) +m∗(B ∩ (
∞⋃
n=1

An)c),

so we may substitute B ←
⋃∞
n=1 Bn. Then we have the desired result.

25 (Exercise 3) E1 \ E2, E2 \ E1 ∈M since they are measure zero sets. We will
have the desired conclusion from the formula below.

E2 = E2 \ E1 ∪ (E1 \ (E1 \ E2)) .

Both m(E1),m(E2) are equal to m(E1 ∩ E2).

26 (Exercise 4)
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STEP 1.

m∗(lim supEn) = m∗

 ∞⋂
n=1

∞⋃
k=n

Ek


5 m∗

 ∞⋃
k=n

Ek


5

∞∑
k=n

m∗(Ek).

for all n ∈ N. By taking n↗∞, the right hand side ↘ 0. So m∗(lim supEn) = 0.

STEP 2. Let

Z
def
= lim supEn =

{
x ∈ R1 | # {n | x ∈ En} =∞

}
.

Fix x ∈ R1 \Z. Then #{n : x ∈ En} <∞. (Only finite number of En contain x). Hence

for sufficiently large ∀n > N(x), x /∈ En ⇔ |fn(x)|
λn

5 1. So lim supn→∞
|fn(x)|
λn

5 1,∀x ∈
R1 \ Z.

27 (Exercise 5) Since E ∈M , for all B ⊂ Rd, we have

m∗(T−1(B)) = m∗(T−1(B) ∩ E) +m∗(T−1(B) ∩ Ec).

Since T does not change outer measure,

m∗(T ◦ T−1(B)) = m∗(T (T−1(B) ∩ E)) +m∗(T (T−1(B) ∩ Ec))

= m∗(T ◦ T−1(B) ∩ T (E)) +m∗(T ◦ T−1(B) ∩ T (Ec)).

Moreover T is one-to-one and onto so T ◦ T−1(B) = B, T (Ec) = T (E)c. Therefore

m∗(B) = m∗(B ∩ T (E)) +m∗(B ∩ T (E)c).

This implies the desired result.

28 (Exercise 6) Let X
def
= {Eα}α∈A and let

An
def
=

{
α ∈ A | m (Eα ∩ [−n, n]) >

1

n

}
.

STEP 1. We prove that A =
⋃∞
n=1An. Obviously An ⊂ A. Next, if α ∈ A. Then

m(Eα) > 0. So for sufficiently large n ∈ N, m(Eα ∩ [−n, n]) > 0. (Otherwise, m(Eα) = 0
and it contradicts to the assumption.) Since m(Eα ∩ [−n, n])↗ m(Eα) > 0 and 1

n
↘ +0,

we can find n ∈ N s.t m(Eα ∩ [−n, n]) > 1
n
.
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STEP 2. We show that An is a finite set. Since {Eα∩ [−n, n]}α∈An are also disjoint
and

⋃
α∈An Eα ∩ [−n, n] ⊂ [−n, n], so An is finite. Otherwise,

m

( ⋃
α∈An

Eα ∩ [−n, n]

)
=
∑
α∈An

m (Eα ∩ [−n, n]) >
1

n
·#An =∞.

(But m([−n, n]) = 2n <∞.)

29 (Exercise 7)

STEP 1. By Fatou’s lemma (measure version), we have

m
(

lim inf
k→∞

Ek

)
5 lim inf

k→∞
m(Ek).

STEP 2. Since Ek ⊂ [a, b], so
⋃∞
k=k0

Ek ⊂ [a, b] and m
(⋃∞

k=k0
Ek
)
5 b − a < ∞,

we apply Fatou’s lemma (measure version), and we have

lim sup
k→∞

m(Ek) 5 m

(
lim sup
k→∞

Ek

)
.

(In the proof of Corollary 2.9, if we let E =
⋃∞
k=k0

Ek and then we have the same conclu-
sion. So starting from k = k0 does not matter because we are interested in the situation
when k is sufficiently large.) Now the proof is complete.

30 (Exercise 8)

∞∑
n=1

χEn(x) <∞, ∀x ∈ [0, 1] \N,m(N) = 0

implies that {x ∈ [0, 1] | x is contained in infinitely many En} = lim supn→∞En ⊂
[0, 1] \N . So we have

lim sup
n→∞

m(En) ≤ lim
n→∞

m

(
∞⋃
m=n

Em

)
= m

(
∞⋂
n=1

∞⋃
m=n

Em

)
.

(The equality holds because En ⊂ [0, 1]. See Corollary 2.8.)

§ 2.3

31 (Lemma 2.10) Let F
def
= Gc. Since Ek ⊂ Ek+1, limk→∞m

∗(Ek) exists.
When limk→m

∗(Ek) = ∞, the statement holds obviously. We only need to consider
limk→∞m

∗(Ek) <∞.

149



2.3.

STEP 1. (proof of
⋃∞
k=1 Ek = E) First we show that

⋃∞
k=1Ek = E. Since Ek ⊂ E

for all k = 1, 2 · · · ,
⋃∞
k=1Ek ⊂ E.

Next, for any x ∈ E, dist(x,Gc) > 0. To verify this, let us recall Theorem 1.24. Since
F = Gc is a non-empty closed set, ∀x ∈ Rd, there exists y ∈ Gc = F , dist(x,Gc) = |x− y|.
If dist(x,Gc) = 0, then x = y ∈ Gc. However x ∈ E ⊂ G so this contradicts to the
assumption. So we conclude that dist(x,Gc) > 0 for all x ∈ E. For each x ∈ E, by taking
sufficiently large k, we have dist(x,Gc) = 1

k
. So x ∈

⋃∞
k=1Ek for all x ∈ E. This implies

that E ⊂
⋃∞
k=1Ek.

STEP 2. (proof of limk→∞m
∗(Ek) = m∗(E)) Ek is monotone increasing. So

limk→∞m
∗(Ek) exists. Obviously limk→∞m

∗(Ek) 5 m∗(E) holds. So our goal is to show
that m∗(E) 5 limk→∞m

∗(Ek).

Let Ak
def
= Ek \ Ek−1, E0

def
= ∅. dist(A2k, A2`) > 0 if k < ` holds. We will prove this

later, but let us accept this fact for now. Since
⋃k
j=1 A2j ⊂ E2k, we have

m∗

(
k⋃
j=1

A2j

)
5 m∗(E2k).

The left hand side is

m∗

(
k⋃
j=1

A2j

)
=

k∑
j=1

m∗(A2j),

because dist(A2k, A2l) > 0 if k < l and Theorem 2.4. Therefore,

k∑
j=1

m∗(A2j) 5 m∗(E2k)

Similarly we also have
k∑
j=1

m∗ (A2j−1) ≤ m∗ (E2k−1) .

By our assumption, supk=1m
∗(Ek) = limk→∞m

∗(Ek) <∞, therefore we have

∞∑
k=1

m∗(A2k),
∞∑
k=1

m∗(A2k−1) <∞.

Since

E = E2k ∪
∞⋃

j=k+1

A2j ∪
∞⋃

j=k+1

A2j−1,

and by sub-additivity of an outer measure, we have

m∗(E) 5 m∗(E2k) +
∞∑

j=k+1

m∗(A2j) +
∞∑

j=k+1

m∗(A2j−1).

By taking k →∞,
∑∞

j=k+1 m
∗(A2j) +

∑∞
j=k+1m

∗(A2j−1)→ 0. So we conclude that

m∗(E) 5 lim
k→∞

m∗(E2k).

Since Ek is monotone increasing, so the right hand side = limk→∞m
∗(Ek).
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STEP 3. (proof of dist(A2k, A2`) > 0, k < `) Let x1 ∈ A2k, x2 ∈ A2`. Sinde F = Gc

is a non-empty closed set, there exists y2 ∈ Gc = F s.t

|x2 − y2| = dist(x2, G
c).

By triangular inequality, we have

dist(x1, x2) = dist(x1, y2)− dist(x2, y2)

= dist(x1, y2)− dist(x2, G
c)

Further more, since dist(x1, y2) = dist(x1, G
c)

def
= infy∈Gc |x1 − y|, we have

dist(x1, x2) = dist(x1, G
c)− dist(x2, G

c).

Since x1 ∈ A2k, x2 ∈ A2`, dist(x1, G
c) = 1

2k
and dist(x1, G

c) < 1
2`−1

, so we have

|x1 − x2| = dist(x1, x2)

= dist(x1, G
c)− dist(x2, G

c)

=
1

2k
− 1

2`− 1
.

This implies that

inf
x1∈A2k,x2∈A2`

|x1, x2| =
1

2k
− 1

2`− 1
> 0.

32 (Theorem 2.11) Let B an arbitrary subset ofRd and let F be a non-empty
closed set. We use Lemma 2.10 (G = F c, E = B \ F ⊂ G). Let

Ek
def
=

{
x ∈ B \ F | dist(x, F ) =

1

k

}
.

Then limk→∞m
∗(Ek) = m∗(B \ F ). Since

m∗(B) = m∗(B ∩ F ∪B \ F )
∗1
= m∗(B ∩ F ∪ Ek)
∗2
= m∗(B ∩ F ) +m∗(Ek),

• (∗1) B \ F ⊃ Ek.

• (∗2) This hold because dist(Ek, B ∩ F ) > 0. First, dist(Ek, B ∩ F ) = dist(Ek, F ).
(It is easy to verify by the definition of dist(·, ·).) Let x ∈ Ek, y ∈ F . be arbitrary
points in Ek and F . Then |x− y| = dist(x, F ) = 1

k
. Therefore dist(Ek, F ) = 1

k
.

Finally,by taking k ↗∞, we have the desired result.

151



2.3.

33 (Theorem 2.12) Let Od be a collection of open sets on Rd and let B be a

family of Borel measurable sets. ∀G ∈ Od, F
def
= Gc ∈M ⇒ G ∈M so Od ⊂M . Since

B
def
= σ[Od] is the smallest σ−algera which contains Od, σ[Od] ⊂M .

34 (Theorem 2.13)

(1)

case 1. (m(E) < ∞) By the definition of Lebesgue (outer) measure, we have
{In}∞n=1, E ⊂

⋃∞
n=1 In, s.t

m(E) 5
∞∑
n=1

|In| < m(E) < ε

Let G
def
=
⋃∞
n=1 In. We show that G is the desired open set. By sub additivity m(G) 5∑∞

n=1 |In| < m(E) + ε. Since m(G) <∞ and E ⊂ G, m(G \ E) = m(G)− (E) < ε.

case 2. (m(E) = ∞) Let Ek
def
= E ∩ B(0, k) (E =

⋃∞
k=1Ek). Then m(Ek) < ∞.

From the previous result, for each Ek we have an open set Gk ⊃ Ek s.t ,m(Gk \Ek) < ε
2k

.

Let G
def
=
⋃∞
k=1 Gk. G is the desired open set. m(G \ E) 5

∑∞
k=1m(Gk \ Ek) 5 ε.

(2) We have G ⊃ Ec. s.t m(G \ Ec) < ε from the previous result. Let F
def
= Gc.

Then m(E \ F ) = m(G \ Ec) < ε.

35 (Converse of Theorem 2.13) We can find a sequence of open sets {Gn}∞n=1 s.t

m∗(Gn \ E) < 1
n
. Let H

def
=
⋂∞
n=1Gn ∈ M . Then m∗(H \ E) 5 m∗(Gn \ E) < 1

n
for all

n = 1, 2 · · · so m(H \ E) = 0. Finally E = H \ (H \ E) ∈ M because H,H \ E ∈ M .
Now the proof is complete.

36 (Theorem 2.14)

(1) By Theorem 2.13, we have Gn : an open set s.t m(Gn \ E) < 1
n

and E ⊂ Gn.

Let H
def
=
⋂∞
n=1Gn. (This is a Gδ set.) Then E ⊂ H and m(H \E) 5 m(Gn \E) < 1

n
for

all n = 1, 2 · · · . So m(H \ E) = 0. Let Z
def
= H \ E. (This is a measure zero set.) Then

E = H \ Z.

(2) By Theorem 2.13, we have Fn : a closed set s.tm(E\Fn) < 1
n
. LetK

def
=
⋃∞
n=1 Fn.

(This is a Fσ set.) Then m(E \K) 5 m(E \Fn) < 1
n

for all n = 1, 2 · · · . So m(E \K) = 0.

Finally let Z
def
= E \K. (This is a measure zero set). Then E = K ∪ Z

37 (Theorem 2.15) We may suppose that m∗(E) < ∞ because if m∗(E) = ∞,
Rd is the desied set. By the definition of Lebesgue outer measure, for each n = 1, 2 · · · ,
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we have {In,k}k=1 s.t

m∗(E) 5
n∑
k=1

|In,k| < m∗(E) +
1

n
.

Let Gn
def
=
⋃∞
k=1 In,k. (This is an open set. Gn ⊃ E) Then we have

m(Gn) 5 m∗(E) +
1

n
.

Finally let H
def
=
⋂∞
n=1Gn. (This is a Gδ set. H ⊃ E) Then we have

m∗(E) 5 m(H) 5 m(Gn) 5 m∗(E) +
1

n
,∀n = 1, 2 · · · .

So m∗(E) = m(H).

38 (Corollary 2.16 and Corollary 2.17)

(1) For each k = 1, 2 · · · , we take a Gδ-set Hk s.t Ek ⊂ Hk and m∗(Ek) = m(Hk).

m∗(lim inf
k→∞

Ek)
∗1
5 m

(
lim inf
k→∞

Hk

)
∗2
= m

(
∞⋃
k=1

∞⋂
m=k

Hm

)
∗3
= lim

k→∞
m

(
∞⋂
m=k

Hm

)
∗4
5 lim inf

k→∞
m(Hk)

∗5
= lim inf

k→∞
m∗(Ek).

• (∗1) Ek ⊂ Hk

• (∗2) By definition.

• (∗3)
⋂∞
m=kHm is an inreasing sequence of sets with respect to k. So we may swap

lim and m.

• (∗4)
⋂∞
m=kHm ⊂ Hk. m(Hk) does not necessarily have a limit. So we consider

lim inf.

• (∗5) m∗(Ek) = m(Hk).

So we have the desired result. Notice. Some people may think that we can use this
lemma to prove Lemma 2.10. But we can not do so. In this proof, we used measurability
of Hk which was derived from the fact that a closed set is Lebesgue measurable. However
measurability of closed sets was proved using Lemma 2.10.

(2) If Ek is an increasing sequence, each lim inf in the formula above becomes lim
So we have m∗(limk→∞Ek) 5 lim infk→∞m

∗(Ek). = is obvious.
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39 (Theorem 2.18 (a)) We have already shown that m∗(E) = m∗(E+x0) where
E+x0 = {x + x0|x ∈ E}. In this theorem we prove measurability is also preserved by
translation. Suppose E ∈M . Then E = H \ Z where H is a Gδ set and Z is a measure
zero set. Obviously E+x0 = H+x0 \Z+x0 . Z+x0 is also a measure zero set since translation
does not change outer measure. H+x0 =

⋂∞
k=1 Gk+x0

. Obviously Gk+x0
is also an open

set. So E+x0 is also measurable.

40 (Theorem 2.18 (b)) Let E ⊂ R. Let us recall that ∀λ ∈ R, m∗(λE) =
|λ|m∗(E). (Theorem 2.5 (b), d = 1.) Let B be an arbitrary set on R.

STEP 1.

m∗(B ∩ λE) +m∗(B ∩ (λE)c)
∗1
= m∗(B ∩ λE) +m∗(B ∩ λ(Ec))
∗2
= m∗(λ(λ−1B ∩ E)) +m∗(λ(λ−1B ∩ Ec))

= |λ|m∗(λ−1B ∩ E) + |λ|m∗(λ−1B ∩ Ec).

• (∗1) (λE)c = λ(Ec)holds. We explain this in the next step.

• (∗2) λ(A ∩B) = λA ∩ λB holds. We also explain this in the next step.

Further more, since E is mesurable, for all B̃ ⊂ R, we have

m∗(B̃ ∩ E) +m∗(B̃ ∩ Ec) 5 m∗(B̃).

Let B̃ = λ−1B. Then we have

|λ|m∗(λ−1B ∩ E) + |λ|m∗(λ−1B ∩ Ec)

5 |λ|m∗(λ−1B) = |λ| · 1

|λ|
m∗(B) = m∗(B).

Now the proof is complete.

STEP 2. First, we verify that (λE)c = λEc. Let f(x)
def
= x

λ
. Then λE = f−1(E).

Since f−1(E)c = f−1(Ec), we have (λE)c = λEc.

Next, let f(x)
def
= λx. f(A ∩B) = f(A) ∩ f(B) holds. So λA ∩ λB = λ(A ∩B)

41 (Exercise 1) Cosider a Gδ set H1 ⊃ E s.t m(H1) = m∗(E) < ∞. Let

{Fk};Fk ⊂ E be a bounded closed set with m(Fk) ↗ m∗(E). Let H2
def
=
⋃∞
k=1 Fk.

m∗(E \H2) 5 m(H1 \H2) = m(H1) −m(H2) 5 m∗(E) −m(Fk) for all k = 1, 2 · · · . So
m∗(E \H2) = 0⇒ E \H2 ∈M . Finally E = (E \H2) ∪H2 ∈M .

42 (Exercise 2)
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(1) We prove the contraposition. Suppose that E 6= [0, 1]. Let us pick x0 ∈ [0, 1]\E.
Since x0 ∈ [0, 1]\E ′, there exists δ0 > 0 s.t B(x0, δ0)∩E = ∅. Therefore, B(x0, δ0)∩[0, 1] ⊂
[0, 1] \ E. And we have

0 < m(B(x0, δ0) ∩ [0, 1]) 5 m([0, 1] \ E) = m([0, 1])−m(E).

So m(E) < 1.

(2) We prove the contraposition. Suppose that E̊ 6= ∅. This implies that ∃x0 ∈ E
and ∃δ0 > 0 s.t B(x0, δ0) ⊂ E. Then 0 < m(B(x0, δ0)) 5 m(E).

43 (Exercise 3) We prove the contraposition. In other words, our goal is to prove
that if ∃x0 ∈ (a, b) s.t f(x0) > g(x0) then ∃t0 ∈ R s.t m({x ∈ [a, b] | f(x) > t0}) >
m({x ∈ [a, b] | g(x) > t0}).

Let t0 = f(x0), then t0 is the desired t0 ∈ R. m({x ∈ [a, b] | f(x) > t0}) = m([a, x0)) =
x0 − a because f(x) is continuous and strictly decreasing. Since g(x) is also continuous
and strictly decreasing, there exists δ0 > 0 s.t

∀x ∈ (x0 − δ0, b], g(x) < t0 = f(x0).

So

m({x ∈ [a, b] | g(x) > t0} 5 m({x ∈ [a, b] | g(x) = t0})
5 m([a, x0 − δ]) = x0 − a− δ.
< x0 − a
= m({x ∈ [a, b] | f(x) > t0})

44 (Exercise 4) We use Theorem 2.11 and Theorem 2.13. (Recall that we have
not shown that a closed set is Lebesgue measurable.)

STEP 1. First we explain that we may suppose that E is bounded without loss of

generality. Let En
def
= E ∩ [−n, n]. Then m(En)↗ m(E). If m(E) > α, we can find n s.t

m(En) > α. So we just need to find F ⊂ En s.t m(F ) = α. We explain how to find such
F in the next step.

STEP 2. Next we suppose that E ⊂ [−M,M ] is bounded. By Theorem 2.13, there

exists a closed set K ⊂ E s.t m(E \K) < ε
def
= m(E)−α. Since m(E) <∞ (∵ bounded),

m(E \K) = m(E)−m(K) < m(E)−α. So m(K) > α. Now let f(x)
def
= m(K ∩ [−M,x]).

Then f(x) is continuous because f(x + h) − f(x) 5 m((x, x + h]) = h. f(−M) = 0
and f(M) = m(K) > α. By intermediate value theorem, there exists c ∈ [−M,M ] s.t

f(c) = α. So F
def
= K ∩ [−M, c] is the desired closed set.
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45 (Exercise 5) This does not necessarily hold. Let

G
def
=

∞⋃
n=1

(
rn −

1

2n+1
, rn +

1

2n+1

)
,

where {rn}
def
= Q. Since G contains all rational numbers on R (hence it is dense), so

G = R, however

m(G) 5
∞∑
n=1

m

((
rn −

1

2n+1
, rn +

1

2n+1

))
=
∞∑
n=1

1

2n
= 1.

46 (Exercise 6) Let us consider Gδ sets H1, H2 s.t E1 ⊂ H1, E2 ⊂ H2 and

m∗(E1) = m(H1), m∗(E2) = m(H2).

We have

m(H1) +m(H2)
∗1
= m(H1 ∪H2)

∗2
= m(E1 ∪ E2)
∗3
= m∗(E1) +m∗(E2)
∗4
= m(H1) +m(H2).

• (∗1) sub-additivity

• (∗2) monotonicity of measure

• (∗3) by assumption

• (∗4) m(H1) = m∗(E1), m(H2) = m∗(E2)

From this fact, we find out that

m(H1 ∩H2) = 0,

hence
m∗(E1 ∩ E2) = 0.

So E1 ∩ E2 is also a measure zero set hence E1 ∩ E2 ∈M . Moreover

m(H1 ∪H2 \ (E1 ∪ E2))
∗5
= m(H1 ∪H2)−m(E1 ∪ E2) = 0,

so H1 ∪H2 \ (E1 ∪ E2) is also a measure zero set.

• (∗5) Both H1∪H2, E1∪E2 are measurable and H1∪H2 ⊃ E1∪E2 and m(E1∪E2) <
∞.

Therefore we find out that both H1 \E1, H2 \E2 are measure zero sets. (You may draw a
Ben figure.) Finally E1 = H1 \ (H1 \E1) and E2 = H2 \ (H2 \E2). So we have the desired
conclusion.
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47 (Exercise 7)

STEP 1. Let {rn}
def
= [0, 1]∩Q, let In,k

def
= B(rn,

1
2n+k ) and let Gk

def
=
⋃∞
n=1 In,k. Gk

contains all rational numbers in [0, 1] so Gk is dense in [0, 1]. m (
⋂∞
k=1 Gk) 5 m(Gk) 5∑∞

n=1
1

2n+k−1 = 1
2k−1 . So m (

⋂∞
k=1 Gk) = 0. We prove that E

def
=
⋂∞
k=1 Gk is a set of the

second category. (not a meagre set).

STEP 2. Let Ec def
= [0, 1]\E =

⋃∞
k=1[0, 1]\Gk. Since [0, 1]\Gk is closed, [0, 1] \Gk =

[0, 1] \Gk. Therefore
˚

[0, 1] \Gk = ˚[0, 1] \Gk. It is enough to show that [0, 1] \Gk has no
interior point.

Since Gk is dense in [0, 1] (Gk contains all rational numbers in [0, 1]), [0, 1] \ Gk has

no interior point . So
˚

[0, 1] \Gk = ˚[0, 1] \Gk = ∅, hence [0, 1] \Gk is a nowhere dense set.
Therefore Ec =

⋃∞
k=1[0, 1] \Gk is a meagre set (a set of the first category). So E is a set

of the second category. (∗)

STEP 3. Finally, we explain (∗). We show that if A ⊂ Rd is a meagre set. Then

B
def
= Ac is not a meagre set (a set of the second category). Suppose both A,B are meagre

sets and A =
⋃∞
n=1 F

(1)
n , B =

⋃∞
n=1 F

(2)
n , where {F (1)

n } ∪ {F (2)
n } are collections of nowhere

dense sets.

Rd = A ∪B =
∞⋃
n=1

F (1)
n ∪

∞⋃
n=1

F (2)
n

⊂
∞⋃
n=1

F
(1)

n ∪
∞⋃
n=1

F
(2)

n

= Rd

So it follow that Rd does not have an interior point by Baire’s theorem (Theorem 1.23).
(contradiction!)

48 (Exercise 8)

STEP 1. Let

A
def
=

{
x ∈ R | #

{
(p, q) ∈ Z× N :

∣∣∣∣x− p

q

∣∣∣∣ 5 1

q3

}
= +∞

}
.

We show that m(A) = 0. Let Bn
def
= [n − 1, n] ∩ A, n ∈ Z. It is enough for us to

prove that m(B1) = 0 because for any m ∈ Z, x ∈ A ⇒ x + m ∈ A and this implies
m(B0) = m(B1) = m(B−1) = · · · . (|x− p

q
| = |x+m− p+mq

q
| = |x+m− p′

q
|.)

STEP 2. Let B = B1. We show that m(B) = 0. Let

Ip,q
def
=

(
p

q
− 1

q3
,
p

q
+

1

q3

)
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Suppose x ∈ B ⊂ [0, 1]. There are infinitely many (p, q) ∈ Z× N s.t |x− p
q
| 5 1

q3 (⇔ x ∈
Ip,q). So

qx− 1

q2
5 p 5 qx+

1

q2
.

Moreover, since x ∈ [0, 1], q = 1,

−1 5 p 5 q + 1.

From this inequality, we can find out that there are only finite number of p s.t x ∈ Ip,q
for each fixed q = 1, 2 · · · . So if we let Eq

def
=
⋃q+1
p=−1 Ip,q, there should be infinitely many

q s.t x ∈ Eq. Therefore ∀x ∈ B, we have

x ∈ {x ∈ R | x is contained in infinitely many Eq} = lim sup
q→∞

Eq

In other words,
B ⊂ lim sup

q→∞
Eq

Now
∑∞

q=1m(Eq) <∞, (∵ m(Eq) 5
q+2
q3 ),

m

(
lim sup
q→∞

Eq

)
= lim

q→∞
m

(
∞⋃
m=q

Em

)

5 lim
q→∞

∞∑
m=q

m(Em) = 0.

(You may also use Borel-Cantelli’s lemma to explain this part.)

§ 2.4

49 (Theorem 2.19)

STEP 1. (m(E) = +∞) In this theorem, we may suppose that m(E) < ∞. Let

Ek
def
= B(0, k) ∩ E. Then Ek ↗ E, so we may find k s.t 0 < m(Ek) < ∞. So let us find

the desired interval with respect to Ek. Then, λ|I| < m(I ∩ Ek) 5 m(I ∩ E).

STEP 2. (m(E) <∞) Let

ε ∈
(

0,

(
1

λ
− 1

)
·m(E)

)
.

We may find a collection of open intervals {Ik}k=1 s.t

E ⊂
∞⋃
k=1

Ik,

∞∑
k=1

|Ik| < m(E) + ε.
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Next if we suppose that

m(E ∩ Ik) 5 λ|Ik|, ∀k = 1, 2 · · · , (∗)

then since E =
⋃∞
k=1 E ∩ Ik, we have

m(E)
∗1
5

∞∑
k=1

m(E ∩ Ik)

∗2
5

∞∑
k=1

λ|Ik|

∗3
< λ(m(E) + ε) = λm(E) + λε

∗4
< λm(E) + λ ·

(
1

λ
− 1

)
·m(E)

< m(E).

• (∗1) measure has sub-additivity

• (∗2) we suppose that m(E ∩ Ik) 5 λ|Ik|

• (∗3) we picked {Ik}∞k=1 s.t
∑∞

k=1 |Ik| < m(E) + ε

• (∗4) we chose ε < ( 1
λ
− 1) ·m(E)

A contradiction occured because the assumption (∗) is incorrect. So there exists at least
one Ik0 s.t

m(E ∩ Ik0) > λ|Ik0 |.

50 (Theorem 2.20 Steinhaus Theorem)

STEP 1. Let

λ ∈
(

1− 1

2n+1
, 1

)
.

By Theorem 2.19, we find an open interval I
def
=
∏d

i=1 (ai, bi) s.t

λ|I| < m(E ∩ I). (∗a)

Now let δ be the shortest edge length of I.

δ
def
= min

i=1···d
{bi − ai}

STEP 2. Let

J
def
=

d∏
i=1

(
−δ

2
,
δ

2

)
.

We prove that J ⊂ E−E. However, it is enough for us to prove the following statement.

∀x0 ∈ J, (E ∩ I) ∩ (E ∩ I)+x0 6= ∅. (∗b)
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We state the reason why it is enough for us to prove (∗b). If there exists y ∈ (E ∩
I) ∩ (E ∩ I)+x0 , then y ∈ (E ∩ I) and y = z + x0 for some z ∈ (E ∩ I). This means that

∃y, z ∈ (E ∩ I) s.t y− z = x0. In other words, x0 ∈ E ∩ I −E ∩ I
def
= {y− z | y, z ∈ E ∩ I}

for all x0 ∈ J . So J ⊂ E ∩ I − E ∩ I. Moreover, obviously, E ∩ I − E ∩ I ⊂ E − E. So
we can conclude that J ⊂ E − E.

STEP 3. (Proof of (∗b)) Let x0 = (x0,1, · · ·x0,d). Since |x0,i| < δ
2

and δ is the
shortest edge length of I, the each edge length of I ∩ I+x0 is larger than 1

2
(bi − ai). So

m(I ∩ I+x0) >
1

2d
· |I| . (∗c)

And

m(I ∪ I+x0)
∗1
= m(I) +m(I+x0)−m(I ∩ Ix+0)
∗2
= |I|+ |I+x0| −m (I ∩ I+x0)
∗3
= 2 |I| −m (I ∩ I+x0)
∗4
< 2 |I| − 1

2d+1
· |I|

= 2

(
1− 1

2d+1

)
|I|

∗5
< 2λ |I| .

• (∗1) m(A ∪B) = m(A) +m(B)−m(A ∩B).

• (∗2) m(I) = |I| when I is an open rectangle.

• (∗3) obviously |I| = |I+x0| holds from the definition of |I|.

• (∗4) by (∗c)

• (∗5) we assume 1− 1
2d+1 < λ.

Now suppose E ∩ I and (E ∩ I)+x0 are disjoint. Then,

m
(
(E ∩ I) ∪ (E ∩ I)+x0

)
= m(E ∩ I) +m((E ∩ I)+x0)

= 2m(E ∩ I)
∗6
5 m (I ∪ I+x0)

< 2λ |I| .

• (∗6) E ∩ I
⋃

(E ∩ I)+x0 ⊂ I ∪ I+x0

So we have m(E ∩ I) < λ |I|. However this contradicts to the assumption (∗a). So E ∩ I
and (E ∩ I)+x0 are not disjoint for any x0 ∈ J . Now the proof of (∗b) is complete.
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51 (Exercise 1) By Theorem 2.20,

(−a, a) ⊂ E − E, for some a > 0.

This means that ∀x ∈ (−a, a), ∃y, z ∈ E s.t x = y − z. Since y = x+ z, y ∈ E+x. So

y ∈ E ∩ E+x 6= ∅.

52 (Exercise 2) By assumption, for all x ∈ (−δ, δ), x ∈ E−a or x ∈ −E−a where

−E−a
def
= {−x | x ∈ E−a}. Therefore we have

(−δ, δ) ⊂ E−a ∪ −E−a.

By monotonicity and sub-additivity of Lebesgue measure, we have

m((−δ, δ))
∗1
5 m∗ (E−a ∪ −E−a)
∗2
5 m∗(E−a) +m∗(−E−a)
∗3
= m∗(E−a) +m∗(E−a)

= 2m∗(E−a)
∗4
= 2m(E−a)
∗5
= 2m(E)

• (∗1) A ⊂ B then m∗(A) 5 m∗(B)

• (∗2) m∗(A ∪B) 5 m∗(A) +m∗(B)

• (∗3) m∗(λE) = |λ|dm∗(E). (Theorem 2.5)

• (∗4) By Theorem 2.18, E ∈M then E−a ∈M . So we can change m∗ to m.

• (∗5) By Theorem 2.18 or Theorem 2.5. Translation does not change the value of
Lebesgue outer measure.

From the inequality above, it follows that 2δ 5 2m(E). Now the proof is complete.

53 (Exercise 3) f is bounded in E. We suppose that |f(x)| 5M for all x ∈ E.

STEP 1. (∀r ∈ Q, f(r) = rf(1)) First f(0) = 2f(0), so f(0) = 0. Next y = −x
and we have f(x) = −f(x). Then f(n) = nf(1) for n ∈ Z.

Let r ∈ Q. Then r = n
m
, n ∈ Z,m ∈ N. f( n

m
+ n

m
· · · n

m
) = mf( n

m
) = f(n) = nf(1). So

f( n
m

) = n
m
f(1).

STEP 2. By Theorem 2.20, there exists an interval I = [−c, c] ⊂ E − E. Let
x ∈ I. Then ∃x1, x2 ∈ E s.t x = x1 − x2. By assumption, f(x) = f(x1) − f(x2) so
|f(x)| = |f(x1)− f(x2)| 5 2M <∞.
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STEP 3. Let x ∈ R and let N ∈ N. We can always find r ∈ Q s.t |x − r| 5 c
N

because Q is dense in R. We show that |f(x)− xf(1)| = 0 for all x ∈ R.

|f(x)− xf(1)| = |f(x− r) + f(r)− xf(1)|
= |f(x− r) + rf(1)− xf(1)|
5 |f(x− r)|+ |r − x| |f(1)|
5 |f(x− r)|+ c

N
|f(1)| .

Moreover,

|f(x− r)| =

∣∣∣∣f ( 1

N
·N(x− r)

)∣∣∣∣
=

1

N
|f (N(x− r))|

∗
5

2M

N
.

• (∗) N(x− r) ∈ I = [−c, c] so |f(N(x− r))| 5 2M by STEP 2.

Since N ∈ N is arbitrary, the right hand side ↘ 0 by taking N ↗∞.

§ 2.5

54 (Example: non Lebesgue measurable set)

(1) First we construct a non Lebesgue measurable set on R1.

STEP 1. Let

Γx
def
= {x+ r | r ∈ Q} (x ∈ R), R \Q def

= {Γx | x ∈ R} .

By axiom choice, from each Γ ∈ R \ Q, we can pick an element a ∈ Γ, and define a new

set W
def
= {a} by gathering a ∈ Γ together. Note the following facts.

• (*1) If x− y ∈ Q, then Γx = Γy. (In this case, Γx,Γy are equivalent.)

• (*2) If a1, a2 ∈ W (a1 6= a2), then a1 − a2 /∈ Q. (This implies that W −W does not
contain any rational numbers except for 0.)

• (*3) R =
⋃
r∈QW+r where W+r

def
= {x+ r | x ∈ W}.

(*1) is easy to verify. (*2) If a1 − a2 ∈ Q, then there exists Γ ∈ R \Q s.t a1, a2 ∈ Γ. But
we pick an element a ∈ Γ only once from each Γ ∈ R \ Q, so both a1, a2 ∈ Γ can not be
contained in W . (*3) Let us pick an arbitrary real number x ∈ R. There exists some
a ∈ W s.t x ∈ Γa. (Because we pick some a ∈ Γx to construct W .) So there exists r′ ∈ Q
s.t a = x+ r′. Let r = −r′. Then x = a+ r.
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STEP 2. We show that W /∈ M . We use proof by contradiction. Suppose that
W ∈M .

case 1. (if m(W ) = 0)

∞ = m(R) = m

(⋃
r∈Q

W+r

)
5
∑
r∈Q

m(W+r) = 0

(contradiction!!)

case 2. (if m(W ) > 0) By Theorem 2.20 Steinhaus Theorem, we ∃δ > 0 s.t (−δ, δ) ⊂
W −W . However (W −W )\{0} are irrational numbers by the argument above. In other
words, W −W can not contain rational numbers, so it can not contain an interval. (An
interval always contain rational numbers.) (contradiction!!)

In conclusion W is not Lebesgue measurable.

(2) Extention to the case of Rd is quite easy. We just need to change R,Q into
Rd,Qd in the discussion above.

55 (Additional Theorem) We show the case of R1. (Modification to the case of
Rd is easy.) Let W̃ be a non Lebesgue measurable set on R1. Let W̃+r = {x+ r | x ∈ W̃ }
where r ∈ Q. Since

⋃
r∈Q W̃+r = R1, we have A =

⋃
r∈Q W̃+r ∩ A. By sub-additivity,

0 < m∗(A) 5
∑
r∈Q

m∗(W̃+r ∩ A).

So there exists at least one r0 ∈ Q s.t 0 < m∗(W̃+r0 ∩ A). W
def
= W̃+r0 ∩ A is the desired

non Lebesgue measurable set.
Suppose W ∈M , by Steinhaus Theorem, ∃δ > 0 s.t (−δ, δ) ⊂ W −W = W̃+r0 ∩A−

W̃+r0 ∩A ⊂ W̃+r0 − W̃+r0 = W̃ − W̃ . However, we have already shown that W̃ − W̃ does
not contain any intervals in the previous question. So W /∈M .

56 (Exercise 1) We can construct a non Lebesgue measurable set W ⊂ [0, 1] by
the Additional Theorem. From each Γx, x ∈ A, we can always choose ax ∈ [0, 1] ∩ Γx.
Then W ⊂ [0, 1]. Such W satisfies the given condition.

57 (Exercise 2) We construct a non Lebesgue measurable set W ⊂ [0, 1] using

the Additional Theorem. Let {rk}
def
= [−1, 1] ∩ Q and let Ek

def
= W+rk where W+rk

def
=

{w+ rk | w ∈ W}. Note that each Ek are disjoint. (Suppose that E1∩E2 6= ∅. Then pick
x ∈ E1 ∩ E2. x = w1 + r1 = w2 + r2 where w1, w2 ∈ W . This implies that w1 − w2 ∈ Q.
But this can not happen.)

∞⋃
k=1

Ek ⊂ [−1, 2].

So m∗(
⋃∞
k=1Ek) 5 3 but

∑∞
k=1m

∗(Ek) =∞ because m∗(Ek) = m∗(W+rk) = m∗(W ) > 0.
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58 (Exercise 3) Since (W − W ) \ {0} does not contain any rational numbers,
∀x ∈ W −W,∀δ > 0, B(x, δ) 6⊂ (W −W ) \ {0}. (∵ B(x, δ) contains rational numbers.)
Therefore we conclude that W −W has no interior point.

59 (Exercise 4) We suppose that E∆W ∈M and derive a contradiction. Then
E∆W ∩ E ∈ M thus E \ W ∈ M . And E∆W \ (E \ W ) = W \ E ∈ M . Next
E \ (E \W ) = E ∩W ∈M . Finally W = E ∩W ∪W \ E ∈M . (contradiction!!)

60 (Exercise 5) We show that E ∈M ⇒

sup
F : closed;F⊂E

{m(F )} = inf
G: open;E⊂G

{m(G)} .

Let S
def
= supF : closed;F⊂E {m(F )} and I

def
= infG: open;E⊂G {m(G)}.

case 1. (m(E) <∞) By Theorem 2.13, we have a sequence of closed sets and open
sets {Fn}n=1 : Fn ⊂ E, {Gn}n=1 : Gn ⊃ E where

m (Gn \ E) <
1

2n
, m (E \ Fn) <

1

2n

Then

I − S 5 m(Gn)−m(Fn) = m(Gn)−m(E) +m(E)−m(Fn)
∗
= m(Gn \ E) +m(E \ Fn)

<
1

n
→ 0

• (∗) m(E) < ∞, E ⊂ Gn so m(Gn \ E) = m(Gn) −m(E). Similarly, m(E \ Fn) =
m(E)−m(Fn).

case 2. (m(E) = ∞) It is enough for us to show that S = ∞. Since ∀ε > 0,
∃F ⊂ E,F : closed s.t m(E \ F ) < ε. m(E) = m(E \ F ) + m(F ) holds. The left hand
side is ∞. If m(F ) < ∞, the equality does not hold, hence m(F ) = ∞. So we conclude
that S 5 m(F ) =∞.

61 (Exercise 6) Let I ⊂ Rd be a non Lebesgue measurable set. We define

Eα
def
= Rd \ {α} (So Ec

α = {α}). Then

⋂
α∈I

Eα =

(⋃
α∈I

Ec
α

)c

= Ic /∈M .

62 (Extra Exercise 1) Let

ΓI
def
= {J ∈ Γ | I ∩ J 6= ∅} .
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First
⋃
J∈ΓI

J is also an interval. Second {ΓI}I∈Γ is at most countable. (∵ We pick
ΓI1 ,ΓI2 ∈ {ΓI}I∈Γ. Then

⋃
J∈ΓI1

J,
⋃
J∈ΓI2

J are disjoint intervals. Each interval contains

rational numbers and rational numbers are countable, so disjoint intervals are countable.)
Finally ⋃

I∈Γ

I =
⋃
I∈Γ

⋃
J∈ΓI

J

is a countable union of intervals. So it is measurable.

63 (Extra Exercise 2) Suppose that there exists a measure zero set Z s.tm(f(Z)) >
0. By Extra Theorem, there exists a non measurable set W /∈ M s.t W ⊂ f(Z).
Then f−1(W ) ⊂ Z so f−1(W ) is a measure zero set, hence measurable. By assumption
f(f−1)(W ) = W is measurable. This contradicts to the fact that W is not measurable.

§ 2.6

64 (Definition 2.3) Let Od be a collection of all open sets on Rd. T is continous
def
= ∀G ∈ Od, T−1(G)

def
= {x ∈ Rd | T (x) ∈ G} ∈ Od.

65 (Theorem 2.21)

STEP 1. (⇒) Suppose ∀G ∈ Od, T−1(G)
def
= {x ∈ Rd | T (x) ∈ G} ∈ Od. Let

x0 ∈ Rn and let ε > 0. Since B
def
= B(T (x0), ε) is an open set,

T−1(B) = {x ∈ Rd | T (x) ∈ B(T (x0), ε)}

is an open set by assumption. Since T−1(B) is open (and x0 ∈ T−1(B)), there exists δ > 0
s.t

B(x0, δ) ⊂ T−1(B).

This implies that ∀y ∈ B(x0, δ), T (y) ∈ B(T (x0), ε). T (y) ∈ B(T (x0), ε) is equivalent to
|T (x0)− T (y)| < ε. In conclusion,

∃δ > 0, s.t ∀y ∈ B(x0, δ), |T (x0)− T (y)| < ε.

STEP 2. (⇐) Suppose that ∀x0 ∈ Rd,∀ε > 0,∃δ > 0 s.t ∀y ∈ B(x0, δ), |T (x0) −
T (y)| < ε. Let G be an open set on Rd. We prove that T−1(G) is open.

case 1. If T−1(G) is an empty set, T−1(G) is open so the statement holds.

case 2. If T−1(G) is not an empty set, we pick an arbitrary point x0 ∈ T−1(G). (We
aim to show that ∃δ > 0 s.t B(x0, δ) ⊂ T−1(G).) Since T (x0) ∈ G and G is an open set,

∃ε > 0 s.t B(T (x0), ε) ⊂ G.

By assumption,

∃δ > 0 s.t ∀y ∈ B(x0, δ), T (y) ∈ B(T (x0), ε) ⊂ G.
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From this fact, we find out that

B(x0, δ) ⊂
{
y ∈ Rd | T (y) ∈ B(T (x0), ε)

}
⊂

{
y ∈ Rd | T (y) ∈ G

}
= T−1(G).

So we conclude that T−1(G) is open for all G ∈ Od.

66 (Example 1) Let x = (x1, · · ·xd) =
∑d

i=1 xiei ∈ Rd where e1, · · · , ed are
standard basis. We define

‖x‖ def
=

(
d∑
i=1

|xi|2
)2

.

Let

M
def
=

(
d∑
i=1

‖T (ei)‖2

)1/2

.

By linearity of T , we have

T (x) = T

(
d∑
i=1

xiei

)
=

d∑
i=1

xiT (ei).

Then

‖T (x)‖
∗1
5

d∑
i=1

|xi| · ‖T (ei)‖

∗2
5

(
d∑
i=1

|xi|2
)1/2( d∑

i=1

‖T (ei)‖2

)1/2

= M‖x‖.

• (∗1) triangular inequality

• (∗2) Cauchy Shwartz inequality

So ‖T (x)− T (y)‖ = ‖T (x− y)‖ 5 M‖x− y‖. This implies that y → x⇒ T (y)→ T (x).
By Theorem 2.21, T is continuous.

67 (Theorem 2.22)

STEP 1. Let us consider an arbitrary open cover of T (K) as below.

T (K) ⊂
⋃
α∈I

Gα, {Gα}α∈I ⊂ Od,
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where Od is a collection of all open sets on Rd. By Lemma 1.20 Lindelof’s covering lemma,
we can always find a sub cover with countable number of open sets. Therefore we may
assume that

T (K) ⊂
∞⋃
n=1

Gn

We aim to prove that we can find a finite number N ∈ N s.t

T (K) ⊂
N⋃
n=1

Gn.

STEP 2.

K
∗1
⊂ T−1 ◦ T (K)

⊂ T−1

(
∞⋃
n=1

Gn

)
∗2
=

∞⋃
n=1

T−1(Gn).

• (∗1) by definition T−1 ◦ T (K) = {x ∈ Rd | T (x) ∈ T (K)} and obviously K is
contained in it.

• (∗2) generally f−1(
⋃
α∈AAα) =

⋃
α∈A f

−1(Aα) holds.

Since K is a compact set, by Heine-Borel’s covering theorem, we can find a finite number
N <∞ s.t

K ⊂
N⋃
n=1

T−1(Gn).

Therefore,

T (K) ⊂ T

(
N⋃
n=1

T−1(Gn)

)
∗3
=

N⋃
n=1

T ◦ T−1(Gn)

∗4
⊂

N⋃
n=1

Gn.

• (∗3) generally f(
⋃
α∈AAα) =

⋃
α∈A f(Aα) holds.

• (∗4) by definition T ◦ T−1(Gn) = {T (x) | x ∈ T−1(Gn)} = {T (x) | x ∈ {y ∈ Rd |
T (y) ∈ Gn}} ⊂ Gn.

For all open covers of T (K) with countable open sets, we can always find a sub cover with
finite number of open sets. So T (K) is compact.
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68 (Corollary 2.23; 2.24)

(1)

E =
∞⋃
n=1

Fn =
∞⋃
n=1

∞⋃
m=1

Fn,m

where Fn,m = Fn ∩B(0,m). Then Fn,m is a bounded and closed (= compact) set.

T (E) =
∞⋃
n=1

T (Fn) =
∞⋃
n=1

∞⋃
m=1

T (Fn,m)

Since T (Fn,m) is also a compact set (= bounded and closed) by Theorem 2.22, T (E) is a
countable union of closed sets. So we conclude that T (E) is a Fσ set.

(2)
E = K ∪ Z.

where K is a Fσ set and Z is a measure zero set. Since

T (E) = T (K ∪ Z) = T (K) ∪ T (Z),

and T (K) is also a Fσ (by the previous result) set and T (Z) is a measure zero set, T (E)
is measurable.

(3) Give a counter example. Let C ⊂ [0, 1] be a Cantor set and let Φ(x) be Cantor
function. Φ(x) is continuous and m(C) = 0. However m(Φ(C)) = 1.

69 (Extra Theorem: Lipschitz Continuous)

(1) Let T : Rd 7→ Rd. If there exists a positive number L s.t

∀x, y ∈ Rd, ‖T (x)− T (y)‖ 5 L‖x− y‖,

where ‖a‖ def
=
(∑d

i=1 a
2
i

)1/2

. Then we say that T is Lipschitz continuous.

(2) If Z ⊂ Rd is a measure zero set and T is Lipschitz continuous, then T (Z) is also
a measure zero set.

If Z is a measure zero set, for any positive number ε > 0, we can find a countably

many open balls Bi
def
= B(xi, ri) s.t

Z ⊂
∞⋃
i=1

Bi,

∞∑
i=1

m∗(Bi) < ε. (∗)
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Let us consider the diameter of T (B) where B is an open ball with radius r. Since

diam(T (B)) = sup
x,y∈B

‖T (x)− T (y)‖

5 sup
x,y∈B

L‖x− y‖

= L · diam(B) = 2Lr,

we can cover T (B) with an open ball with radius 2Lr. Therefore

T (Z) ⊂ T

(
∞⋃
i=1

Bi

)
=
∞⋃
i=1

T (Bi)

and

m∗(T (Z)) 5
∞∑
i=1

m∗ (T (Bi)) < (2L)d · ε.

by taking ε ↘ +0, we have the desired result. So our main task in this question is to
prove (∗).

STEP 1. First, we prove the following fact. Let ε > 0 be an arbitrary positive
number. If Z ⊂ Rd is a measure zero set, then there exists countably many open rectangles
{In} s.t

Z ⊂
∞⋃
n=1

In,
∞∑
n=1

|In| < ε,

with
max

i=1,2··· ,d
(b

(n)
i − a

(n)
i ) 5 min

i=1,2··· ,d
2(b

(n)
i − a

(n)
i ).

where

In
def
=

d∏
i=1

(a
(n)
i , b

(b)
i ).

Let λ ∈ (1, 2). By the definition of outer measure, there exists coutably many open
rectangles {Jn}∞n=1 s.t

Z ⊂
∞⋃
n=1

Jn,
∞∑
n=1

|Jn| <
ε

λd
.

Next, we can divide each open rectangles Jn into {Jn,m}knm=1 so that the longest edge
length is equal or less than the twice of the shortest edge length. And we rename {Jn,m}n,m
to {Ĩn} by reindexing them. Since

|Jn|
∗1
=

kn∑
m=1

|Jn,m|,

• (∗1) this holds obviously by the definition of | · |.
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we have
∞∑
n=1

|Jn| =
∞∑
n=1

kn∑
m=1

|Jn,m| =
∞∑
n=1

|Ĩn|.

Ĩn can not necessarily cover Z because the boundaries among {Jn,m}knm=1 have been cut
out. Let In be an open rectangle which has the same center with Ĩn and each edge length
is λ times of Ĩn. Then Z ⊂

⋃∞
n=1 In. And we have

∞∑
n=1

|In| = λd
∞∑
n=1

|Ĩn|,

hence,
∞∑
n=1

|In| < λd · ε
λd

= ε.

{In} is the desired open rectangles. The proportion of each edge length is same as Ĩn so
the longest edge length of each In is also less than or equal to the twice of the shortest
edge length.

STEP 2. Next we prove the following fact. Let I =
∏d

i=1(ai, bi) be an arbitrary
open rectangle on Rd with

max
i=1,2···d

(bi − ai) 5 2 min
i=1,2···d

(bi − ai).

Then we can always find an open ball B s.t

I ⊂ B,m∗(B) 5 C · |I|,

where C is a constant which is not related to I.
Let `

def
= mini=1,2··· ,d(bi − ai), let r

def
= diam(I) and let C

def
= (4πd)d/2

Γ( d2 +1)
.

r
def
= diam(I) =

(
d∑
i=1

(bi − ai)2

)1/2

5

(
d ·
(

max
i=1,2···d

(bi − ai)
)2
)1/2

5
(
d · (2`)2

)1/2
= 2
√
d`

Moreover,

|I| def
=

d∏
i=1

(bi − ai) =
d∏
i=1

` = `d.
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An open ball B with r can cover I. The outer measure of B is

m∗(B) =
πd/2

Γ
(
d
2

+ 1
)rd

5
πd/2

Γ
(
d
2

+ 1
) (2
√
d`
)d

=
(4πd)d/2

Γ
(
d
2

+ 1
)`d

5
(4πd)d/2

Γ
(
d
2

+ 1
) |I| = C · |I|.

Now the proof is complete.

STEP 3. (proof of (∗)) Let ε > 0 be an arbitrary positive number. Let Z ⊂ Rd be
a measure zero set. For ε∗ = ε

C
> 0, there exists countably many open rectangles {In} s.t

Z ⊂
∞⋃
n=1

In,
∞∑
n=1

|In| < ε∗ =
ε

C
.

By the previous result, for each In, we have Bn with

In ⊂ Bn, m
∗(Bn) 5 C · |In|

Therefore

Z ⊂
∞⋃
n=1

Bn,
∞∑
n=1

m∗(Bn) 5
∞∑
n=1

C · |In| < C · ε
C
.

70 (Theorem 2.25)

71 (Extra Exercise 1) Let Ek
def
= E ∩B(0, k). For all x, y ∈ Ek, we have

|f(x)− f(y)| 5 e|x|+|y| |x− y| 5 e2k |x− y| .

So f(x) is Lipschitz continuous on Ek. Therefore, if m(E) = 0, then m(Ek) = 0 (∵ Ek is
a subset of E) so m(f(Ek)) = 0 by Extra Theorem. Therefore

m(f(E)) = m

(
f

(
∞⋃
n=1

Ek

))

= m

(
∞⋃
n=1

f (Ek)

)

5
∞∑
n=1

m(f(Ek)) = 0.
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72 (Extra Exercise 2) Let T be a rotation on R2. Then

T (x, y)
def
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.

So T is a linear transformation and the determinant is 1. By Theorem 2.25, we have the
desired conclusion.

§ 2.7

73 (Lemma) We just have to confirm the following three conditions.

STEP 1. Since f−1(∅) = ∅ ∈ Γ, ∅ ∈ A .

STEP 2. SupposeA ∈ A , then f−1(A) ∈ Γ. Since Γ is a σ−algebra, so (f−1(A))c ∈
Γ. Therefore (f−1(A))c = f−1(Ac) ∈ Γ. This implies that Ac ∈ A .

STEP 3. Let {An}∞n=1 ⊂ A . Then for each n = 1, 2 · · · , f−1(An) ∈ Γ. Since Γ
is a σ−algebra, we have

⋃∞
n=1 f

−1(An) ∈ A .
⋃∞
n=1 f

−1(An) = f−1(
⋃∞
n=1An) ∈ Γ. This

implies that
⋃∞
n=1An ∈ A .

We conclude that A is a σ-algebra.

74 (Corollary) In the previous lemma, let Γ
def
= B : the family of Borel sets on R

Then
A

def
=
{
A ⊂ R | f−1(A) ∈ B

}
is a σ−algebra. Moreover ∀G ∈ O (the family of open set on R). f−1(G) ∈ O ⊂ B
because f is a continuous function. This implies that O ⊂ A . Since B is the smallest
σ−algebra that contains O, so B ⊂ A . (because A is also a σ−algebra that contains
O.) Now pick B ∈ B. Then B ∈ A so f−1(B) ∈ B according to the definition of A . So
the proof is complete.

75 (Example: non-Borel set) Until now, we have already shown that there exists
a non Lebesgue measurable set. So

M 6= 2Rd where 2Rd = {B ⊂ Rd}.

We have also shown that a Borel set (or Borel-measurable) set B ∈ B is Lebesgue
measurable B ∈M . Therefore

B ⊂M .

It is natural for us to have such a question.

B = M or B 6= M ?

To prove that B 6= M , we construct a set A ∈ M but A /∈ B. Let Φ(x) be the
Cantor function. Let us recall that Φ : [0, 1] 7→ [0, 1] and Φ is continuous on [0, 1]. Let C
be a Cantor set defined on [0, 1].

i.e C
def
=
⋂
n=1

Cn and Cn
def
= [0, 1] \

n⋃
j=1

2j−1⋃
k=1

Ij,k
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where I1,1 =
(

1
3
, 2

3

)
, I2,1 =

(
1
9
, 2

9

)
, I2,2 =

(
5
9
, 2

3

)
· · · . Note that

C = [0, 1] \
∞⋃
n=1

2n−1⋃
k=1

In,k,

and Φ(x) is a constant on each interval x ∈ In,k. So Φ(x) increases only on x ∈ C.

STEP 1. Let

Ψ(x)
def
=

1

2
(x+ Φ(x)) x ∈ [0, 1].

Since x is continuous and strictly monotone increasing and Φ(x) is also continuous mono-
tone increasing, Ψ(x) is continuous and strictly monotone increasing. So Φ is a one to
one mapping from [0, 1] to [0, 1]. (Ψ(0) = 0,Ψ(1) = 1). We show that

m

(
Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
=

1

2
.

Since In,k are disjoint and Ψ(x) is strictly monotone increasing, {Ψ (In,k)}n,k are also
disjoint with each other. So we have

m

(
Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
∗1
= m

(
∞⋃
n=1

2n−1⋃
k=1

Ψ (In,k)

)
∗2
=

∞∑
n=1

2n−1∑
k=1

m (Ψ (In,k))

• (∗1) f
(⋃

α∈I Aα
)

=
⋃
α∈I f(Aα).

• (∗2) {Ψ (In,k)}n,k are also disjoint with each other.

Furthermore, we claim that

m (Ψ(In,k)) =
1

2
m (In,k) .

To prove this, let

In,k
def
= (an,k, bn,k).

Since Ψ(x) is continuous and strictly monotone increasing,

Ψ(In,k) =

(
an,k + Φ(an,k)

2
,
bn,k + Φ(bn,k)

2

)
.

Recall that if x ∈ In,k, then Φ(x) is constant, so Φ(bn,k) = Φ(an,k). Therefore

m(Ψ(In,k)) =
1

2
m(In,k).

So,

m

(
Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
=
∞∑
n=1

2n−1∑
k=1

1

2
·m(In,k)

∗3
=

1

2
.
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• (∗3) m(C) = 0⇒ m([0, 1] \ C) = m(
⋃∞
n=1

⋃2k−1
k=1 In,k) = 1.

STEP 2. Since

m

(
Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
=

1

2
,

we have

m

(
[0, 1] \Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
= m

(
Ψ([0, 1]) \Ψ

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
∗4
= m

(
Ψ

(
[0, 1] \

∞⋃
n=1

2n−1⋃
k=1

In,k

))
= m(Ψ(C)) =

1

2
> 0.

• (∗4) Let f : X 7→ Y be a bijective function. If A ⊂ B ⊂ X, then f(B \ A) =
f(B)\f(A). First we claim that f(X \A) = Y \f(A). (This is easy.) We also claim
that A1, A2 ⊂ X, then f(A1 ∩ A2) = f(A1) ∩ f(A2). f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2)
is obvious. We prove f(A1) ∩ f(A2) ⊂ f(A1 ∩ A2). Let y ∈ f(A1) ∩ f(A2). Then
∃x1 ∈ A1, x2 ∈ A2 s.t y = f(x1) = f(x2). However, f is one to one, so x1 = x2. Let

x
def
= x1 = x2. Then x ∈ A1 ∩ A2. So y ∈ f(A1 ∩ A2). Finally let A1 = B, A2 = Ac.

By the additional theorem in §2.5, there exists a non Lebesgue measurable set W with

W ⊂ Ψ(C).

Let
A

def
= Ψ−1(W ).

We claim that A is the desired set. Note that

A = Ψ−1(W ) ⊂ Ψ−1 ◦Ψ(C)
∗5
= C

• (∗5) Ψ is a one to one function.

This implies that A is a measure zero set. Therefore A is Lebesgue measurable. (i.e
A ∈ M ). However, A /∈ B. To prove this, suppose A ∈ B, and we apply the previous
lemma. Let f = Ψ−1. Note that Ψ is strictly monotone increasing so Ψ−1 is strictly
monotone increasing and continuous. Then

f−1(A) ∈ B.

However it follows that

f−1(A) = Ψ(A) = Ψ ◦Ψ−1(W ) = W.

So W ∈ B. (contradiction!!)
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§ 2.8

76 (Exercise 1) We show that ∀(a, b) ⊂ R1, we have m(E ∩ (a, b)) = 0. Then
limk→∞m(E ∩ (−n, n)) = m(E) = 0.

STEP 1. Let (a, b) ⊂ R1 be an open interval. By assumption, we have open
intervals {In}∞n=1 s.t E ∩ (a, b) ⊂

⋃∞
n=1 In and
∞∑
n=1

m(In) < (b− a)q.

Now we apply the assumption to each open interval In (n = 1, 2 · · · ). Then we have open
intervals {In,m}∞m=1 s.t E ∩ In ⊂

⋃∞
m=1 In,m and
∞∑
m=1

m(In,m) < m(In)q.

Here E∩(a, b) ⊂
⋃∞
n=1 In ⇒ E∩(a, b) ⊂

⋃∞
n=1E∩In. By monotonicity and sub-additivity

of Lebesgue measure, we have

m(E ∩ (a, b)) 5
∞∑
n=1

m(E ∩ In)

5
∞∑
n=1

∞∑
m=1

m(In,m)

<
∞∑
n=1

m(In)q < (b− a)q2.

STEP 2. Similarly, we apply the assumption to each In,m. We have open intervals
{In,m,k}∞k=1 s.t E ∩ In,m ⊂

⋃∞
k=1 In,m,k and

∞∑
k=1

m(In,m,k) < m(In,m,k)q.

Since

E ∩ (a, b) ⊂
∞⋃
n=1

E ∩ In

⊂
∞⋃
n=1

∞⋃
m=1

E ∩ In,m

⊂
∞⋃
n=1

∞⋃
m=1

∞⋃
k=1

In,m,k,

(In Step2, we have E ∩ In ⊂
⋃∞
m=1 In,m so E ∩ In ⊂

⋃∞
m=1E ∩ In,m.) we have,

m(E ∩ (a, b)) 5
∞∑
n=1

∞∑
m=1

∞∑
k=1

m(In,m,k)

<

∞∑
n=1

∞∑
m=1

qm(In,m) < (b− a)q3 (∵ Step2)
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STEP 3. We repeat the similar argument. We have m(E ∩ (a, b)) < (b− a)qk for
all k = 1, 2 · · · so m(E ∩ (a, b)) = 0. (∵ 0 < q < 1).

77 (Exercise 2) There exists a Gδ set H ⊃ A2 s.t m∗(A2) = m(H) < ∞. Of
course, A1 ⊂ H so m∗(H \ A2) 5 m(H \ A1) = m(H) −m(A1) = m∗(A2) −m(A1) = 0.
So H \ A2 is a measure zero set. (⇒ Lebesuge measurable) A2 = H \ (H \ A2) ∈M .

78 (Exercise 4) There never exists such a closed set F . Suppose F is a closed set
and F 6= [a, b].

STEP 1. First, we can find x0 ∈ (a, b) s.t x0 /∈ F . (Otherwise, (a, b) ⊂ F . Since
F is closed, a, b ∈ F . So F = [a, b] and this contradicts to the assumption.)

STEP 2. Second, suppose that ∀δ > 0, B(x0, δ)∩F 6= ∅. (Actually this assumption
is false.) Then we can find a sequence {xn} ⊂ F ;xn → x0. Since F is closed, x0 ∈ F .
However, this contradicts to the fact that x0 /∈ F . This implies that ∃δ > 0, B(x0, δ)∩F =
∅. So [a, b] \ F ⊃ B(x0, δ) and hence we have m([a, b] \ F ) = (b− a)−m(F ) = 2δ. Now
we conclude that m(F ) < b− a.

79 (Exercise 5) For example, let {rk}
def
= [0, 1] ∩Q and let ε ∈ (0, 1). Consider

Bk
def
=
(
rk −

ε

2k+1
, rk +

ε

2k+1

)
.

Let

E = [0, 1] \
∞⋃
k=1

Bk.

E is the desired closed set. (E ⊂ [0, 1] and E does not contain any rational numbers in
[0, 1].)

m(E) = 1−m

(
∞⋃
k=1

Bk

)
= 1−

∞∑
k=1

ε

2k
= 1− ε > 0.

80 (Exercise 7) Let E
def
=
⋃∞
k=1Ek. Then m(E) <∞. We use Fatou’s lemma to

Ak
def
= E \ Ek.

Then we have
m
(

lim inf
k→∞

Ak

)
5 lim inf

k→∞
m (Ak) .

Since m(E) <∞, we have

m(E)−m
(

lim sup
k→∞

Ek

)
5 m(E)− lim sup

k→∞
m(Ek).
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81 (Exercise 8) Since
⋂∞
k=1Ek ⊂ [0, 1], we prove that

m

(
[0, 1] \

∞⋂
k=1

Ek

)
= 0.

Since

m

(
[0, 1] \

∞⋂
k=1

Ek

)
= m

(
∞⋃
k=1

[0, 1] \ Ek

)

5
∞∑
k=1

m ([0, 1] \ Ek) = 0.

Now the proof is complete.

82 (Exercise 9) We show that

m

(
k⋃
i=1

Ec
i

)
< 1.

By the assumption,

k∑
i=1

m(Ei) =
k∑
i=1

(1−m(Ec
i )) = k −

k∑
i=1

m(Ec
i ) > k − 1.

So we have
k∑
i=1

m(Ec
i ) < 1.

By sub-additivity,

m

(
k⋃
i=1

Ec
i

)
5

k∑
i=1

m(Ec
i ) < 1.

83 (Exercise 11) This question is related to Vitalli’s covering lemma (finite ver-
sion).

STEP 1. G is an open set so G ∈ M . By Theorem 2.13, ∀ε > 0,∃F : closed
(F ⊂ G) s.t m(G \ F ) < ε.

case 1. (m(G) < ∞) Let ε = m(G) − λ. m(G \ F ) = m(G) − m(F ) < ε. So
m(F ) > λ.

case 2. (m(G) =∞) m(G \ F ) +m(F ) = m(G) =∞. So m(F ) =∞ > λ.

So in any case, we can suppose that m(F ) > λ. Now let Fk
def
= F ∩B(0, k) (B: closed

ball). Then each Fk is a bounded closed set (a compact set). Since Fk ↗ F ⇒ m(Fk)↗
m(F ) > λ, we may find k0 ∈ N s.t m(Fk0) > λ. Let K

def
= Fk0 .
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STEP 2. K ⊂ G =
⋃
α∈`Bα. By Heine-Borel’s covering theorem, we may find a

sub-cover with finite number of open sets. So we have K ⊂
⋃m
k=1 Bαk where {α1 · · ·αm} ⊂

I.
First, we pick B1 ∈ {Bα1 , Bα2 , · · ·Bαm} which has the largest radius. If {Bαk | Bαk ∩

B1 = ∅}k=m
k=1 = ∅, then we terminate the process.

Second, we pick B2 ∈ {Bαk | Bαk ∩ B1 = ∅}k=m
k=1 which has the largest radius among

them. If {Bαk | Bαk ∩
⋃2
i=1 Bi = ∅}k=m

k=1 = ∅, then we terminate the process

Similarly we continue to choose B1, B2 · · ·B` (` ≤ m) until {Bαk | Bαk ∩
⋃l
i=1Bi =

∅}k=m
k=1 becomes empty.

STEP 3. We claim that
⋃`
k=1 3Bk ⊃

⋃m
k=1 Bαk holds. Here 3B denotes an open

ball with the same center with B but has three times the radius of B. (We sometimes

define λE
def
= {λx | x ∈ E}, however in this question, we define 3B is an open ball with

the same center with B.)
Let B and B̃ be two open balls and suppose that B ∩ B̃ 6= ∅ and that B has a larger

radius than B̃. Then 3B ⊃ B̃. (You may imagine on R or R2.)
For any B̃ ∈ {Bα1 , · · · , Bαm}, we can choose B ∈ {B1 · · ·B`} s.t B = B̃ or B intersects

with B̃ and B has a larger radius than B̃. (Let us recall that after we finish picking
B1, · · · , B`, the rest of balls {Bα1 , · · · , Bαm}\{B1, · · · , B`} all intersect with B1, · · · , B`.)
Therefore

⋃`
k=1 3Bk ⊃

⋃m
k=1Bαk holds.

STEP 4. Finally K ⊂
⋃m
k=1Bαk ⊂

⋃`
k=1 3Bk. So λ < m(K) 5

∑`
k=1m(3Bk) =

3n
∑`

k=1m(Bk). (B1 · · ·B` are disjoint.)

84 (Exercise 12) We use Corollary 2.16 and 2.17. Let B
def
=
⋂∞
k=1 Bk, then Bk ↘ B

and E = A ∩B.

STEP 1. Since Bk and B are measurable, we have

m∗(A) = m∗(A ∩Bk) +m∗(A ∩Bc
k), (∗1)

and
m∗(A) = m∗(A ∩B) +m∗(A ∩Bc). (∗2)

STEP 2. Since A ∩Bc
k ↗ A ∩Bc and by Corollary 2.16, 2.17, we have

m∗(A)− lim
k→∞

m∗(A ∩Bk)
∗3
= lim

k→∞
m∗(A ∩Bc

k)

∗4
= m∗(A ∩Bc)
∗5
= m∗(A)−m∗(A ∩B).

• (∗3) by (∗1), the limit exists because m∗(A ∩Bc
k) is monotone increasing.

• (∗4) Corollary 2.16, 2.17.

• (∗5) by (∗2).

178



2.8.

Since m∗(A) <∞, we can subtract it from the both sides and we have

lim
k→∞

m∗(A ∩Bk) = m∗(A ∩B).

This implies the desired result.

85 (Exercise 13) Consider a Gδ set G ⊃ E s.t m(G) = m∗(E). H \ G ⊂ H \ E
and H \ G ∈ M so H \ G is a measure zero set by assmption. m∗(E) 5 m(H) =
m(H \G) +m(H ∩G) = m(H ∩G) 5 m(G) = m∗(E). So m(H) = m∗(E).

86 (Exercise 14)

STEP 1. (⇒) By Theorem 2.13, we have G : open and F : closed (G ⊃ E ⊃ F )
s.t

m(G \ E) <
ε

2
, and m(E \ F ) <

ε

2
.

So we have

m(G ∩ F c) = m (G \ F )

= m (G \ E ∪ E \ F )

5 m (G \ E) +m (E \ F )

<
ε

2
+
ε

2
= ε.

Let G1 = G,G2 = F c and then we have the desired conclusion.

STEP 2. (⇐) We can find a sequence of Gn ⊃ E ⊃ Fn (Gn : open, Fn : closed)

s.t m(Gn \ Fn) < 1
n
. (∵ consider Gn ← G1, Fn ← Gc

2). Let K
def
=
⋃∞
n=1 Fn. Then

m∗(E \K) 5 m(Gn \ Fn) <
1

n
,

for all n ∈ N. ∴ m(E \K) = 0. So E = K ∪E \K ∈M . (You can also use the converse
of Theorem 2.13 to explain this part.)

87 (Exercise 15) Suppose that E+xi
def
= {y+xi | y ∈ E } (i = 1, 2 · · ·n) are disjoint

with each other. We have already proven that E+xi , i = 1, 2 · · · , n are also measurable
and m(E+xi) = m(E). So we have

m

(
n⋃
i=1

E+xi

)
=

n∑
i=1

m (E+xi) = nm(E) = nε > 2. (∗)

However, for each i = 1, 2, · · · , n
E+xi ⊂ [0, 2],
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so
n⋃
i=1

E+xi ⊂ [0, 2].

From this fact, we have

m

(
n⋃
i=1

E+xi

)
5 2.

This contradicts to (∗). This implies that E+xi , i = 1, 2 · · · , n are not disjoint. In other
words, there exist i, j ∈ {1, 2 · · ·n} s.t E+xi ∩ E+xj 6= ∅. So

∃y1, y2 ∈ E s.t y1 + xi = y2 + xj.

Now we conclude that there exist y1, y2 ∈ E and x1, x2 s.t

|y1 − y2| = |x1 − x2| .

88 (Exercise 16) We consider the contraposition of the statement. That is ∀ε >
0,∃E ⊂ [0, 1];E ∈M ;m(E) = ε s.t W ∩ E ∈M ⇒ W ∈M .

Let εk = 1− 1
k
. There exists Ek ⊂ [0, 1];Ek ∈M ;m(Ek) = 1− 1

k
and W ∩ Ek ∈M .

Let Ẽ
def
=
⋃∞
k=1Ek. Then 1 − 1

k
5 m(Ek) 5 m(Ẽ) 5 1 for all k = 1, 2 · · · . So we have

m(Ẽ) = 1 hence m(Ẽc) = 0. Finally
⋃∞
k=1W ∩Ek ∈M ⇒ W ∩Ẽ ∈M and W ∩Ẽc ∈M

because Ẽc is a measure zero set so its subset W ∩ Ẽc is a measure zero set. So W ∈M .

89 (Extra Exercise 1) Let F be a closed set.

case 1. (F ⊃ G) First, G contains all rational number on R1 so G = R1. F is a
closed set and F ⊃ G implies that F ⊃ G = R1. Hence F = R1. Second,

G∆F = (G \ F ) ∪ (F \G) = F \G.

So
m(G∆F ) = m(F \G) = m(R1 \G)

∗
= m(R1)−m(G) =∞.

• (∗) Since m(G) <∞, such an operation is allowed.

case 2. (F 6⊃ G) F 6⊃ G implies that G \ F 6= ∅. Since G \ F is an open set, if we
pick x0 ∈ G \ F then there exists δ0 > 0 s.t

G \ F ⊃ B(x0, δ0),

therefore,
m(G∆F ) = m(G \ F ) = m(B(x0, δ0)) = 2δ0 > 0.

Now the proof is complete.

180



2.8.

90 (Extra Exercise 2)

STEP 1. lim supn→∞m(En) = limn→∞ supm=nm(Em) = 1. So for each k, we can

find a subsequence nk s.t supm=nk m(Em) > 1 − 1−α
2k

. And we can find mk = nk s.t

m(Emk) > 1− 1−α
2k

. So m([0, 1] \ Emk) < 1−α
2k

.

STEP 2. m([0, 1]\
⋂∞
k=1Emk) = m(

⋃∞
k=1[0, 1]\Emk) 5

∑∞
k=1m([0, 1]\Emk) 5 1−α.

So we have α < m(
⋂∞
k=1Emk).

91 (Extra Exercise 3)

STEP 1. Let
f1(x)

def
= m(E ∩ [0, x]), x ∈ [0, 1].

Obviously, f1(0) = 0, f1(1) = m(E) and f1(x) is monotone increasing. And f1(x) is
continuous because

f1(x+ h) = m(E ∩ [0, x+ h]) = m((E ∩ [0, x]) ∪ (E ∩ [x, x+ h]))
∗1
5 m(E ∩ [0, x]) +m(E ∩ [x, x+ h])
∗2
5 m(E ∩ [0, x]) +m([x, x+ h])

= f1(x) + h,

hence
0 5 f1(x+ h)− f1(x) 5 h.

• (∗1) by sub-additivity

• (∗2) by monotonicity (i.e E ∩ [x, x+ h] ⊂ [x, x+ h])

Therefore we can find x1 ∈ (0, 1) s.t

f1(x1) =
m(E)

n

by intermediate value theorem.

STEP 2. Similarly let

f2(x)
def
= m(E ∩ [x1, x]), x ∈ [x1, 1].

Obviously, f2(x1) = 0, f2(1) = n−1
n
m(E) and f2(x) is also monotone increasing. Further-

more, f2(x) is continuous by the similar argument. We can find x2 ∈ (x1, 1) s.t

f2(x2) =
1

n
m(E)

STEP 3. We repeat the similar argument until we obtain x1, x2 · · ·xn−1. And let

E1
def
= E ∩ [0, x1), E2

def
= E ∩ [x1, x2), ..., En

def
= E ∩ [xn−1, 1].
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92 (Extra Exercise 4)
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CHAPTER 3

Solutions

§ 3.1

1 (Definition 3.1) Let M be the family of Lebesgue measurable sets on Rd. If

∀t ∈ R, {x ∈ E | f(x) > t} = {x ∈ E | f(x) ∈ (t,∞]} ∈M ,

then f(x) is a measurable function defined on E.
In some textbooks, the definition of Lebesgue measurable function is different.

∀B ∈ B(R), f−1(B) = {x ∈ E | f(x) ∈ B} ∈M ,

where B(R)
def
= σ [J ], J

def
= {[−∞, b] ⊂ R | b ∈ R}.

However, these two definitions above are equivalent. (You may skip the following
proof.) Let G be a family of point sets on R, that is ∀G ∈ G , G ⊂ R. We claim that
∀G ∈ G , f−1(G) ∈M if and only if ∀B ∈ σ[G ], f−1(B) ∈M .

First, ⇐ hold obviously because ∀G ∈ G , G ∈ σ[G ]. Second, we prove ⇒. Suppose
that ∀G ∈ G , f−1(G) ∈M . Let us consider the following family of sets.

A
def
=
{
A ⊂ R | f−1(A) ∈M

}
It is not difficult to prove that A is a σ−algebra (*). Furthermore, G ⊂ A by assump-
tion. Since σ[G ] is the smallest σ−algebra containing G , σ[G ] ⊂ A holds. Therefore
∀B ∈ σ[G ], B ∈ A (f−1(B) ∈ M ). So the proof of ⇒ is also complete. Finally,
∀t ∈ R, {x ∈ E | f(x) > t}M if and only if ∀t ∈ R, {x ∈ E | f(x) 5 t} ∈ M because
M is a σ-algebra. Now the proof is complete.

Proof of (∗). ∅ ∈ A because f−1(∅) = ∅ ∈ M . Let A ∈ A . Then f−1(A) ∈ M
by definition of A . Since M is a σ−algebra, (f−1(A))c = f−1(Ac) ∈ M . This implies
that Ac ∈ M . Finally let {An}n∈N ⊂ A , then f−1(An) ∈ M for all n ∈ N. Then⋃∞
n=1 f

−1(An) = f−1(
⋃∞
n=1An) ∈M . So

⋃∞
n=1An ∈ A .
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2 (Theorem 3.1) We pick a countable subset {dn} ⊂ D s.t dn ↘ t.

{x ∈ E | f(x) > t} =
∞⋃
n=1

{x ∈ E | f(x) > dn}

By the assumption and the property of Lebesgue measurable sets, the right hand is
Lebesgue measurable. So the proof is complete.

3 (Example 1) Suppose that f(x) is monotone increasing. Then {x ∈ [a, b] |
f(x) > t} = [a∗, b], (a∗, b] or ∅ where a∗ = a. Therefore {x ∈ [a, b] | f(x) > t} ∈M . So
f(x) is a Lebesgue measurable function defined on [a, b]. Now the proof is complete.

4 (Theorem 3.2) By the assumption (definition), {x ∈ E | f(x) > t} ∈M for
all t ∈ R. As we have shown in Chapter 2, the family of Lesgue measurable sets M is a
σ−algebra. We derive the following facts by the properties of σ−algebra M .

• A ∈M ⇔ Ac ∈M .

• {An} ⊂M ⇒
⋃∞
n=1An ∈M ,

⋂∞
n=1 An ∈M ,

(1) {x ∈ E | f(x) 5 t} = {x ∈ E | f(x) > t}c ∈M .

(2) {x ∈ E | f(x) = t} =
⋂∞
n=1{x ∈ E | f(x) > t− 1

n
} ∈M

(3) {x ∈ E | f(x) < t} = {x ∈ E | f(x) = t}c ∈M . (Use the previous result.)

(4) {x ∈ E | f(x) 5 t} ∩ {x ∈ E | f(x) = t} ∈M . (Use the previous result)

(5) {x ∈ E | f(x) <∞} =
⋃∞
n=1{x ∈ E | f(x) < t} ∈M

(6) {x ∈ E | f(x) =∞} =
⋂∞
n=1{x ∈ E | f(x) > t} ∈M .

(7) {x ∈ E | f(x) > −∞} =
⋃∞
n=1{x ∈ E | f(x) > −n}

(8) {x ∈ E | f(x) = −∞} =
⋂∞
n=1{x ∈ E | f(x) < −n}

5 (Theorem 3.3)

(1) {x ∈ E1 ∪ E2 | f(x) > t} = {x ∈ E1 | f(x) > t} ∪ {x ∈ E2 | f(x) > t} ∈ M
because {x ∈ E1 | f(x) > t}, {x ∈ E2 | f(x) > t} ∈M by the assumption.

(2) {x ∈ A | f(x) > t} = {x ∈ E | f(x) > t} ∩ A ∈ M because both {x ∈ E |
f(x) > t}, A ∈M by the assumption.

6 (Example 2)

{x ∈ Rd | χE > t} =


∅ 1 5 t <∞
E 0 5 t < 1

Rd t < 0
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And ∅, E,Rn ∈M . So the proof is complete.

7 (Theorem 3.4)

(1)

case 1. (c > 0) {x ∈ E | cf(x) > t} = {x ∈ E | f(x) > t
c
} ∈M because if we let

t0
def
= t

c
then the right hand side is {x ∈ E | f(x) > t0}

case 2. (c = 0) {x ∈ E | cf(x) > t} = {x ∈ E | 0 > t} =

{
E (t < 0)

∅ (t = 0)
. In any

case, it is Lebesgue measurable.

case 3. (c < 0) {x ∈ E | cf(x) > t} = {x ∈ E | f(x) < t
c
} ∈M by Theorem 3.2.

(2) Let {rn}
def
= Q be rational numbers. We use the fact that {x ∈ E | f1(x) >

f2(x)} =
⋃∞
n=1{x ∈ E | f1(x) > rn > f2(x)}. (This holds because Q is a dense set in R. If

f1(x) > f2(x), then there exists at least one rational number r ∈ Q s.t f1(x) > r > f2(x).)

{x ∈ E | f(x) + g(x) > t} = {x ∈ E | f(x) > t− g(x)}

=
∞⋃
n=1

{x ∈ E | f(x) > rn > t− g(x)}

=
∞⋃
n=1

{x ∈ E | f(x) > rn} ∩ {x ∈ E | rn > t− g(x)}

=
∞⋃
n=1

{x ∈ E | f(x) > rn} ∩ {x ∈ E | g(x) > t− rn}

(3)

STEP 1. We show that f(x)2 is also a Lebesgue measurable function on E if f(x)
is Lebesgue measurable on E.

case 1. (t = 0)

{x ∈ E | f(x)2 > t} = {x ∈ E | f(x) >
√
t} ∪ {x ∈ E | f(x) < −

√
t} ∈M

case 2. (t < 0) {x ∈ E | f(x)2 > t} = E ∈M .

So f(x)2 is Lebesgue measurable.

STEP 2. f(x)g(x) = 1
4

((f(x) + g(x))2 − (f(x)− g(x))2). By the previous results,
f(x) + g(x), f(x) − g(x) are measurable hence so are h1(x) = (f(x) + g(x))2, h2(x) =
(f(x)− g(x))2. Since h1, h2 are measurable so is h1 − h2 and 1

4
(h1 − h2)

8 (Corollary 3.5) We need to check if the statement holds when f(x), g(x) =∞
or −∞.
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(1) In extended real numbers, we assume the following rules. So the same argument
holds.

• if c > 0, c · ∞ =∞.

• if c = 0, c · ∞ = 0.

• if c < 0, c · ∞ = −∞.

(2) If (f(x), g(x)) = (∞,−∞), (−∞,∞), f(x) + g(x) is not defined. In this ques-
tion, we should assume that f(x) + g(x) is defined on ∀x ∈ E. Then the method of proof
is the same as the previous question.

However, actually, f(x) + g(x) does not have to be defined every x ∈ E. {x ∈ E |
f(x) = ∞} ∩ {x ∈ E | g(x) = −∞} and {x ∈ E | f(x) = −∞} ∩ {x ∈ E | g(x) = ∞}
are measure zero sets, though f(x) + g(x) is not defined on some points on E, we still
may regard f(x) + g(x) as a Lebesgue measureble function. Such f(x) + g(x) is called a
Lebesgue measurable function defined almost everywhere.

(3) Let t ∈ R. Let E0
def
= { x ∈ E | − ∞ < f(x), g(x) < ∞}. E0 ∈M , E0 ⊂ E so

f(x), g(x) are also measurable functions defined on E0.

{ x ∈ E | f(x)g(x) > t }
= { x ∈ E | f(x)g(x) > t } ∩ E0 ∪ { x ∈ E | f(x)g(x) > t} ∩ Ec

0

= { x ∈ E0 | f(x)g(x) > t } ∪ {x ∈ E | f(x)g(x) > t} ∩ {x ∈ E | f(x), g(x) = ±∞}
= { x ∈ E0 | f(x)g(x) > t } ∪ {x ∈ E | f(x) = g(x) =∞} ∪ {x ∈ E | f(x) = g(x) = −∞}

9 (Theorem 3.6, Corollary 3.7) We can use the following fact to solve this
question. {

x ∈ E | sup
m=k
{fm(x)} > t

}
=

∞⋃
m=k

{ x ∈ E | fm(x) > t}

From this fact, we easily find out that supm=k{fk(x)} is a measurable function for each
k.

(1) We just have to put k = 1 in the equation above.{
x ∈ E | sup

m=1

{fm(x)} > t

}
=

∞⋃
m=1

{ x ∈ E | fm(x) > t} ∈M

(2) Let us recall that f(x) is measurable then −f(x) is also measureble. So −fk(x)
is also measurable for each k. infk=1{fk(x)} = − supk=1{−fk(x)}. So we may repeat the
same argument.

(3) lim supk→∞ fk(x) = infk=1 supm=k{fm(x)}. Let gk(x)
def
= supm=k{fm(x)}. gk(x)

is a measurable function for each k. Then lim supk→∞ fk(x) = infk=1 gk(x). By the
previous result, we obtain the desired result.
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(4) lim infk→∞ fk(x) = − lim supk→∞(−fk(x)).

10 (Example 3) By Theorem 3.4, f(x) is Lebesgue measurable if and only if−f(x)
is Lebesgue measurable. It is enough for us to show that f+(x) is Lebesgue measurable.
Note that

{x ∈ E | f+(x) > t} = {x ∈ E | max{f(x), 0} > t}
= {x ∈ E | f(x) > t} ∪ {x ∈ E | 0 > t}.

Let g(x)
def
= 0. g(x) is a measurable function, so {x ∈ E | 0 > t} ∈M . Now the proof is

complete.

11 (Example 4) Let fn(x, y)
def
= f(x, k

n
) if y ∈ [ k

n
, k+1

n
), (k = 0,±1,±2 · · · ). As n

becomes larger, the partition {
[
k
n
, k+1

n

)
}k∈Z will become finer. Since fn(x, y) is a contin-

uous function for every fixed x ∈ R, fn(x, y) → f(x, y). It is enough for us to show that
fn(x, y) is measurable because if fn is measurable for all n ∈ N and fn → f then f is
measurable.

{ (x, y) ∈ R× R | fn(x, y) > t }

=
⋃
k∈Z

{
x ∈ R | f

(
x,
k

n

)
> t

}
×
{
y ∈ R | k

n
5 y <

k + 1

n

}
.

For fixed y ∈ R, f(x, y) is a measurable function with respect to x. Moreover, ifA,B ⊂ R1,
A ∈M and B ∈M then A× B is measurable on R2, (∈M2). So the proof is complete.

12 (Example 5) { x ∈ E | f(x) > t} = { x ∈ E | f(x) ∈ (t,∞)} = E ∩
f−1((t,∞)) = E ∩G where G = f−1((t,∞)). Since f is continuous and (t,∞) is open, so
G is open. G ∈M hence E ∩G ∈M .

13 (Exercise 1) {x ∈ E | f(x) > 0} ∈M .

case 1. (t = 0)

{x ∈ E | f(x) > t} = {x ∈ E | f(x)2 > t2} ∩ {x ∈ E | f(x) > 0} ∈M .

case 2. (t < 0) Let t′ = −t.

{x ∈ E | f(x) > t} = {x ∈ E | f(x) > −t′}
= {x ∈ E | f(x) > 0} ∪ {x ∈ E | − t′ < f(x) 5 0}.

And

{x ∈ E | − t′ < f(x) 5 0} = {x ∈ E | f(x) > 0}c ∩ {x ∈ E | f(x)2 > t′2}c.

So the proof is complete.
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14 (Exercise 2) We show g(x) is measurable. Since h(x) = − supf∈F{−f(x)},
we may show in the same method.

We show that {x ∈ (0, 1) | g(x) > t} is an open set. (∈ O ⊂ B ⊂ M ). We pick
x0 ∈ {x ∈ (0, 1) | g(x) > t}. Then g(x0) > t. By the definition of g(x), we can find
f ∈ F s.t f(x0) > t. Moreover, f is continuous, there exists δ > 0 s.t f(x) > t for all
x ∈ B(x0, δ). Therefore B(x0, δ) ⊂ {x ∈ (0, 1) | g(x) > t}. Now the proof is complete.

15 (Exercise 3) fk converges at x0 ⇔ lim supk→∞ fk(x0) = lim infk→∞ fk(x0). So
Ac = { x ∈ E | lim supk→∞ fk(x) > lim infk→∞ fk(x)}. Since both lim supk→∞ fk(x) and
lim infk→∞ fk(x) are measurable so Ac is measurable because

Ac =
⋃
r∈Q

{x ∈ E | lim sup
k→∞

fk(x) > r > lim inf
k→∞

fk(x)}

=
⋃
r∈Q

{x ∈ E | lim sup
k→∞

fk(x) > r} ∩ {x ∈ E | r > lim inf
k→∞

fk(x)}

So A is measurable.

16 (Exercise 4) Let G ⊂ R be an open set. By the result in Chapter 1, we have
disjoint open intervals {(ak, bk)}k s.t

G =
∞⋃
k=1

(ak, bk).

E1 = { x ∈ E | f(x) ∈ G}

=

{
x ∈ E | f(x) ∈

∞⋃
k=1

(ak, bk)

}

=
∞⋃
k=1

{ x ∈ E | f(x) ∈ (ak, bk)}

and

{ x ∈ E | f(x) > ak} ∩ { x ∈ E | f(x) = bk}c∩ ∈M .

So E1 ∈M .
Next E \ E2 = { x ∈ E | f(x) ∈ F c} ∈ M because F c is open. So E2 is also

measurable. So the proof is complete.

17 (Definition 3.2) Let N be a measure zero set. If P (x) holds for ∀x ∈ E \N ,
we say that P (x) holds almost every x ∈ E. (or P (x) a.e x ∈ E.)

18 (Theorem 3.8) Let N
def
= { x ∈ E |f(x) 6= g(x)}. N is a measure zero set, so

N ∈M and E \N ∈M . First we divide { x ∈ E | g(x) > t} into two parts as below.

{ x ∈ E | g(x) > t}
= { x ∈ E | g(x) > t} ∩ { x ∈ E | f(x) = g(x)}
∪ { x ∈ E | g(x) > t} ∩ { x ∈ E | f(x) 6= g(x)}.
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Next,

{ x ∈ E | g(x) > t} ∩ { x ∈ E | f(x) = g(x)} = { x ∈ E | f(x) > t} ∩ E \N ∈M .

and
{ x ∈ E | g(x) > t} ∩ { x ∈ E | f(x) 6= g(x)} ⊂ N,

so this is also a measure zero set. ∈M .

19 (Extra Example) Since fn(x)
a.e−→ f(x) on E, we have

f(x) = lim sup
n→∞

fn(x) (or lim inf
n→∞

fn(x)) a.e x ∈ E.

By Theorem 3.6, Corollary 3.7, the right hand side is a measurable function. Furthermore,
we have the desired conclusion from Theorem 3.8. Now the proof is complete.

20 (Example 6) Let Ak
def
= { x ∈ A | 1

k
5 f(x) 5 k }. Then Ak ↗ { x ∈

A | 0 < f(x) < ∞ }. By the assumption m({ x ∈ A | 0 < f(x) < ∞ }) = m(A). So
limk→∞m(Ak) = m(A). Hence ∀δ ∈ (0,m(A)), we have k0 s.t m(Ak0) > m(A) − δ. Let

B
def
= Ak0 . This is the desired set.

21 (Exercise 6)

STEP 1. In Chapter 2, we have already shown that m∗({x}) = 0. Therefore a
countable set such as Q (collection of all rational numbers) has measure zero.

STEP 2. Let f(x)
def
= 0 and let g(x) = χQ∩[a,b](x) where Q is a collection of all

rational numbers. Then f(x) = g(x) a.e x ∈ [a, b] because m(Q∩ [a, b]) = 0 thus g(x) = 0
a.e x ∈ [a, b]. However g(x) is not continuous for all x ∈ [a, b]. (Let us pick arbitrary
x ∈ [a, b] and arbitrary δ > 0. We can always find x1, x2 ∈ B(x, δ) s.t x1 ∈ Q and x2 /∈ Q.
f(x1) = 0, f(x2) = 1. So f(x) can not be continuous at x.)

22 (Exercise 7) Let

f(x)
def
=

{
1 x = 0

0 x < 0
.

Then f(x) is continuous a.e x ∈ R. Let g(x) be a continuous function on R.

case 1. (g(0) > 0) Since g is continuous, we have δ > 0 s.t ∀x ∈ (−δ, 0) g(x) > 0.
However f(x) = 0 when x ∈ (−δ, 0). So f(x) = g(x) a.e x ∈ R can not hold.

case 2. (g(0) 5 0) Since g is continuous, we have δ > 0 s.t ∀x ∈ (0, δ) g(x) 5 0.
However f(x) = 1 when x ∈ (0, δ). So f(x) = g(x) a.e x ∈ R can not hold.
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23 (Definition 3.3) Different books may have different definitions. However, we
define the items in the following way. When we talk about the following items, we assume
that f(x) : E 7→ R. (real-valued not extended real-valued)

(1) f(x) is a simple function on E ∈M means that { f(x) | x ∈ E} is a finite set.

(2) f(x) is a (Lebesgue) measurable simple function means that f(x) is a simple
function and at the same time f(x) is (Lebesgue) measurable. Suppose that { f(x) | x ∈
E} = {a1, a2 · · · ap} where ai 6= aj if i 6= j. Let Ei

def
= { x ∈ E | f(x) = ai} (i = 1 · · · p).

(Then Ei is measurable and disjoint with each other.) So without loss of generarility a
measurable simple function f(x) is written as

f(x) =

p∑
i=1

aiχEi(x)

where E =

p⋃
i=1

Ei, Ei ∈M , Ei ∩ Ej = ∅ (i 6= j)

(3) Suppose that f(x) is a measurable simple function. Moreover each Ei is an
iterval. Then f(x) is called a step function.

24 (Theorem 3.9)

(1) We define

fn(x)
def
= min

{
n,

[2nf(x)]

2n

}
.

In this book, [x] means the largest integer that is not greater than x. Then fn(x) is the
desired non-negative measurable simple function. We also define

gn(x)
def
=

[2nf(x)]

2n
.

STEP 1. (proof of fn(x) is simple) Let us pay attention to the fact that

fn(x) =

{
k

2n
if k

2n
5 f(x) < k+1

2n
, k = 0, 1, · · ·n · 2n − 1

n if f(x) = n

From this fact, we find out that fn(x) only takes { k
2n
| k = 0, 1, 2 · · ·n2n− 1} ∪ {n}. And

we also find out that fn(x) is written as

fn(x) =
n2n−1∑
k=0

k

2n
χ{ k

2n
5f(x)< k+1

2n
}(x) + nχ{f(x)=n}(x) (∗).

STEP 2. (proof of fn(x)→ f(x)) Since fn(x) = min{n, gn(x)}, it is enough for us
to show that gn(x)→ f(x). Since

0 5 f(x)− gn(x) 5
1

2n
,

gn(x)→ f(x) as n→∞.
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STEP 3. (fn(x) 5 fn+1(x)) Let us recall that fn(x) = min{n, gn(x)}. Since
n < n + 1, it is enough for us to show that gn(x) 5 gn+1(x). Since 2[a] 5 [2a], so

2[2nf(x)] 5 [2n+1f(x)]. Therefore [2nf(x)]
2n

5 [2n+1f(x)]
2n+1 .

STEP 4. (proof of fn(x) is Lebesgue measurable) First we prove some facts.
Let h1(x), h2(x) be measurable functions. Then min{h1(x), h2(x)} is also a measurable
function because

{ x ∈ E | min{h1(x), h2(x) > t } = { x ∈ E | h1(x) > t } ∩ { x ∈ E | h2(x) > t }.

(Similarly, max{h1(x), h2(x)} is also measurable.)
Let h(x) be a measurable function. Then [h(x)] is also a measurable function because

{ x ∈ E | [h(x)] > t } = { x ∈ E | h(x) > [t+ 1] }.

Now we prove that fn(x) is Lebesgue measurable. Let c = 2n. cf(x) = 2nf(x)
is measurable. By the previous result, [cf(x)] = [2nf(x)] is measurable. [cf(x)]/c =
[2nf(x)]/2n is measurable. Obviously, n (a constant function) is measurable. Again by
the previous result, we conclude that min{n, [cf(x)]/c} = min{n, [2nf(x)]/2n} = fn(x) is
measurable. Of course, you can also prove using (∗).

(2) Let

f+(x)
def
=

{
f(x) f(x) = 0

0 f(x) < 0

f−(x)
def
=

{
0 f(x) = 0

−f(x) f(x) < 0
.

This is equivalent to f+(x)
def
= max{f(x), 0}, f−(x)

def
= max{0,−f(x)}. Then f(x) =

f+(x) − f−(x) and |f(x)| = f+(x) + f−(x). Of course, f+(x) and f−(x) are Lebesgue
measurable functions. Since f+(x) and f−(x) are non negative measurable functions,
we may find sequences of non negative measurable simple functions f+

n (x) and f−n (x)

s.t 0 5 f+
n (x) ↗ f+(x) and 0 5 f−n (x) ↗ f−(x). Then let fn(x)

def
= f+

n (x) − f−n (x).
|fn(x)| 5 |f(x)| and fn(x) → f(x). (Note. f+

n (x) → ∞ and f−n (x) → ∞ does not occur
at the same time because one of f+(x), f−(x) is always 0.)

(3) Suppose that |f(x)| 5 M,M < ∞. When n > M , f+(x) − f+
n (x) 5 1

2n
and

f−(x)− f−n (x) 5 1
2n

because f+
n (x)

def
= min{n, [2nf+(x)]

2n
} = [2nf+(x)]

2n
(∵ |f(x)| 5 M) hence

0 5 f+(x)− f+
n (x) 5 1

2n
. Since

|f(x)− fn(x)| =
∣∣f+(x)− f−(x)− f+

n (x) + f−n (x)
∣∣

5 |f+(x)− f+
n (x)|+ |f−(x)− f−n (x)|

5
1

2n−1
(∀x ∈ E),

we have
lim
n→∞

sup
x∈E
|f(x)− fn(x)| = 0.
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25 (Definition 3.4) In this book we define in the following way.

supp(f)
def
= { x ∈ E | f(x) 6= 0}

26 (Corollary 3.10) Let fn(x) =
∑pn

i=1 a
(n)
i χ

E
(n)
i

(x). Since χB(0,n)(x)→ 1 for every

x ∈ Rd as n→∞, fn(x) · χB(0,n)(x)→ f(x) as n→∞.

f̃n(x)
def
= fn(x) · χB(0,n)(x) =

∑pn
i=1 a

(n)
i χ

E
(n)
i ∩B(0,n)

(x) and f̃n → f(x). supp(f̃n(x)) ⊂⋃pn
i=1E

(n)
i ∩B(0, n) ⊂ B(0, n). So the support is bounded. Therefore the support is a

compact set.

§ 3.2

27 (Definition 3.5) If there exists a measure zero set N : m(N) = 0 and ∀x ∈
E \N, limk→∞ fk(x) = f(x), then we say that {fk}k=1 converges to f almost everywhere

on E. We denote fk
a.e−→ f on E or fk → f a.e x ∈ E.

28 (Lemma 3.11) Let ε > 0 be an arbitrary positive number.

STEP 1. Suppose that fk(x)
a.e−→ f(x) on E. Then we have

#{k | |fk(x)− f(x)| = ε} <∞ a.e x ∈ E.

Equivalently,
#{k | x ∈ Ek(ε) } <∞ a.e x ∈ E.

In other words, there is a measure zero set N , and if x ∈ Rd \N , then the number of k
s.t x ∈ Ek(ε) is finite. So

Rd \N ⊂ { x ∈ E | #{ k | x ∈ Ek(ε) } <∞ }.

Therefore
lim sup
k→∞

Ek(ε)
∗
= {x ∈ E | #{ k | x ∈ Ek(ε)} =∞} ⊂ N.

• (∗) Let us recall that lim supk→∞Ak = {x | x ∈ Ak for inifinitely many k ∈ N}

Now we conclude that
m(lim sup

k→∞
Ek(ε)) = 0.

STEP 2. By definition of lim sup for point sets, we have

m(lim sup
k→∞

Ek(ε)) = m

(
∞⋂
j=1

∞⋃
k=j

Ek(ε)

)
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Furthermore,

m

(
∞⋂
j=1

∞⋃
k=j

Ek(ε)

)
= lim

j→∞
m(

∞⋃
k=j

Ek(ε)) (= 0),

because
∞⋃
k=j

Ek(ε)

is a decreasing sequence of sets with respect to j and

∞⋃
k=1

Ek(ε) ⊂ E, m(E) <∞.

So we are allowed to swap m(·) and lim by Corollary 2.8.

29 (Theorem 3.12: Egorov) fk
a.u−→ f ⇒ fk

a.e−→ f always holds. However if

m(E) < ∞, fk
a.e−→ f ⇒ fk

a.u−→ f holds. This is called Egorov’s theorem. (Hence
a.u−→⇔ a.e−→ on E if m(E) <∞.) We will explain it again in extra theorem.

STEP 1. In the previous lemma, let ε = 1
m

where m ∈ N. Since

lim
j→∞

m

(
∞⋃
k=j

Ek

(
1

m

))
= 0,

we can find a sufficiently large natural number j(m) s.t

m

 ∞⋃
k=j(m)

Ek

(
1

m

) <
δ

2m
.

By sub-additivity of a measure,

m

 ∞⋃
m=1

∞⋃
k=j(m)

Ek

(
1

m

) <
∞∑
m=1

δ

2m
= δ.

Let

Eδ
def
=

∞⋃
m=1

∞⋃
k=j(m)

Ek

(
1

m

)
.

STEP 2. Finally, we show that fk
u−→ f on E \ Eδ. (

u−→: converge uniformly).

E \ Eδ =
∞⋂
m=1

∞⋂
k=j(m)

{
x ∈ E | |fk(x)− f(x)| < 1

m

}
.

193



3.2.

Let ε be an arbitrary positive number. If we take a sufficiently large m0 ∈ N s.t 1
m0

< ε,
then

∀x ∈ E \ Eδ ⊂
∞⋂

k=j(m0)

{
x ∈ E | |fk(x)− f(x)| < 1

m0

}
.

So,

sup
x∈E\Eδ

|fk(x)− f(x)| 5 1

m0

< ε, ∀k = j(m0)

In other words,

∀ε > 0,∃N ∈ N s.t ∀k = N, sup
x∈E\Eδ

|fk(x)− f(x)| < ε.

So fk
u−→ f on E \ Eδ.

30 (Example 1)

xn →

{
0 x ∈ [0, 1)

1 x = 1
, as n→∞.

So xn → f(x) for all x ∈ [0, 1]. However, since f(x) = 0 for all x < 1,

lim
x↗1

(xn − f(x)) = 1.

Therefore supx∈[0,1] |xn − f(x)| = 1 and we have

lim
n→∞

sup
x∈[0,1]

|xn − f(x)| = 1 6= 0.

So xn does not uniformly converge to f(x).

31 (Definition 3.6) Suppose that |f(x)| < ∞ a.e x ∈ E. (If we discuss fk
m−→ f ,

we may suppose that |f | <∞ a.e x ∈ E.) If ∀ε > 0,

lim
n→∞

m ({ x ∈ E | |fk(x)− f(x)| = ε }) = 0,

then we say that fk converges to f in measure on E. We denote it as fk
m−→ f on E.

32 (Theorem 3.13) Let f(x), g(x) be measurable functions defined on E ∈ M .
If f(x) = g(x) a.e x ∈ E, we say that f and g are equivalent on E.

Here we suppose that |f |, |g| <∞ a.e x ∈ E because we are talking about convergence
in measure. Let ε > 0. { x ∈ E | |f − g| > ε} = { x ∈ E | |f − fk + fk − g| > ε} ⊂ { x ∈
E | |f − fk| + |fk − g| > ε} ⊂ { x ∈ E | |f − fk| > ε

2
} ∪ { x ∈ E | |fk − g| > ε

2
}. By

monotonicity and sub-additivity of a measure,

m(|f − g| > ε) 5 lim
k→∞

m({ x ∈ E | |f − fk| >
ε

2
}) +m({ x ∈ E | |fk − g| >

ε

2
}) = 0.
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Therefore, ∀n = 1, 2, · · · ,

m

(
{ x ∈ E | |f − g| > 1

n

)
= 0.

And we have

m

(
∞⋃
n=1

{ x ∈ E | |f − g| > 1

n

)
5

∞∑
n=1

m

(
{ x ∈ E | |f − g| > 1

n

)
= 0.

The left hand side is m ({ x ∈ E | |f − g| > 0) = 0. This implies that f = g a.e x ∈ E.

33 (Theorem 3.14) We use Lemma 3.11. We have already shown that if m(E) <

∞ and fk(x)
a.e−→ f(x) then limj→∞m(

⋃
k=j Ek(ε)) = 0. Since

lim sup
j→∞

m(Ej(ε)) 5 lim
j→∞

m

(
∞⋃
k=j

Ek(ε)

)
= 0

and the left hand side is

lim sup
j→∞

m({ x ∈ E | |fj(x)− f(x)| = ε }),

so we have fk(x)
m−→ f(x).

34 (Extra Theorem: equivalent statements to
a.e−→ and

a.u−→)

(1)

STEP 1. (⇒) Let ε > 0 be an arbitrary positive number. Since fk(x)→ f(x) a.e
x ∈ E, |fk(x)− f(x)| = ε occurs only for finite k a.e x ∈ E. This implies that

m

(
lim sup
k→∞

{x ∈ E | |fk(x)− f(x)| = ε}
)

= m

(
∞⋂
n=1

∞⋃
k=n

{x ∈ E | |fk(x)− f(x)| = ε}

)
= 0

STEP 2. (⇐) Let ε > 0 be an arbitrary positive number. Similarly,

m

(
∞⋂
n=1

∞⋃
k=n

{x ∈ E | |fk(x)− f(x)| = ε}

)
= 0

implies that |fk(x)−f(x)| = ε occurs only for finite k a.e x ∈ E. In other words, at almost

every x ∈ E, |fk(x)− f(x)| < ε for sufficiently large k. This means that fk(x)
a.e−→ f(x).

(2) Let us recall that fk(x)
a.u−→ f(x) means that ∀δ > 0, ∃Eδ ⊂ E;Eδ ∈M ;m(Eδ) <

δ s.t limk→∞ supx∈E\Eδ{ |fk(x)− f(x)| } = 0.
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STEP 1. (⇒) Let ε > 0 be an arbitrary positive number. Since supx∈E\Eδ{ |fk(x)−
f(x)| } → 0 as k →∞, there exists mε,δ ∈ N s.t

sup
x∈E\Eδ

{ |fk(x)− f(x)| } < ε,∀k = mε,δ.

So if x ∈ E \ Eδ ⇒ x ∈
⋂∞
k=mε,δ

{ x ∈ E | |fk(x) − f(x)| < ε }. Therefore E \ Eδ ⊂⋂∞
k=mε,δ

{ x ∈ E | |fk(x)− f(x)| < ε }. By taking complement of the both sides, we have

∞⋃
k=mε,δ

{ x ∈ E | |fk(x)− f(x)| = ε } ⊂ Eδ,

by monotonicity of an measure, we have

m

 ∞⋃
k=mε,δ

{ x ∈ E | |fk(x)− f(x)| = ε }

 5 m (Eδ) < δ.

Therefore,

lim sup
j→∞

m

 ∞⋃
k=j

{ x ∈ E | |fk(x)− f(x)| = ε }

 5 · · · 5 m(Eδ) < δ.

Let us pay attention to the fact that
⋃
k=j(· · · ) decreases as j increases. And also let us

pay attention to the fact that the left hand side is not related to δ. Since we may take
arbitrary small δ > 0, so the left hand side is 0.

STEP 2. (⇐) Let ε = 1
j
. Fist,

lim
m→∞

m

 ∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = 1

j
}

 = 0.

This implies that we may find sufficiently large mj ∈ N, s.t

m

 ∞⋃
k=mj

{ x ∈ E | |fk(x)− f(x)| = 1

j
}

 <
δ

2j
,

for each j = 1, 2 · · · . By sub-additivity of an measure,

m

 ∞⋃
j=1

∞⋃
k=mj

{ x ∈ E | |fk(x)− f(x)| = 1

j
}


5

∞∑
j=1

m

 ∞⋃
k=mj

{ x ∈ E | |fk(x)− f(x)| = 1

j
}


<

∞∑
j=1

δ

2j
= δ.
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Let

Eδ
def
=
∞⋃
j=1

∞⋃
k=mj

{ x ∈ E | |fk(x)− f(x)| = 1

j
}.

Then its complement is

E \ Eδ =
∞⋂
j=1

∞⋂
k=mj

{ x ∈ E | |fk(x)− f(x)| < 1

j
}.

Let ε > 0 be an arbitrary positive number. Pick j0
(ε) ∈ N s.t 1

j0
< ε. If x ∈

E \ Eδ ⇒ x ∈
⋂∞
k=mj0

{ x ∈ E | |fk(x) − f(x)| < 1
j0
}. So supx∈E\Eδ |fk(x) − f(x)| 5

1
j0
< ε for all k = mj0 . In other words, ∀ε > 0, there exists m(ε) def

= m
(ε)
j0

s.t ∀k = m(ε)

supx∈E\Eδ |fk(x)− f(x)| < ε. Therefore fk(x)
u−→ f(x) on E \ Eδ.

35 (Theorem 3.15) By using the extra theorem, the relationshop between
a.u−→

,
a.e−→, m−→ will be very clear.

(1) Since

fk(x)
a.u−→ f(x)

⇔ lim
m→∞

m

 ∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }

 = 0, ∀ε > 0,

by monotonicity, we have

lim
m→∞

m ({ x ∈ E | |fm(x)− f(x)| = ε })

5 lim
m→∞

m

 ∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }

 = 0

(2) Since

fk(x)
a.e−→ f(x)

⇔ m

 ∞⋂
m=1

∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }

 = 0, ∀ε > 0,

by monotonicity, we have

m

 ∞⋂
m=1

∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }


5 m

 ∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }

 = 0, ∀m ∈ N.

By taking m↗∞ in the right hand side, we have the desired result.
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36 (Alternative Proof of Theorem 3.12) We give an alternative proof of Theorem
3.12 (Egorov). Suppose m(E) <∞. Let

Am
def
=

∞⋃
k=m

{ x ∈ E | |fk(x)− f(x)| = ε }.

Note that m(A1) < ∞ (∵ A1 ⊂ E) and {Am}∞m=1 is a decreasing sequence of point sets.
By Corollary 2.8 we may swap limm→∞ and m(·). So we have

lim
m→∞

m(Am) = m

(
∞⋂
m=1

Am

)
.

Therefore,

m

(
∞⋂
m=1

∞⋃
k=m

{x ∈ E | |fk(x)− f(x)| = ε}

)

= lim
m→∞

m

(
∞⋃
k=m

{x ∈ E | |fk(x)− f(x)| = ε}

)
.

And by Theorem 3.15, we conclude that

fk(x)
a.u−→ f(x)⇔ fk(x)

a.e−→ f(x), if m(E) <∞.

37 (Definition 3.7) We say that {fk}k=1 is a Cauchy sequence in measure if the
following formula holds for all ε > 0.

lim
j,k→∞

m ({ x ∈ E | |fk(x)− fj(x)| = ε }) = 0.

In other words, ∀ε > 0,∀δ > 0, ∃N (ε,δ) ∈ N s.t ∀j, k = N ,

m ({ x ∈ E | |fk(x)− fj(x)| = ε }) < δ.

38 (Theorem 3.16) First, let ε = δ = 1
2i

in Definition 3.7.

STEP 1. By definition of a Cauchy sequence in measure, there exists ni ∈ N s.t
∀j, k = ni,

m

({
x ∈ E | |fk(x)− fj(x)| = 1

2i

})
<

1

2i
.

So let k = ni, j = ni+1. Then

m

({
x ∈ E | |fni(x)− fni+1

(x)| = 1

2i

})
<

1

2i
.
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Let gi(x)
def
= fni(x) and let Ei

def
=
{
x ∈ E | |gi(x)− gi+1(x)| = 1

2i

}
. Then,

m (Ei) <
1

2i
.

So

m

(
∞⋃
i=1

Ei

)
< 1 <∞.

By Borel-Cantelli’s Lemma (I) (See Chapter 2), this implies that

m

(
lim sup
i→∞

Ei

)
= 0.

Let N = lim supi→∞Ei. Ei occurs only finite times at x ∈ E \ N . In other words, if
i is sufficiently large, |gi(x)− gi+1(x)| < 1

2i
at x ∈ E \N . (We may say that there exists

mx ∈ N s.t ∀i = mx, |gi(x)− gi+1(x)| < 1
2i

if x ∈ E \N .) Therefore,

∞∑
i=1

|gi(x)− gi+1(x)| <∞, ∀x ∈ E \N.

Absolute convergence
∑∞

i=1 | · · · | <∞ implies

∞∑
i=1

(gi+1(x)− gi(x)) converges ∀x ∈ E \N.

Since

gk(x) = g1(x) +
k−1∑
i=1

(gi+1(x)− gi(x)),

gk(x) converges if x ∈ E \N . Now we let

f(x)
def
=

{
limk→∞ gk(x) x ∈ E \N
0 x ∈ N.

Then f(x) is a measurable function. Recall thatN is a measurable set, and lim supk→∞ gk(x)
and lim infk→∞ gk(x) are measurable functions. Since f(x) = (lim supk→∞ gk(x))χE\N(x),
f(x) is measurable. (Theorem 3.8 also can explain the measurability of f(x).)

STEP 2. We show that gk(x)
a.u−→ f(x). Let δ > 0 be an arabitrary positive

number. We may find j ∈ N s.t 1
2j−1 < δ. Recall that m(Ei) <

2
i
. By sub-additivity of an

measure,

m

(
∞⋃
i=j

Ei

)
5

∞∑
i=j

m (Ei) 5
1

2j−1
< δ.

Let Eδ
def
=
⋃∞
i=j Ei. We may find j ∈ N s.t 1

2j−1 < δ. Then m
(⋃∞

i=j Ei

)
5
∑∞

i=jm(Ei) <
1

2j−1 < δ.
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Since Eδ ⊃ lim supi→∞Ei, we have E \Eδ ⊂ E \N by taking complement of the both
sides. By the result of Step1, limk→∞ gk(x) converges on E \Eδ(⊂ E \N). Let x ∈ E \Eδ.
Since lim`→∞ g`(x) converges,

|gk(x)− f(x)| =|gk(x)− lim
`→∞

g`(x)| = lim
`→∞
|gk(x)− g`(x)|.

In the formula above,

• gk(x) = g1(x) +
∑k−1

i=1 (gi+1(x)− gi(x)).

• g`(x) = g1(x) +
∑`−1

i=1 (gi+1(x)− gi(x))

Also let us recall that |gi+1(x)− gi(x)| < 1
2i
,∀i = j because x ∈ E \ Eδ =

⋂
i=j E

c
i . So if

k = j, we have

|gk(x)− f(x)| 5
∞∑
i=k

|gi+1(x)− gi(x)| 5
∞∑
i=k

1

2i
=

1

2k−1
.

This inequality holds for all x ∈ E \ Eδ. Therefore,

lim
k→∞

sup
x∈E\Eδ

|gk(x)− f(x)| = 0.

STEP 3. Finally, we show that fk(x)
m−→ f(x). m({x ∈ E | |fk(x) − f(x)| =

ε}) 5 m({x ∈ E | |fk(x) − fni(x)| = ε/2}) + m({x ∈ E | |fni(x) − f(x)| = ε/2}). Since
{fk(x)}k=1 is a Cauchy sequence in measure, we can letm({x ∈ E | |fk(x)−fni(x)| = ε/2})
be arbitrarily small by taking large k and i. Moreover, gi(x) = fni(x)

a.u−→ f(x) (by Step
2) so fni(x)

m−→ f(x), so we can also let m({x ∈ E | |fni(x)− f(x)| = ε/2}) be arbitrarily
small by taking large i. Now the proof is complete.

39 (Theorem 3.17)

STEP 1. (⇒) Let ε > 0 be a arbitrary positive number. Suppose fk(x)
m−→

f(x). For any subsequence ki, fki(x)
m−→ f(x). It is enough to show that we can find a

subsequence ki s.t fki(x)
a.u−→ f(x). Since

lim
k→∞

m ({x ∈ E | |fk(x)− f(x)| = ε}) = 0,

we can find a subsequence ki s.t

m ({x ∈ E | |fki(x)− f(x)| = ε}) < 1

2i
.

Therefore

m

(
∞⋃
i=m

{x ∈ E | |fki(x)− f(x)| = ε}

)
<

1

2m−1
.

Finally,

lim
m→∞

m

(
∞⋃
i=m

{x ∈ E | |fki(x)− f(x)| = ε}

)
= 0.

By the extra theorem, this implies that fki(x)
a.u−→ f(x).
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STEP 2. (⇐) We show the contraposition. We show if fk(x) 6m−→ f(x) ⇒ ∃ki s.t
∀kim , fkim (x) 6a.u−→ f(x).

First, let us recall that fk(x)
m−→ f(x) means that

∀δ > 0, ∀ε > 0, ∃Nδ,ε s.t ∀k = N,m({x ∈ E | |fk(x)− f(x)| = ε}) < δ.

So its negation fk(x) 6m−→ f(x) is

∃δ > 0,∃ε > 0,∀N, ∃k = N s.t m({x ∈ E | |fk(x)− f(x)| = ε) = δ.

(Replace ∀ → ∃ and ∃ → ∀ and change the last part to the negation of the original
statement.) Therefore we may find a subsequence ki s.t m({x ∈ E | |fki(x) − f(x)| =
ε) = δ for all i = 1.

Next, let {kim}m=1 be an arbitrary further subsequence of {ki}i=1. Since

•
⋃∞
m=m′{x ∈ E | |fkim (x)− f(x)| = ε} ⊃ {x ∈ E | |fkim′ (x)− f(x)| = ε} and

• {kim}m=1 ⊂ {ki}i=1

we have

m

(
∞⋃

m=m′

{x ∈ E | |fkim (x)− f(x)| = ε}

)
= δ.

By taking lim infm→∞, we have

lim inf
m′→∞

m

(
∞⋃

m=m′

{x ∈ E | |fkim (x)− f(x)| = ε}

)
= δ.

Therefore, fkim (x) 6a.u−→ f(x). Now the proof is complete.

40 (Exercise 1) Let us recall Theorem 3.17. Since fk(x)
m−→ g(x) on E, there

exists a subsequence {k`}`∈N ⊂ N s.t fk`(x)
a.e−→ g(x) on E. There exists two measure zero

sets N1, N2 s.t

fk(x)→ f(x) ∀x ∈ E \N1, fk`(x)→ g(x) ∀x ∈ E \N2.

Since a convergent sequence has a unique limit,

f(x) = g(x) ∀x ∈ E \ (N1 ∪N2).

Since m(N1 ∪N2) = 0, we conclude that f(x) = g(x) a.e x ∈ E.

41 (Exercise 2) By Theorem 3.17, fk(x)
m−→ f(x) ⇒ ∀ki, ∃kim s.t fkim (x)

a.u−→
f(x) ⇒ fkim (x)

a.e−→ f(x) ⇒ fpkim (x)
a.e−→ fp(x). Since m(E) < ∞,

a.e−→⇔ a.u−→. So

fpkim (x)
a.e−→ fp(x)⇒ fpkim (x)

a.u−→ fp(x). Again by Theorem 3.17, ∀ki,∃kim s.t fpkim (x)
a.u−→

fp(x)⇒ fpkim (x)
m−→ fkim (x).
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42 (Exercise 3) For example let E = R, let fk(x) = 1
k
, and let g(x) = x. Let

ε > 0 be a arbitrary positive number. For sufficiently large k, 1
k
< ε, so limk→∞m({x ∈

R | |fk(x) − 0| = ε}) = 0 However, m({x ∈ R | |fk(x)g(x)| = ε}) = m({x ∈ R | |g(x)| =
kε}) = m((−∞, kε] ∪ [kε,∞)) =∞ for all k = 1, 2 · · · . So fk(x)g(x) 6m−→ 0.

43 (Exercise 4) ∀x ∈ (0, π), cosn(x) → 0 and m([0, π] \ (0, π)) = m({0, π}) = 0.

So cosn(x)
a.e−→ 0 on [0, π]. Since m([0, π]) < ∞, cosn(x)

a.e−→ 0 ⇔ cosn(x)
a.u−→ 0 ⇒

cosn(x)
m−→ 0. So we conclude that cosn(x)

m−→ 0 on [0, π].

44 (Exercise 5) Let fn(x) = 1
n
. Then limn→∞m({x ∈ E | |fn(x)| = ε}) = 0

because for any ε > 0, when n is large enough, 1
n
< ε. However 1

n
> 0 for all n = 1 so

m({x ∈ E | |fn(x)| > 0}) = m(E). So limn→∞m({x ∈ E | |fn(x)| > 0}) = m(E) > 0.

45 (Exercise 6) By Theorem 3.17, since fk(x)
m−→ 0, we can find a subsequence

ki s.t fki(x)
a.u−→ 0.

a.u−→⇒ a.e−→, so fki(x)
a.e−→ 0. There exists a measure zero set N s.t

∀x ∈ E \ N, fki(x) → 0. Since fk+1(x) 5 fk(x), fki(x) → 0 implies that fk(x) → 0.

Therefore fk(x)→ 0 on E \N . So we conclude that fk(x)
a.e−→ 0.

46 (Exercise 7) We may suppose that an arbitrary positive number ε is in (0, 1)
without loss of generality. So let ε ∈ (0, 1).

(1)

m({x ∈ Rd | |fk(x)− 0| = ε}) = m({x ∈ Rd | |χEk(x)| = ε})
∗1
= m({x ∈ Rd | χEk(x) = ε})
∗2
= m({x ∈ Rd | χEk(x) = 1})
= m(Ek)

• (∗1) χEk(x) = 0.

• (∗2) χEk(x) takes only 0 or 1. χEk(x) > ε (0 < ε < 1) occurs only χEk(x) = 1.

From this relationship, we can conclude that fk(x)
m−→ 0 if and only if m(Ek)→ 0.

(2) We use the extra theorem. fk(x)
a.e−→ 0 on Rd if and only if

m

(
∞⋂
n=1

∞⋃
k=n

{x ∈ Rd | |fk(x)− 0| = ε}

)
= m

(
∞⋂
n=1

∞⋃
k=n

{x ∈ Rd | |χEk(x)| = ε}

)

= m

(
∞⋂
n=1

∞⋃
k=n

{x ∈ Rd | χEk(x) = 1}

)

= m

(
∞⋂
n=1

∞⋃
k=n

Ek

)

= m

(
lim sup
k→∞

Ek

)
.

Now the proof is complete.
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47 (Exercise 8) Similar to last previous exercise, we may suppose that ε ∈ (0, 1)
without loss of generality.

lim
k,j→∞

m({x ∈ Rd | |χEk(x)− χEj(x)| > ε})
∗
= lim

k,j→∞
m({x ∈ Rd | |χEk(x)− χEj(x)| = 1})

= lim
k,j→∞

m({x ∈ Rd | χEk(x) = 1, χEj(x) = 0} ∪ {x ∈ Rd | χEk(x) = 0, χEj(x) = 1})

= lim
k,j→∞

m((Ek \ Ej) ∪ (Ej \ Ek))

= lim
k,j→∞

m(Ek∆Ej)

• (∗) |χEk(x) − χEj(x)| can only take 0, 1 and ε ∈ (0, 1). So |χEk(x) − χEj(x)| > ε
occurs when |χEk(x)− χEj(x)| = 1.

Now the proof is complete.

48 (Exercise 9) First fix an arbitrary positive number ε > 0. Let E
def
= {x ∈

R1 | F (x) > ε}. Then m(E) < ∞. Since fn(x)
a.e−→ 0 on R1, fn(x)

a.e−→ 0 on E. Since
m(E) < ∞, fn(x)

a.e−→ 0 on E implies fn(x)
a.u−→ 0 on E. fn(x)

a.u−→ 0 on E implies
fn(x)

m−→ 0 on E.

m({x ∈ R1 | |fn(x)− 0| > ε}) ∗
= m({x ∈ R1 | |fn(x)| > ε} ∩ E)

= m({x ∈ E | |fn(x)| > ε})

• (∗) since |fn(x)| 5 F (x) a.e x ∈ R1, {x ∈ R1 | |fn(x)| > ε} ⊂ {x ∈ R1 | F (x) >
ε} = E.

From the equality above, we conclude that fn(x)
m−→ 0 on R1.

49 (Exercise 10) Let us recall Theorem 3.17. fn(x)
m−→ f(x) on E implies that

we can find a subsequence {nk}k∈N ⊂ N s.t fnk(x)
a.u−→ f(x) on E. fnk(x)

a.u−→ f(x) on E

implies that fnk(x)
a.e−→ f(x) on E. So there exists a measure zero set N s.t fnk(x)→ f(x)

for all x ∈ E \N .
For every fixed x ∈ E, fn(x) 5 fn+1(x) so fn(x) has a limit and the limit is unique.

So especially when x ∈ E \N , fn(x) has the same limit with fnk(x) (i.e f(x)). Therefore

we conclude that fn(x) → f(x) for all x ∈ E \ N . In other words, fn(x)
a.e−→ f(x) on E.

Now the proof is complete.

§ 3.3

50 (Theorem 3.18 Lusin) First we explain that we may suppose that f(x) is

real-valued (finite) without loss of generality. Let N
def
= {x ∈ E | |f(x)| = ∞}. By

assumption m(N) = 0. Let Ẽ
def
= E \N ∈M . f(x) is a real-valued measurable function
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on Ẽ. We find a closed set F ⊂ Ẽ on which f(x) is continuous and m(Ẽ \ F ) < δ. Then
m(Ẽ \ F ) = m(E \ F ) < δ. Therefore F is the desired closed set. In conclusion, we may
suppose that f(x) is real-valued.

STEP 1. (simple measurable function) Let δ > 0 be the given positive number.
Let f(x) be a measurable simple function on E. By the definition of measurable simple
function,

f(x) =

p∑
i=1

aiχEi(x)

where E =
⋃p
i=1Ei and Ei ∩ Ej = ∅ if i 6= j.

By Theorem 2.13, we have a closed set Fi ⊂ Ei for each i s.t m(Ei \ Fi) < δ
p
. Let

F
def
=
⋃p
i=1 Fi. Then F is also closed. (∵ finite union) m(E \ F ) = m(

⋃p
i=1Ei \ Fi) =∑p

i=1m(Ei \ Fi) <
∑p

i=1
δ
p

= δ.

Next we show that f(x) is continuous on F . Let {xn} ⊂ F =
⋃p
i=1 Fi. (Fi : disjoint)

and xn → x0. Since F is closed, x0 ∈ F . There exists i0 ∈ {1, 2, · · · , p} s.t x0 ∈ Fi0 . For
sufficiently large n, xn ∈ Fi0 . (Otherwise, if xn is contained by Fi1 , (i1 6= i0) for infinitely
many times, then we can find a subsequence xnk s.t xnk → x0 ∈ Fi1 . ⇒ contradiction!!)
So f(xn) = ai0 for sufficiently large n. Hence limn→∞ f(xn) = ai0 = f(x0). So f(x) is
continuous on F .

STEP 2. (f(x) is bounded measurable) By Theorem 3.9, we can find a subsequence
of simple measurable functions {fk(x)}k=1 s.t fk(x)

u−→ f(x) on E. fk(x) is continuous

on a closed set Fk ⊂ E;m(E \ Fk) < δ
2k

. Let F
def
=
⋂∞
k=1 Fk. (F is an intersection of

closed sets. So F is closed.) Then fk(x) is continuous on F (∵ F ⊂ Fk.) m(E \ F ) =
m(
⋃∞
k=1E \Fk) 5

∑∞
k=1m(E \Fk) < δ. Since fk(x)

u−→ f(x) on E hence fk(x)
u−→ f(x) on

F . A sequence of continuous function uniformly converges to f(x), so f(x) is continuous
on F .

STEP 3. (general case) Let g(x)
def
= f(x)

1+|f(x)| ∈ (−1, 1). Since g(x) is bounded,

we can find a closed set F ⊂ E;m(E \ F ) < δ s.t g(x) is continuous on F . Since

f(x) = g(x)
1−|g(x)| , f(x) is also continuous on F .

51 (Corollary 3.19)

(1) By Theorem 3.18 Lusin’s theorem, we can find a closed set F ⊂ E;m(E\F ) < δ
s.t f(x) is continuous on F . By Theorem 1.27 (or Tieze Extension theorem), there exists
a continuous function g(x) ∈ C(Rd) s.t f(x) = g(x) on F . So we have

m({x ∈ E | |f(x)− g(x)| > 0}) 5 m(E \ F ) < δ.

In Theorem 1.27, we proved that if |f(x)| 5M on F (F : closed set) and f(x) is continuous
on F then we can find g(x) ∈ C(Rd) s.t g(x) = f(x) on F and |g(x)| 5 M on Rd. So if
f(x) is bounded, then g(x) is also bounded.
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(2) By the previous result, we have g̃(x) ∈ C(Rd) s.t

m({x ∈ E | f(x) 6= g̃(x)}) < δ.

(There is a closed set F ⊂ {x ∈ E | f(x) = g̃(x)} with m(E \F ) < δ.) However g̃(x) does
not necessarily have a compact support. So let us find a continuous function φ(x) ∈ C(Rd)
with

φ(x)
def
=

{
0 x /∈ B(0, r) ⊃ E

1 x ∈ F
.

Then g(x)
def
= g̃(x) · φ(x) is a desired function.

Since E is bounded, we can find n ∈ N s.t E ⊂ B(0, n) and let r = n+1. For example,

φ(x)
def
= max{0, 1− dist(x, F )}.

By Theorem 1.25, dist(x, F ) is continuous on Rd. So φ(x) is also continuous on Rd.
dist(x, F ) = 0 if x ∈ F . Let x /∈ B(0, r). There exists y ∈ F s.t |x − y| = dist(x, F ).
By triangular inequality, |x − y| = |x| − |y|. Note that |x| = r = n + 1 and |y| 5 n. So
|x− y| = 1. So φ(x) = 0.

52 (Corollary 3.20) Let {δk}k=1 be a sequence of positive numbers s.t δ ↘ 0 as
k → ∞. We can find a closed set Fk ⊂ E;m(E \ Fk) < δk s.t f(x) is continuous on Fk.
By Tieze Extension theorem, we can find gk(x) ∈ C(Rn) s.t f(x) = gk(x) on Fk. (gk(x)
is continuous so gk(x) is measurable.) Let ε > 0 be an arbitrary positive number. Since

m({x ∈ E | |f(x)− gk(x)| = ε}) 5 m({x ∈ E | |f(x)− gk(x)| > 0})
5 m(E \ Fk) < δk,

gk(x)
m−→ f(x). gk(x)

m−→ f(x) ⇒ ∃{km}m=1 s.t gkm(x)
a.u−→ f(x) ⇒ gkm(x)

a.e−→ f(x).

g̃m(x)
def
= gkm(x) is the desired sequence of continuous functions on Rn.

53 (Example 1)

STEP 1. f(x + y) = f(x) + f(y) implies that f(x + h) − f(x) = f(h). If f(x) is
continuous at x = 0, then |f(x + h) − f(x)| = |f(h)| → 0 as h → 0, so we can conclude
that f(x) is continuous on R. So we prove that f(x) is continuous at x = 0.

STEP 2. f(x) is Lebesgue measurable on R so f(x) is measurable on [−M,M ].
(M > 0). This is because {x ∈ [−M,M ] | f(x) > t} = {x ∈ R | f(x) > t} ∩ [−M,M ] ∈
M . By Lusin’s theorem, we can find a closed set F ⊂ [−M,M ];m([−M,M ] \ F ) < δ s.t
f(x) is continuous on F . We suppose δ < 2M then m(F ) > 0.

Since F is a compact set and f(x) is continuous on F , so f(x) is uniformly continuous.
Therefore, ∀ε > 0, ∃δ1 > 0 s.t. ∀x, y ∈ F ; |x− y| < δ we have |f(x)− f(y)| < ε.
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STEP 3. By Steinhaus’ theorem, F − F contains an interval [−δ2, δ2] because
m(F ) > 0. Let δ0 = min{δ1, δ2}. Let h ∈ (−δ0, δ0). Since (−δ0, δ0) ⊂ [−δ2, δ2] ⊂ F − F ,
we can find x, y ∈ F s.t h = x− y. |f(h)| = |f(x− y)| = |f(x)− f(y)| < ε, (∵ |x− y| =
|h| < δ0 5 δ1). In conclusion, ∀ε > 0, ∃δ0 s.t ∀h ∈ (−δ0, δ0), |f(h)| < ε ⇔ f(x) is
continuous at x = 0.

54 (Exercise 1) (This is similar to §3.1 Exercise 7.) Let f(x)
def
= χ[0,∞)(x). Sup-

pose g(x) is continuous on R.

case 1. (g(0) > 0) There exists (−δ, 0), (δ > 0) s.t ∀x ∈ (−δ, 0), g(x) < 0. So
m({x ∈ R | |f(x)− g(x)| > 0}) = m((−δ, 0)) = δ > 0.

case 2. (g(0) 5 0) g(0) < 1. There exists (0, δ), (δ > 0) s.t ∀x ∈ (0, δ), g(x) < 1.
So m({x ∈ R | |f(x)− g(x)| > 0}) = m((0, δ)) = δ > 0.

So we conclude that there does not exist g ∈ C(R) s.t m({x ∈ R | |f(x) − g(x)| >
0}) = 0.

55 (Exercise 2) Let ε > 0 be an arbitrary positive number and let us fix ε.

STEP 1. By Corollary 3.19, we have a sequence of gn(x) ∈ C(R1) s.t

m({x ∈ [a, b] | f(x) 6= gn(x)}) < 1

n
.

STEP 2. Since gn(x) ∈ C(R1), gn(x) ∈ C([a, b]). We apply Weierstrass’s approxi-
mation theorem. There exists a polynomial Pn(x) s.t

|gn(x)− Pn(x)| < ε, ∀x ∈ [a, b].

STEP 3.

m({x ∈ [a, b] | |f(x)− Pn(x)| > ε})
= m({x ∈ [a, b] | |f(x)− gn(x) + gn(x) + Pn(x)| > ε})
5 m({x ∈ [a, b] | |f(x)− gn(x)| > 0} ∪ {x ∈ [a, b] | |gn(x)− Pn(x)| > ε})
5 m({x ∈ [a, b] | |f(x)− gn(x)| > 0}) +m({x ∈ [a, b] | |gn(x)− Pn(x)| > ε})

= m({x ∈ [a, b] | f(x) 6= gn(x)}) + 0 <
1

n
.

So we have
Pn(x)

m−→ f(x) on [a, b].

By Theorem 3.17, we have a subsequence nk s.t

Pnk(x)
a.u−→ f(x) on [a, b].

Since Pnk(x)
a.u−→ f(x) on [a, b] implies that Pnk(x)

a.e−→ f(x) on [a, b] (Theorem 3.15),
{Pnk(x)}k=1 is the desired sequence of polynomial.
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56 (Lemma 3.21)

STEP 1. (⇐) Let G = (t,∞). Since f(x) is real-valued (not extend real-valued),
so {x ∈ Rd | f(x) > t} = {x ∈ Rn | t < f(x) <∞} = f−1(G) ∈M . So f(x) is Lebesgue
measurable.

STEP 2. (⇒) G ⊂ R, G ∈ O, so ∃(ai, bi) s.t G =
⋃∞
i=1(ai, bi). (See Chapter1:

Theorem 1.19.) So f−1(G) = f−1(
⋃∞
i=1(ai, bi)) =

⋃∞
i=1 f

−1((ai, bi)) =
⋃∞
i=1{x ∈ Rd | ai <

f(x) < bi} =
⋃∞
i=1{x ∈ Rd | f(x) > ai} \ {x ∈ Rd | f(x) = bi} ∈M .

57 (Supplement to Lemma 3.21)

STEP 1. (⇐) Let B = (t,∞) ∈ B(R1). Since f(x) is real-valued (not extend
real-valued), so {x ∈ Rn | f(x) > t} = {x ∈ Rd | t < f(x) <∞} = f−1(B) ∈M . So f(x)
is Lebesgue measurable.

STEP 2. (⇒) Suppose that f(x) is Legbesgue measurable. Let us consider the
following family of sets. (M : the family of Lebesgue measurable sets.)

A
def
= {A ⊂ R | f−1(A) ∈M }.

It is easy to verify that A is a σ-algebra. By Lemma 3.21, ∀G ∈ O1, f−1(G) ∈ M so

G ∈ A . This means that O1 ⊂ A . Since B(R1)
def
= σ[O1] is the smallest σ− algebra

which contains O1, B(R1) ⊂ A . ∀B ∈ B(R1), B ∈ A . In other words, f−1(B) ∈ M
holds for all B ∈ B(R1).

58 (Theorem 3.22) Let G
def
= (t,∞). (G ∈ O1.) Then h−1(G) = g−1 ◦ f−1(G) ∈

M . f(x) is a continuous function, so f−1(G) ∈ O1. Since g(x) is Lebesgue measurable,
g−1(f−1(G)) ∈M by Lemma 3.21.

59 (Lemma 3.23, Corollary 3.24) By Lemma 3.21, we show that ∀G ∈ O1, T−1 ◦
f−1(G) ∈ M . Since f(x) is Lebesgue measurable, by Lemma 3.21, f−1(G) ∈ M . Let

E
def
= f−1(G). By Theorem 2.14, E = H \ Z where H is a Gδ set and Z is a measure

zero set. T−1(E) = T−1(H \ Z) = T−1(H) \ T−1(Z). By assumption, T−1(Z) is also
a measure zero set, so T−1(Z) is measurable. Let H =

⋂∞
k=1Gk. Then T−1(H) =

T−1(
⋂∞
k=1Gk) =

⋂∞
k=1 T

−1(Gk). By the definition of continuous transformation (See
Chapter 2), T−1(Gk) ∈ Od ⊂M , therefore

⋂∞
k=1 T

−1(Gk) ∈M .

60 (Exercise 1) f(x)g(x) = exp(ln(f(x)g(x))) = exp(g(x) ln(f(x))). Since ln(·) is a
continuous function, ln(f(x)) is Lebesgue measurable. And g(x) ln(f(x)) is Lebesgue mea-
surable. Since exp(·) is a continuous function, exp(g(x) ln(f(x))) is Lebesgue measurable.
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61 (Exercise 2) Since g(x) is monotone increasing, {x ∈ [a, b] | g ◦ f(x) > t} =
{x ∈ [a, b] | f(x) = u} or = {x ∈ [a, b] | f(x) > u} for some u. Since f(x) is Lebesgue
measurable, {x ∈ [a, b] | f(x) = u}, {x ∈ [a, b] | f(x) > u} ∈M

62 (Exercise 3) Let f̃ : R2d 7→ R and f̃(x, y)
def
= f(x). Since {(x, y) ∈ R2d |

f̃(x, y) > t} = {x ∈ Rn | f(x) > t} × Rn ∈ M2d, f̃(x, y) is a Lebesgue measurable
function on R2d. (In Chapter 2, we show that A,B ∈M1 then A × B ∈M2. Similarly,
A,B ∈Md then A×B ∈M2d)

Let T (x, y) : R2d 7→ R2d and T (x, y)
def
= (x − y, x + y). Then T (x, y) is a linear

transformation. (∵ T (ax, ay) = aT (x, y) and T ((x1, y1)+(x2, y2)) = T (x1, y1)+T (x2, y2).)
So T (x, y) is a continuous transformation. (See §2.6 Example 1)

Finally, since f(x− y) = f̃(T (x, y)) and by Lemma 3.23, we conclude that f(x− y) is
a Lebesgue measurable function on R2d.

63 (Exercise 4)

STEP 1. We define

fn(x, y)
def
= n

(m
n
− x
)
f

(
m− 1

n
, y

)
+ n

(
x− m− 1

n

)
f
(m
n
, y
)
,

if x ∈
[
m−1
n
, m
n

)
, (m ∈ Z). An equivalent definition is

fn(x, y)
def
=

∑
m∈Z

(
n
(m
n
− x
)
f

(
m− 1

n
, y

)
+ n

(
x− m− 1

n

)
f
(m
n
, y
))
· χ[m−1

n
,m
n

)(x).

STEP 2. We prove that fn(x, y) → f(x, y) as n → ∞. For each n and x ∈ R,
there exists mn,x s.t x ∈ [m−1

n
, m
n

). (Note that m is related to n and x). Then we have∣∣∣∣x− m− 1

n

∣∣∣∣ , ∣∣∣mn − x∣∣∣ 5 1

n
→ 0 as n→∞.

Since f(x, y) is a continuous function of x (if y is fixed), we have

f

(
m− 1

n
, y

)
, f
(m
n
, y
)
→ f(x, y) as n→∞.

Also let us note that

n
∣∣∣m
n
− x
∣∣∣ , n ∣∣∣∣x− m− 1

n

∣∣∣∣ 5 1.

Finally,

|fn(x, y)− f(x, y)|

=

∣∣∣∣n(mn − x) f
(
m− 1

n
, y

)
+ n

(
x− m− 1

n

)
f
(m
n
, y
)
− f(x, y)

∣∣∣∣
=

∣∣∣∣n(mn − x)
(
f

(
m− 1

n
, y

)
− f(x, y)

)
+ n

(
x− m− 1

n

)(
f
(m
n
, y
)
− f(x, y)

)∣∣∣∣
5 1 ·

∣∣∣∣f (m− 1

n
, y

)
− f(x, y)

∣∣∣∣+ 1 ·
∣∣∣f (m

n
, y
)
− f(x, y)

∣∣∣→ 0 as n→∞
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STEP 3. fn(g(y), y) → f(g(y), y) as n → ∞ by the previous result. It is easy
to find out that fn(g(y), y) is Lebesgue measurable. So we conclude that f(g(y), y) is
Lebesgue measurable because it is a limit of a Lebesuge measurable function.

64 (Exercise 5) Let us recall that we constructed a Lebesgue measurable set

which is not Borel measurable in Chapter2. Let Ψ(x)
def
= x+Φ(x)

2
, x ∈ [0, 1] where Φ(x) is

Cantor function defined on [0, 1].
Let us recall that m(Ψ(C)) = 1/2 hence ∃W /∈ M ;W ⊂ Ψ(C) ⊂ [0, 1] (C : Cantor

set). Since Ψ−1(W ) ⊂ C and C is a measure zero set, so Ψ−1(W ) is also a measure zero

set. (Hence Ψ−1(W ) is Lebesgue measurable.) Let f(x)
def
= χΨ−1(W )(x). Then f(x) is a

Lebesgue measurabe function. Let g(x)
def
= Ψ−1(x). Let us recall that g(x) is a continuous

function . Let us consider f ◦ g(x) = χΨ−1(W )(Ψ
−1(x)). Since {x ∈ [0, 1] | f ◦ g(x) > 0} =

W /∈M , f ◦ g(x) is not Lebesgue measurable.

§ 3.4

65 (Exercise 1) When I is not countable, S(x) is not necessarily measurable. For

example, let I be a non Lebesgue measurable set on R1. We define fa(x)
def
= χa(x). Then

fa(x) is a Lebesgue measurable function for each a ∈ I because {a} is a measure zero set.
However S(x) = χI(x) and {x ∈ R | S(x) > t} = I /∈M , if 0 5 t < 1.

66 (Exercise 2)

STEP 1. Let us recall that if G is an open set on Rd (especially d = 2), there exist
a countable number of (disjoint) half open rectangles s.t

G =
⋃
n∈N

(an,1, bn,1]× · · · × (an,d, bn,d].

(See Chapter 1. Theorem 1.19)

STEP 2.

{x ∈ [a, b] | F (x) > t} = {x ∈ [a, b] | f ◦ (g1(x), g2(x)) > t}
= {x ∈ [a, b] | (g1(x), g2(x)) ∈ f−1(t,∞)}.

Let G = f−1(t,∞) ⊂ R2. Since f(x1, x2) is a continuous function on R2, G is an open set
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on R2. So

{x ∈ [a, b] | (g1(x), g2(x)) ∈ f−1(t,∞)}
= {x ∈ [a, b] | (g1(x), g2(x)) ∈ G)}

= {x ∈ [a, b] | (g1(x), g2(x)) ∈
∞⋃
n=1

(an,1, bn,1]× (an,2, bn,2]}

=
∞⋃
n=1

{x ∈ [a, b] | (g1(x), g2(x)) ∈ (an,1, bn,1]× (an,2, bn,2]}

=
∞⋃
n=1

{x ∈ [a, b] | g1(x) ∈ (an,1, bn,1]} ∩ {x ∈ [a, b] | g2(x) ∈ (an,2, bn,2]} ∈M

In the last part, note that

{x ∈ [a, b] | g1(x) ∈ (an,1, bn,1]} = {x ∈ [a, b] | g1(x) > an,1} \ {x ∈ [a, b] | g1(x) > bn,1})

So the proof is complete.

67 (Exercise 3) Note that

f ′+(x)
def
= lim

h↘0

f(x+ h)− f(x)

h
= lim

n→∞

f(x+ 1/n)− f(x)

1/n
.

For each n ∈ N, f(x+1/n)−f(x)
1/n

is Lebesgue measurable. By assumption, the limit exists.

So limn→∞
f(x+1/n)−f(x)

1/n
is Lebesgue measurable.

68 (Exercise 4) Let

gn(x)
def
= f(x)χ{|f(x)|5n}(x).

Note that
|f(x)− gn(x)| = |f(x)|χ{|f(x)|>n}(x),

and hence

{x ∈ E | |f(x)− gn(x)| > 0} = {x ∈ E | |f(x)|χ{|f(x)|>n} > 0}
= {x ∈ E | |f(x)| > n}.

Let An
def
= {x ∈ E | |f(x)| > n}. Since |f(x)| <∞ a.e x ∈ E,

m

(
∞⋂
n=1

An

)
= m

(
∞⋂
n=1

{x ∈ E | |f(x)| > n}

)
= m ({x ∈ E | |f(x)| =∞}) = 0.

Moreover, {An}n=1 is a decreasing sequence of point sets and m(E) <∞ hence m(A1) <
∞. Therefore

lim
n→∞

m(An) = m

(
∞⋂
n=1

An

)
= 0.
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This implies that there exists a sufficiently large n0 ∈ N s.t m(An0) < ε. So m(An0) =
m({x ∈ E | |f(x)| > n0}) = m({x ∈ E | |f(x)− gn0(x)| > 0}) < ε. gn0(x) is bounded. So
this is the desired function.

We can also answer the question using Lusin’s Theorem. There exists a closed set
F ⊂ E s.t m(E \ F ) < ε s.t f(x) is continuous on F . Let us define

gε(x)
def
=

{
f(x) x ∈ F
0 x ∈ E \ F

.

Note that F is also bounded, so F is compact. Since f(x) is continuous on a compact
set F , f(x) is bounded on F . Therefore gε(x) is also bounded on E. It is not difficult to
verify that gε(x) is Lebesgue measurable on E. Finally,

m({x ∈ E | |f(x)− gε(x)| > 0}) = m({x ∈ E | f(x) 6= gε(x)})
5 m(E \ F ) < ε

69 (Exercise 5) By the assumption, fk(x)
a.u−→ f(x). Let us recall that fk(x)

a.u−→
f(x) always implies fk(x)

a.e−→ f(x). (See Theorem 3.15, Extra Theorem.) So we conclude
that fk(x)

a.e−→ f(x).

70 (Exercise 6)

STEP 1. Note that

lim
j→∞

m

(
{x ∈ E | sup

k=j
{fk(x)} = ε}

)
= 0, ∀ε > 0, · · · (i)

if and only if

lim
j→∞

m

(
{x ∈ E | sup

k=j
{fk(x)} > ε′}

)
= 0, ∀ε′ > 0, · · · (ii)

First we prove (i)⇒ (ii). Suppose that (i) holds. For all ε′ > 0, we can always take ε > 0
s.t 0 < ε < ε′. By monotonicity of measure, (i) ⇒ (ii). By a similar argument, we can
prove that (ii)⇒ (i) also holds.

STEP 2. Note that

m

(
{x ∈ E | sup

k=j
{fk(x)} > ε′}

)
= m

 ∞⋃
k=j

{x ∈ E | {fk(x)} > ε′}

 .

So we have

lim
j→∞

m

(
{x ∈ E | sup

k=j
{fk(x)} > ε′}

)
= lim

j→∞
m

 ∞⋃
k=j

{x ∈ E | {fk(x)} > ε′}

 = 0.
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By the Extra Theorem,

lim
j→∞

m

 ∞⋃
k=j

{x ∈ E | {fk(x)} > ε′}

 = 0⇔ fk(x)
a.u−→ f(x) on E.

Let us recall that fk(x)
a.u−→ f(x) always implies fk(x)

a.e−→ f(x). By Egorov’s theorem,
when m(E) < ∞, fk(x)

a.e−→ f(x) on E implies fk(x)
a.u−→ f(x) on E. So if m(E) < ∞,

fk(x)
a.u−→ f(x)⇔ fk(x)

a.e−→ f(x). Now the proof is complete.

71 (Exercise 7) Since m([a, b]) = b − a < ∞, by Egorov’s theorem, there exists

En ∈M ;m([a, b]\En) < 1
n

s.t fk(x)
u−→ f(x) on En. m([a, b]\

⋃∞
n=1En) 5 m([a, b]\En) < 1

n

for all n ∈ N so m([a, b] \
⋃∞
n=1En) = 0. Now the proof is complete.

72 (Exercise 8) We may suppose |f(x)|, |g(x)| < ∞ a.e x ∈ E. By triangular
inequality, we have

|fk + gk − f − g| = ε

⇒ |fk − f |+ |gk − g| = ε.

And then |fk − f | = ε
2

or |gk − g| = ε
2
. So we have

m({x ∈ E | |fk(x) + gk(x)− f(x)− g(x)| = ε})

5 m
({
x ∈ E | |fk(x)− f(x)| = ε

2

}
∪
{
x ∈ E | |gk(x)− g(x)| = ε

2

})
∗1
5 m

({
x ∈ E | |fk(x)− f(x)| = ε

2

})
+m

({
x ∈ E | |gk(x)− g(x)| = ε

2

})
∗2→ 0

• (∗1) By sub-additivity

• (∗2) fk(x)
m−→ f(x), gk(x)

m−→ g(x) on E.

73 (Exercise 9)

STEP 1. (⇒) Suppose that fk(x)
m−→ f(x). Let ε > 0 be an arbitrary positive

number. Note that

lim sup
k→∞

inf
a>0
{a+m({x ∈ E | |fk(x)− f(x)| > a})}

∗1
5 lim

k→∞
(ε+m({x ∈ E | |fk(x)− f(x)| > ε}))

∗2
= ε

• (∗1) Since it takes infa>0(· · · ), the value is less than or equal to the case of a = ε.

• (∗2) fk(x)
m−→ f(x).
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The left hand side is less than an arbitrary positive number ε > 0. So we conclude that

lim
k→∞

inf
a>0
{a+m({x ∈ E | |fk(x)− f(x)| > a})} = 0.

STEP 2. (⇐) Suppose that

lim
k→∞

inf
a>0
{a+m({x ∈ E | |fk(x)− f(x)| = a})} = 0.

Let ε, δ > 0 be an arbitrary positive number. Let ε∗
def
= min{ε, δ}. We have Kε,δ s.t

∀k = K,
inf
a>0
{a+m({x ∈ E | |fk(x)− f(x)| = a})} < ε∗.

For each k = K, we can find at least one ak s.t

ak +m({x ∈ E | |fk(x)− f(x)| = ak}) < ε∗.

From this inequality, it is easy to find out that ak < ε∗ because m(· · · ) = 0. Therefore
ak < ε. So we have

m({x ∈ E | |fk(x)− f(x)| = ε})
5 m({x ∈ E | |fk(x)− f(x)| = ak})
< ak +m({x ∈ E | |fk(x)− f(x)| = ak}) < ε∗ 5 δ

for all k = K. This implies that fk(x)
m−→ f(x).

74 (Exercise 10) In this question we want to show fn(x)
m−→ f(x) on [0, 1] ⇒

∀x0 ∈ C(f), fn(x0) → f(x0). We show the contraposition. (If we want to prove A ⇒ B,
we may also prove ¬B ⇒ ¬A)

In other words, we show that ∃x0 ∈ C(f) s.t fn(x0) 6→ f(x0) ⇒ fn(x) 6m−→ f(x) on
[0, 1]. Note that fn(x0)→ f(x0) means that

∀ε > 0,∃Nε ∈ N s.t ∀n = N, |fn(x0)− f(x0)| < ε.

So fn(x0) 6→ f(x0) means that

∃ε > 0,∀N ∈ N,∃n = N s.t |fn(x0)− f(x0)| = ε.

Hint: First, swap ∀ and ∃. Then take the negation of the final part of the statement.

STEP 1. Since ∃ε > 0,∀N ∈ N,∃n = N s.t |fn(x0) − f(x0)| = ε, we can find a
subsequence {nk}k=1 s.t |fnk(x0) − f(x0)| = ε for all k = 1. So fnk(x0) − f(x0) = ε or
fnk(x0)− f(x0) 5 −ε for all k = 1. At least one of the following statements holds.

• There exist infinitely many k s.t fnk(x0)− f(x0) = ε.

• There exist infinitely many k s.t fnk(x0)− f(x0) 5 −ε.
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First suppose there exist infinitely many k s.t fnk(x0)−f(x0) = ε. (Even if we assume
the second case, the proof is similar. So we only assume the first case.) So we can find a
further subsequence nkm s.t fnkm (x0)− f(x0) = ε.

STEP 2. Let us recall that x0 ∈ C(f). Therefore ∃δ > 0 s.t ∀x ∈ (x0 − δ, x0 + δ),
|f(x) − f(x0)| < ε

2
. So ∀x ∈ (x0, x0 + δ), − ε

2
< f(x) − f(x0) < ε

2
. This implies that

f(x0) + ε
2
> f(x). Moreover, we have f(x0) + ε > f(x) + ε

2
by adding ε

2
to the both sides.

STEP 3. Since for each n, fn(x) is a monotone increasing function. (i.e x < x′ ⇒
f(x) 5 f(x′).) So ∀x ∈ (x0, x0 + δ), fnkm (x) = fnkm (x0). By Step1, fnkm (x) = fnkm (x0) =
f(x0) + ε. By Step2, f(x0) + ε > f(x) + ε

2
. Therefore, we have x ∈ (x0, x0 + δ) ⇒

fnkm (x)− f(x) > ε
2
⇒ |fnkm (x)− f(x)| = ε

2
. So we have

m
({
x ∈ E | |fnkm (x)− f(x)| = ε

2

})
= δ > 0

By taking lim inf,

lim inf
m→∞

m
({
x ∈ E | |fnkm (x)− f(x)| = ε

2

})
= δ > 0.

This implies that fnkm (x) 6m−→ f(x). However, if fn(x)
m−→ f(x), then for any subsequence

n′(k), fn′(k)(x)
m−→ f(x). So from the discussion above, we conclude that fn(x) 6m−→ f(x).

75 (Exercise 11) We can find Gn ∈ Od s.t m(Gn) < 1
n

and f(x) ∈ C(Rd \ Gn).

Let H
def
=
⋂∞
n=1Gn. Then {x ∈ Rd \H | f(x) > t} =

⋃∞
n=1{x ∈ Rd \Gn | f(x) > t} ∈M .

This is because f(x) is continuous on Rd \ Gn hence there exists an open set An s.t
{x ∈ Rd \Gn | f(x) > t} = (Rd \Gn) ∩ An.

Finally, {x ∈ Rd | f(x) > t} = {x ∈ Rd \ H | f(x) > t} ∪ {x ∈ H | f(x) > t} ∈ M
because H and its subset are measure zero sets.

76 (Exercise 12) {x ∈ E | |fk(x)gk(x)| = ε} ⊂ {x ∈ E | |fk(x)| =
√
ε} ∪ {x ∈ E |

|gk(x)| =
√
ε}. By sub-additivity,

lim
k→∞

m({x ∈ E | |fk(x)gk(x)| = ε})

5 lim
k→∞

m({x ∈ E | |fk(x)| =
√
ε} ∪ {x ∈ E | |gk(x)| =

√
ε})

5 lim
k→∞

{
m({x ∈ E | |fk(x)| =

√
ε}) +m({x ∈ E | |gk(x)| =

√
ε})
}

= 0.

.

77 (Exercise 13) Let us recall that fk(x)
m−→ f(x) if and only if ∀kl (a subse-

quence), ∃klm (a further subsequence) s.t fklm (x)
a.u−→ f(x).

STEP 1. Let kl be an arbitrary subsequence. Since fk(x)
m−→ f(x) on [a, b], there

exists klm (a further subsequence) s.t fklm (x)
a.u−→ f(x) on [a, b]. Let us recall that

m([a, b]) <∞ hence
a.u−→ if and only if

a.e−→. So fklm (x)
a.e−→ f(x) on [a, b].
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STEP 2. By assumption g(x) is continuous on [a, b], g ◦ fklm (x)
a.e−→ g ◦ f(x) on

[a, b]. Again,
a.e−→ if and only if

a.u−→ so g ◦ fklm (x)
a.u−→ g ◦ f(x) on [a, b]. Therefore we

may say that ∀kl (a subsequence) ∃klm (a further subsequence) s.t g ◦ fklm
a.u−→ g ◦ f(x)

on [a, b]. This implies g ◦ fk(x)
m−→ g ◦ f(x) on [a, b].

(Notice) In the future, we will provide a counterexample in the case of [a,∞).

78 (Exercise 14)

STEP 1. Let {Fn}n=1 be a sequence of closed sets with m(E \ Fn) < 1
n
; f(x) ∈

C(Fn). Then m(E \
⋃∞
n=1 Fn) < 1

n
for all n ∈ N hence m(E \

⋃∞
n=1 Fn) = 0.

STEP 2. {x ∈ Rd | f(x) > t} = {x ∈ Rd \
⋃∞
n=1 Fn | f(x) > t} ∪ {x ∈

⋃∞
n=1 Fn |

f(x) > t}. = {x ∈ Rd \
⋃∞
n=1 Fn | f(x) > t} ∪

⋃∞
n=1{x ∈ Fn | f(x) > t}. Since

{x ∈ Rd \
⋃∞
n=1 Fn | f(x) > t} ⊂ Rd \

⋃∞
n=1 Fn, so this is a measure zero set. Moreover

since f(x) ∈ C(Fn) for each n ∈ N, we have {x ∈ Fn | f(x) > t} ∈ M and hence⋃∞
n=1{x ∈ Fn | f(x) > t} ∈M Now the proof is complete.

79 (Exercise 15)

STEP 1. In this question, we do not know if f(x) is a measurable function. We
define convergence in measure to a sequence of measurable functions {fk(x)}k=1 and a

measurable function f(x). Therefore we should not say fn(x)
m−→ f(x) from the assump-

tion.
Let us look back on the equivalent statement on convergence a.e. Let {fk(x)}k=1 be

a sequence of measurable functions. (We do not suppose measurability of f(x).) Then
fk(x)

a.e−→ f(x) on E if and only if for all ε > 0, we have

m

 ∞⋂
m=1

∞⋃
k=m

{x ∈ E | |fk(x)− f(x)| = ε}

 = 0.

STEP 2. We pick a subsequence {nk}k=1 s.t

m∗({x ∈ [a, b] | |fnk(x)− f(x)| > ε}) 5 1

2k+1
.

We still do not know if the set is measurable or not so use m∗(·). Though we do not know
measurability, an outer measure m∗ has sub-additivity. So

m∗

 ∞⋃
k=m

{x ∈ [a, b] | |fnk(x)− f(x)| = ε}

 5
1

2m
.

Moreover,

m∗

 ∞⋂
m=1

∞⋃
k=m

{x ∈ [a, b] | |fnk(x)− f(x)| = ε}

 5
1

2m
, ∀m ∈ N.
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This implies that

m∗

 ∞⋂
m=1

∞⋃
k=m

{x ∈ [a, b] | |fnk(x)− f(x)| = ε}

 = 0.

A measure zero set is measurable, so
⋂∞
m=1

⋃∞
k=m{x ∈ [a, b] | |fnk(x) − f(x)| = ε} ∈M .

Let us recall the extra theorem. fnk(x)
a.e−→ f(x) on [a, b] if and only if

m

 ∞⋂
m=1

∞⋃
k=m

{x ∈ [a, b] | |fnk(x)− f(x)| = ε}

 = 0, ∀ε > 0

Since fnk(x)
a.e−→ f(x), so f(x) is measurable.

80 (Exercise 16) See the extra theorem.
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CHAPTER 4

Solutions

§ 4.1

1 (Definition 4.1) ∫
E

f(x)dx
def
=

p∑
i=1

cim(E ∩ Ai).

2 (Theorem 4.1)

(1) By definition,∫
E

(cf(x))dx =

p∑
i=1

(cai)m(E ∩ Ai) = c

p∑
i=1

aim(E ∩ Ai) = c

∫
E

f(x)dx.

(2) Since Rd =
⋃p
i=1Ai =

⋃q
j=1Bj,

f(x) + g(x) =

p∑
i=1

q∑
j=1

(ai + bj)χAi∩Bj(x).

This is also a non-negative Lebesgue measurable simple function. By definition,∫
E

(f(x) + g(x))dx =

p∑
i=1

q∑
j=1

(ai + bj)m(E ∩ Ai ∩Bj).

Again, since Rd =
⋃p
i=1Ai =

⋃q
j=1 Bj,

p∑
i=1

q∑
j=1

aim(E ∩ Ai ∩Bj)
(∗1)
=

p∑
i=1

aim(E ∩ Ai) =

∫
E

f(x)dx.
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• (∗1) is because {E∩Ai∩Bj}qj=1 are disjoint with each other, and
⋃q
j=1E∩Ai∩Bj =

E ∩ Ai because
⋃q
j=1 Bj = Rd.

Simlarly,
p∑
i=1

q∑
j=1

bjm(E ∩ Ai ∩Bj) =

q∑
j=1

bjm(E ∩Bj) =

∫
E

g(x)dx,

so the right hand side becomes
∫
E
f(x)dx+

∫
E
g(x)dx.

(3) ∫
E

f(x)dx =

p∑
i=1

aim(E ∩ Ai) =

p∑
i=1

q∑
j=1

aim(E ∩ Ai ∩Bj)

(∗2)

5
p∑
i=1

q∑
j=1

bjm(E ∩ Ai ∩Bj)

=

q∑
j=1

p∑
i=1

bjm(E ∩ Ai ∩Bj)

=

q∑
j=1

bjm(E ∩Bj) =

∫
E

g(x)dx

• (∗2) If x ∈ Ai ∩Bj 6= ∅, then f(x) 5 g(x), hence ai 5 bj. For a given pair of Ai, Bj

with Ai ∩ Bj 6= ∅, ai 5 bj. Therefore ai ·m(E ∩ Ai ∩ Bj) 5 bj ·m(E ∩ Ai ∩ Bj) if
Ai ∩Bj 6= ∅. And since m(∅) = 0, when Ai ∩Bj = ∅, the equality still holds.

3 (Theorem 4.2) Let f(x)
def
=
∑p

i=1 ciχAi(x) where Rd =
⋃p
i=1Ai and Ai ∈

M , Ai ∩ Aj = ∅ if i 6= j.

lim
k→∞

p∑
i=1

cim(Ek ∩ Ai) =

p∑
i=1

lim
k→∞

cim(Ek ∩ Ai)

(∗)
=

p∑
i=1

cim(E ∩ Ai) =

∫
E

f(x)dx

.

• (∗) Ek ∩ Ai ↗ E ∩ Ai as k → ∞, so m(Ek ∩ Ai) ↗ m(E ∩ Ai) as k → ∞. (See
Theorem 2.7)

4 (Definition 4.2) Let G be a collection of non-negative Lebesgue measurable
simple functions defined on Rd. (If we regard E as a universal set, we may also consider
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that simple functions in G are defined on E.) Let f(x) be a non-negative measurable
function defined on E ∈M .

Gf
def
= {g ∈ G | g(x) 5 f(x), ∀x ∈ E} .

Then we define ∫
E

f(x)dx
def
= sup

g∈Gf

{∫
E

g(x)dx

}
.

If
∫
E
f(x)dx <∞, we say that f is integrable on E.

5 (Extra Theorem) Let f(x) be a non-negative Lebesgue measurable simple

function defined on Rd. Let S1
def
=
∫
E
f(x)dx by Definition 4.1, and let S2

def
=
∫
E
f(x)dx

by Definition 4.2.

STEP 1. (S1 5 S2) Since f(x) ∈ Gf , S1 ∈ {
∫
E
g(x)dx | g ∈ Gf}, hence S1 5 S2

def
=

sup{
∫
E
g(x)dx | g ∈ Gf}.

STEP 2. (S1 = S2) Let us recall Theorem 4.1. (In definition 4.1, if f 5 g, then∫
f 5

∫
g.) Since ∀g(x) ∈ Gf , g(x) 5 f(x) holds. And ∀S ∈ {

∫
E
g(x)dx | g ∈ Gf}, we

have S 5 S1. By taking sup of the left hand side, we have S2 5 S1.

6 (Some Properties derived from Definition 4.2) Let G be a collection of non-
negative measurable simple function defined on Rd (or E).

(1) Let G1
def
= {h ∈ G | h(x) 5 f(x),∀x ∈ E}. Let G2

def
= {h ∈ G | h(x) 5 g(x), ∀x ∈

E}. Since f(x) 5 g(x), G1 ⊂ G2. So
{∫

E
h(x)dx

}
h∈G1
⊂
{∫

E
h(x)dx

}
h∈G2

Therefore∫
E

f(x)dx = sup
h∈G1

{∫
E

h(x)dx

}
5 sup

h∈G2

{∫
E

h(x)dx

}
=

∫
E

g(x)dx

(2) By the previous result, we have
∫
E
f(x)dx 5

∫
E
g(x) < ∞. So f(x) is also

integrable.

(3) Let G1
def
= {h1 ∈ G | h1(x) 5 f(x),∀x ∈ A}. Let G2

def
= {h2 ∈ G | h2(x) 5

f(x)χA(x),∀x ∈ E}. By definition,

S1
def
=

∫
A

f(x)dx = sup
h1∈G1

{∫
A

h1(x)dx

}
S2

def
=

∫
E

f(x)χA(x)dx = sup
h2∈G2

{∫
E

h2(x)dx

}
.

STEP 1. (S1 5 S2) We pick a function h1(x) ∈ G1 arbitrarily and suppose that
h1(x) =

∑p
i=1 aiχAi(x) where Rd =

⋃p
i=1Ai, where {Ai}pi=1 ⊂ M are mutually disjoint.

By assumption, h1(x) 5 f(x),∀x ∈ A. So h1(x) · χA(x) 5 f(x) · χA(x), ∀x ∈ E. This
implies that h1(x) · χA(x) ∈ G2.
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Since ∫
A

h1(x) =

p∑
i=1

aim(A ∩ Ai),

and ∫
E

h1(x) · χA(x)dx
∗1
=

p∑
i=1

aim(E ∩ A ∩ Ai)

∗2
=

p∑
i=1

aim(A ∩ Ai),

• (∗1) h1(x) · χA(x) =
∑p

i=1 aiχA∩Ai(x) =
∑p

i=1 aiχA∩Ai(x) + 0 · χRd\A is also a mea-
surable simple function.

• (∗2) A ⊂ E.

hence ∫
A

h1(x)dx =

∫
E

h1(x) · χA(x)dx
∗3
5 S2.

• (∗3) Let h2(x)
def
= h1(x) · χA(x) ∈ G2. So

∫
E
h2(x)dx 5 suph∈G2

{
∫
E
h(x)dx}.

By taking sup with respect to h1(x) on the left hand side in the above inequality, we have
S1 5 S2.

STEP 2. (S1 = S2) We pick a function h2(x) ∈ G2 arbitrarily, and suppose that
h2(x) =

∑p
i=1 aiχAi(x) where Rd =

⋃p
i=1Ai. ({Ai}pi=1 ⊂ M are mutually disjoint.) By

assumption, h2(x) 5 f(x)χA(x). This implies that if x /∈ A, h2(x) = 0. So it follows that
h2(x) = h2(x) · χA(x) =

∑p
i=1 aiχA∩Ai(x), and h2(x) 5 f(x) for x ∈ A, so h2(x) ∈ G1 if

we regard h2(x) as a function defined on A.∫
E

h2(x)dx =

∫
E

h2(x) · χA(x)

=

p∑
i=1

aim(E ∩ A ∩ Ai)

=

p∑
i=1

aim(A ∩ Ai)

=

∫
A

h2(x)dx
∗4
5 S1.

• (∗4) h2(x) ∈ G1, so
∫
A
h2(x)dx 5 suph∈G1

{
∫
A
h(x)dx} = S1.

Finally, by taking sup with respect to h2 on the left hand side, we have S2 5 S1.

(4)

STEP 1. (⇒) We pick an arbitrary measurable simple function h(x) =
∑p

i=1 aiχAi(x)
s.t h(x) 5 f(x) on E. Since f(x) = 0 a.e x ∈ E, if m(E ∩ Ai) > 0 then ai = 0. This
implies that either ai or m(E ∩ Ai) is 0. Therefore

∫
E
h(x)dx =

∑p
i=1 aim(E ∩ Ai) = 0.

Even if we take suph∈G {
∫
E
h(x)dx}, it should still be 0.
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STEP 2. (⇐) Since

0 =

∫
E

f(x)dx =
∫
E

f(x) · χ{x∈E|f(x)= 1
n
}(x)dx

=
∫
E

1

n
χ{x∈E|f(x)= 1

n
}(x)dx

=
1

n
m({x ∈ E | f(x) =

1

n
}),

we have

m

(
{x ∈ E | f(x) =

1

n
}
)

= 0, ∀n ∈ N.

Therefore, by sub-additivty

m ({x ∈ E | f(x) > 0}) = m

(
∞⋃
n=1

{x ∈ E | f(x)
1

n
}

)

5
∞∑
n=1

m

(
{x ∈ E | f(x) =

1

n
}
)

= 0.

(5) Since E is a measure zero set, we may say that f(x) = 0 a.e x ∈ E. (∵ {x ∈
E | f(x) > 0} ⊂ E) So

∫
E
f(x)dx = 0.

7 (Theorem 4.3) Let Ek
def
= {x ∈ E | f(x) > k}. Then

Ek ↘
∞⋂
k=1

Ek = {x ∈ E | f(x) =∞}.

Next,

km(Ek) =

∫
Ek

kχEdx 5
∫
Ek

f(x)dx 5
∫
E

f(x)dx <∞,

hence

m(Ek) 5
1

k

∫
E

f(x)dx <∞.

This implies that m(E1) <∞ and limk→∞m(Ek) = 0. Therefore,

lim
k→∞

m(Ek) = m

(
∞⋂
k=1

Ek

)
= m ({x ∈ E | f(x) =∞}) = 0.

So we have the desired conclusion.

8 (Theorem 4.4) Let G be a collection of non-neagative Lebesgue measurable

simple functions define on E ∈M . And let Gf
def
= {g ∈ G | g 5 f}.
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STEP 1. (5) First
∫
E
fk(x)dx is increasing so the limit exists. Since

∫
E
fk(x)dx 5∫

E
f(x)dx for all k = 1, 2 · · · , so limk→∞

∫
E
fk(x)dx.

STEP 2. (=) Let us recall that∫
E

f(x)dx
def
= sup

g∈Gf

{∫
E

g(x)dx

}
.

So it is enough for us to show that ∀g ∈ Gf ,

lim
k→∞

∫
E

fk(x)dx =
∫
E

g(x)dx.

Let α ∈ (0, 1) and we define

E
(α)
k

def
= {x ∈ E | fk(x) > αg(x)}.

Since fk ↗ f and g 5 f so we have

E
(α)
k ↗ {x ∈ E | f(x) > αg(x)} = E.

Finally,

lim
k→∞

∫
E

fk(x)dx
(∗1)

= lim
k→∞

∫
E

(α)
k

fk(x)dx

(∗2)

= lim
k→∞

∫
E

(α)
k

αg(x)dx

(∗3)
=

∫
E

αg(x)dx

(∗4)
= α

∫
E

g(x)dx

By taking α↗ 1, we have the desired result. Hint.

• (∗1) Let A,B ∈ M , A ⊂ B, and let f(x) be a non-negative Lebesuge measurable
function. Then

∫
A
f(x)dx =

∫
B
f(x) · χA(x) 5

∫
B
f(x)dx.

• (∗2) When x ∈ E(α)
k , fk(x) > αg(x)

• (∗3) limk→∞
∫
E

(α)
k
αgdx =

∫
E
αgdx. This follows by Theorem 4.2.

• (∗4) Theorem 4.1.

9 (Theorem 4.5) According to the theorem in Chpter 3, we can find a sequence
of non-negative measurable simple functions s.t fk(x) ↗ f(x) and gk(x) ↗ g(x). So
{αfk(x) + βgk(x)}k=1 is also an increasing sequence of non-negatie measurable simple
functions s.t αfk(x) + βgk(x)↗ αf(x) + βg(x).
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By monotone convergence theorem (Theorem 4.4),

lim
k→∞

∫
E

(αfk(x) + βgk(x))dx =

∫
E

(αf(x) + βg(x))dx.

By Theorem 4.1, when the functions are measurable simple functions, integral has linear-
ity. So the left hand side is

lim
k→∞

∫
E

(αfk(x) + βgk(x))dx = lim
k→∞

(
α

∫
E

fk(x)dx+ β

∫
E

gk(x)dx

)
Again by monotone convergence theorem (Theorem 4.4), the right hand side is

lim
k→∞

(
α

∫
E

fk(x)dx+ β

∫
E

gk(x)dx

)
= α

∫
E

f(x)dx+ β

∫
E

g(x)dx.

Now the proof is complete.

10 (Example 2)

STEP 1. Let us pay attention to the fact that f(x) = 0 for all x ∈ E because
fk(x) = 0 and fk(x) → f(x) on E. Let gk(x) = f1(x) − fk(x). Then gk(x) = 0 so
gk(x) is non-negative so {gk(x)}k=1 is an increasing sequence of non-negative measurable
functions. gk(x)→ f1(x)− f(x) on E. (f1(x)− f(x) = 0 for all x ∈ E.) By Theorem 4.4
(monotone convergence theorem), we have

lim
k→∞

∫
E

gk(x)dx =

∫
E

g(x)dx =

∫
E

(f1(x)− f(x))dx. · · · (∗1)

STEP 2. We still can not say that
∫
E

(f1(x) − f(x))dx =
∫
E
f1(x)dx −

∫
E
f(x)dx

because Theorem 4.5 assumes that α, β > 0. However, according to linearity of integral
with regard to non-negative measurable funtions, we have∫

E

((f1(x)− f(x)) + f(x))dx =

∫
E

(f1(x)− f(x))dx+

∫
E

f(x)dx.

Since
∫
E
f(x)dx 5

∫
E
fk(x)dx < ∞ (finite), we may subtract

∫
E
f(x)dx from the both

sides. So we have∫
E

((f1(x)− f(x)) + f(x))dx−
∫
E

f(x)dx =

∫
E

(f1(x)− f(x))dx.

Therefore we have∫
E

f1(x)dx−
∫
E

f(x)dx =

∫
E

(f1(x)− f(x))dx. · · · (∗2)

Similarly we have ∫
E

gk(x)dx =

∫
E

f1(x)dx−
∫
E

fk(x)dx. · · · (∗3)
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STEP 3.

lim
k→∞

∫
E

gk(x)dx
(∗1)
=

∫
E

(f1(x)− f(x))dx

(∗2)
=

∫
E

f1(x)dx−
∫
E

f(x)dx,

lim
k→∞

∫
E

gk(x)dx
(∗3)
= lim

k→∞

(∫
E

f1(x)dx−
∫
E

fk(x)dx

)
=

∫
E

f1(x)dx− lim
k→∞

∫
E

fk(x)dx.

Since
∫
E
f1(x) <∞, we may subtract

∫
E
f1(x)dx from the both sides. By multiplying −1

to the both sides, we have the desired result.

11 (Example 3) Let N
def
= {x ∈ E | f(x) 6= g(x)} ∈M . m(N) = 0.∫

E

f(x)dx =

∫
E

(f(x)χN(x) + f(x)χE\N(x))dx

(∗1)
=

∫
E

f(x)χN(x)dx+

∫
E

f(x)χE\N(x))dx

(∗2)
=

∫
E

f(x)χN(x)dx+

∫
E

g(x)χE\N(x))dx

(∗3)
=

∫
N

f(x)dx+

∫
E

g(x)χE\N(x))dx

(∗4)
= 0 +

∫
E

g(x)χE\N(x))dx

(∗5)
=

∫
N

g(x)dx+

∫
E

g(x)χE\N(x))dx

(∗6)
=

∫
E

g(x)χN(x)dx+

∫
E

g(x)χE\N(x))dx

(∗7)
=

∫
E

(g(x)χN(x)dx+ g(x)χE\N(x))dx

=

∫
E

g(x)dx.

• (∗1), (∗7) holds by Theorem 4.5.

• (∗2) f(x) = g(x) on E \N .

• (∗3), (∗4), (∗5), (∗6) See the properties of integral derived from Definition 4.2.
∫
A
h(x)dx =∫

E
h(x)χA(x)dx and

∫
A
h(x)dx = 0 if m(A) = 0 where A ⊂ E,A ∈M and h(x) is

a non-negative Lebesgue measurable function.
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12 (Supplement to Theorem 4.5 and Example 2) Let f̃(x)
def
= limk→∞ f(x). Then

f̃(x) = f(x) a.e x ∈ E. By Example 3, we have∫
E

f̃(x)dx =

∫
E

f(x)dx.

By Theorem 4.5 or Example 2, we also have∫
E

f̃(x)dx = lim
k→∞

∫
E

fk(x)dx.

Now the proof is complete.

13 (Exercise 1)

(1) Since (f 2
1 + f 2

2 + · · ·+ f 2
m) 5 (f1 + f2 · · ·+ fm)2 when f1, f2 · · · fm = 0, we have

F (x) 5 f1(x) + f2(x) · · ·+ fm(x).

The right hand side is integrable because fi(x) is integrable for each i = 1, 2 · · ·m. There-
fore F (x) is also integrable. (See the properties of integral derived from Definition 4.2.)

(2) It is enough for us to show that for every combination of (i, k), (fi(x)fk(x))1/2

is integrable.

case 1. (i = k) When i = k, then (fi(x)fk(x))1/2 = fi(x) so it is integrable.

case 2. (i 6= k) When i 6= k, then (fi(x)fk(x))1/2 5
√

2(fi(x)fk(x))1/2 5 fi(x) +
fk(x). (Take the square of the both sides and you will find that the right hand side is
equal or greater than the left side.) The right hand side is integrable.

Now the proof is complete.

14 (Exercise 2) According to the properties of integral derived from the Definition
4.2, the right hand side is

lim
k→∞

∫
E

f(x)χEk(x).

Let gk(x) = f(x)χEk(x). Then {gk(x)}k=1 is an increasing sequence of non-negative
measurable functions and gk(x) ↗ f(x). By monotone convergence theorem (Theorem
4.5), we have

lim
k→∞

∫
E

f(x)χEk(x) = lim
k→∞

∫
E

gk(x) =

∫
E

f(x).

So the proof is complete.

15 (Exercise 3) By the hint we have

lim sup
k→∞

∫
E

(1− exp(−fk(x)))dx 5 lim
k→∞

∫
E

fk(x)dx = 0.

So the proof is complete.
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16 (Exercise 4) Let gn(x)
def
= f(x)χ{x∈E|f(x)>n}(x). Then {gn(x)}n=1 is a decreas-

ing sequence of non-negative measurable functions. Moreover gn(x) is also integrable

because f(x) is integrable and 0 5 gn(x) 5 f(x). gn(x) ↘ g(x)
def
= ∞ · χ{x∈E|f(x)=∞}(x).

Since f(x) is integrable, by Theorem 4.3, f(x) <∞ a.e x ∈ E. Hence m({x ∈ E | f(x) =
∞}) = 0. So we may say that g(x) = 0 a.e x ∈ E. By Example2 (and Example 3 in the
second equality), we have

lim
k→∞

∫
E

gk(x)dx =

∫
E

g(x)dx =

∫
E

0dx = 0.

This implies that ∀ε > 0, there exists Nε ∈ N s.t∫
E

gN(x)dx < ε

So the proof is complete.

17 (Exercise 5) We use monotone convergence theorem (Theorem 4.4).

STEP 1. We show that a
(x)
n

def
=
(
1 + x

n

)n
is increasing with respect to n for all

x = 0. (i.e a
(x)
n 5 a

(x)
n+1). Let gx(t)

def
= ln

(
1 + x

t

)x
, (t > 0).. Then

g′x(t) = ln
(

1 +
x

t

)
−

x
t

1 + x
t

g′′x(t) = − t

(t+ x)2
< 0

g′x(t) is monotone decreasing in t ∈ (0,∞) and limt→∞ g
′
x(t) = 0. This implies thatg′x(t) >

0. Therefore gx(t) is monotone increasing. So a
(n)
n is also monotone increasing with respect

to n for all x = 0.

STEP 2. By monotone convergence theorem (Theorem 4.4), we have

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n
exp(−2x)dx

∗1
= lim

n→∞

∫
[0,∞)

(
1 +

x

n

)n
χ[0,n](x) exp(−2x)dx

∗2
=

∫
[0,∞)

lim
n→∞

(
1 +

x

n

)n
χ[0,n](x) exp(−2x)dx

=

∫
[0,∞)

exp(x)χ[0,∞)(x) exp(−2x)dx

=

∫
[0,∞)

exp(−x)dx

• (∗1) We may consider that
(
1 + x

n

)n
χ[0,n](x) exp(−2x) is a non-negative Lebesgue

measurable function defined on E = [0,∞).
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• (∗2) We apply monotone convergence theorem here.

18 (Exercise 6)

fn(x)
def
= xn →

{
0 x ∈ [0, 1)

1 x = 1

Since m({1}) = 0, fn(x)
a.e−→ 0 on [0, 1]. Moreover, 0 5 fn+1(x) 5 fn(x) on [0, 1]. By

Example2, we have

lim
n→∞

∫
[0,1]

fn(x)dx =

∫
[0,1]

0dx = 0.

19 (Theorem 4.6) Let Sk(x)
def
=
∑k

i=1 fi(x). Since fi(x) is non-negative mea-
surable functions. Hence Sk(x) is also non-negative measurable functions and Sk(x) 5
Sk+1(x), Sk(x) ↗

∑∞
k=1 Sk(x) holds. By monotone convergence theorem (Theorem 4.4)

we have

lim
k→∞

∫
E

Sk(x)dx =

∫
E

∞∑
k=1

Sk(x)dx.

By Theorem 4.5 (integral has linearity), so the left hand side is

lim
k→∞

∫
E

Sk(x)dx = lim
k→∞

k∑
i=1

∫
E

fi(x)dx =
∞∑
k=1

∫
E

fk(x)dx

20 (Corollary 4.7)

STEP 1. It is easy to verify that χE(x) =
∑∞

k=1 χEk(x). First, suppose that
χE(x) = 1. Then x ∈ E so ∃k0 s.t x ∈ Ek0 . And {Ek}∞k=1 are mutually disjoint,∑n

k=1 χEk(x) = 1 for sufficiently large n. So
∑∞

k=1 χEk(x) = limn→∞
∑n

k=1 χEk(x) = 1.
Second, suppose that

∑∞
k=1 χEk(x) = 1. By the similar argument, we have χE(x) =

1. Since the both sides only take 0 or 1, the argument above explains that χE(x) =∑∞
k=1 χEk(x).
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STEP 2. Since x ∈ E, we have

f(x) = f(x)χE(x)

∗1
= f(x)

∞∑
k=1

χEk(x)

∗2
= f(x) lim

n→∞

n∑
k=1

χEk(x)

∗3
= lim

n→∞

n∑
k=1

f(x)χEk(x)

∗4
=

∞∑
k=1

f(x)χEk(x).

• (∗1) By Step1.

• (∗2), (∗4) By the definition of limit of summation.

• (∗3) if {an} converges, then α · limn→∞ an = limn→∞ α · an.

Therefore, ∫
E

f(x)dx =

∫
E

∞∑
k=1

f(x)χEk(x)dx

By Theorem 4.6 we have,∫
E

∞∑
k=1

f(x)χEk(x)dx =
∞∑
k=1

∫
E

f(x)χEk(x)dx.

Finally, by the properties of integral derived from Definition 4.2,

∞∑
k=1

∫
E

f(x)χEk(x)dx =
∞∑
k=1

∫
Ek

f(x)dx.

21 (Example 4) By assumption,
∑n

i=1 χEi(x) = k for all x ∈ [0, 1]. So∫
[0,1]

n∑
i=1

χEi(x) =
∫

[0,1]

kχ[0,1]dx = km([0, 1]) = k.

The left hand side is ∫
[0,1]

n∑
i=1

χEi(x) =
n∑
i=1

m(Ei).

If m(Ei) <
k
n

for all i = 1, 2 · · ·n, then
∑n

i=1m(Ei) < k and this contradicts to the result
above. So there exists at least one i0 s.t m(Ei0) = k

n
.
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22 (Theorem 4.8) Let gk(x)
def
= infm=k{fm(x)}. Then gk(x) 5 gk+1(x) and

gk(x)↗ lim infk→∞ fk(x). By monotone convergence theorem (Theorem 4.4) we have∫
E

lim
k→∞

gk(x) = lim
k→∞

∫
E

gk(x)dx

And since gk(x) 5 fk(x) we have∫
E

gk(x)dx 5
∫
E

fk(x)dx

This implies that

lim
k→∞

∫
E

gk(x)dx 5 lim inf
k→∞

∫
E

fk(x)dx

• Since gk(x) is increasing with respect to k, so
∫
E
gk(x)dx is also increasing. Therefore

limk→∞
∫
E
gk(x)dx exists.

• We do not know if limk→∞
∫
E
fk(x) exists or not. However the an 5 bn ⇒ lim infn→∞ an 5

lim infn→∞ bn. The left hand side is equal to limn→∞ an if the limit exists.

23 (Example 5) This example explains that equality does not always hold in
Fatou’s lemma. First, fn(x)→ 0 for all x ∈ [0, 1] because

• if x = 0, 1, fn(x) = 0 for all n ∈ N so limn→∞ fn(x) = 0,

• if x ∈ (0, 1), by taking suffiently large n s.t 1
n
< x, fn(x) = 0 so fn(x)→ 0.

So we have ∫
[0,1]

lim
n→∞

fn(x)dx =

∫
[0,1]

0dx = 0

However, ∫
[0,1]

fn(x)dx =

∫
[0,1]

nχ(0,1/n)(x)dx = nm((0, 1/n)) = 1, ∀n ∈ N.

So

lim
n→∞

∫
[0,1]

fn(x)dx = 1.

24 (Theorem 4.9)

STEP 1. Since f(x) < ∞ a.e x ∈ E, we may suppose that f(x) < ∞ for all

x ∈ E without loss of generarlity. Let N
def
= {x ∈ E | f(x) = ∞} and let Ẽ

def
= E \ N .

Since m(N) = 0,
∫
E
f(x)dx =

∫
Ẽ
f(x)dx +

∫
N
f(x)dx =

∫
Ẽ
f(x)dx. This explains that

the integral is determined only on Ẽ where f(x) < ∞. Therefore we may suppose that
f(x) <∞ on E.
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STEP 2. Pick a partition {yk}∞k=0 ∈ P (δ). Since f(x) < ∞ for all x ∈ E and
E =

⋃∞
k=0Ek and each Ek is mutually disjoint, by Theorem 4.6, we have∫

E

f(x)dx =
∞∑
k=0

∫
Ek

f(x)dx

On each Ek, yk 5 f(x) < yk+1, so we have

∞∑
k=0

∫
Ek

ykdx 5
∫
E

f(x)dx 5
∞∑
k=0

∫
Ek

yk+1dx.

Hence

∞∑
k=0

ykm(Ek) 5
∫
E

f(x)dx 5
∞∑
k=0

yk+1m(Ek).

Let us take a look at the right hand side.

= lim
n→∞

n∑
k=0

(yk+1 − yk + yk)m(Ek)

∗1
5 lim

n→∞

n∑
k=0

(δ + yk)m(Ek)

5 lim
n→∞

(
n∑
k=0

ykm(Ek) +
n∑
k=0

δm(Ek)

)
∗2
=

∞∑
k=0

ykm(Ek) + δ
∞∑
k=0

m(Ek)

∗3
=

∞∑
k=0

ykm(Ek) + δm(E)

• (∗1) Let us recall that yk+1 − yk < δ.

• (∗2) limn→∞(an+bn) = limn→∞ an+limn→∞ bn because an, bn are monotone increas-
ing so both limits exist.

• (∗3) Ek is mutually disjoint and E =
⋃∞
k=0 Ek.

In conclusion we have

S(I) 5
∫
E

f(x)dx 5 S(I) + δm(E).

From this inequality, we find out that
∫
E
f(x) < ∞ if and only if S(I) < ∞. (∵

δm(E) <∞)
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STEP 3. By the inequality in the previous step, we have

sup
I∈P (δ)

S(I) 5
∫
E

f(x)dx 5 inf
I∈P (δ)

S(I) + δm(E).

By taking limit we have

lim
δ↘0

sup
I∈P (δ)

S(I) 5
∫
E

f(x)dx 5 lim
δ↘0

inf
I∈P (δ)

S(I)

This explains that ∫
E

f(x)dx = lim
δ↘0

sup
I∈P (δ)

S(I) = lim
δ↘0

inf
I∈P (δ)

S(I)

25 (Example 6) In this question, we use Theorem 4.9 (1).

STEP 1. We pick {yk}∞k=0 where yk = k in Theorem 4.9. By Theorem 4.9,∫
E
f(x)dx <∞ if and only if

∑∞
k=0 ykm(Ek) <∞ where Ek = {x ∈ E | k 5 f(x) < k+1}.

STEP 2.

∞∑
n=0

m({x ∈ E | f(x) = n}) ∗1
=

∞∑
n=0

∞∑
k=n

m({x ∈ E | k 5 f(x) < k + 1})

∗2
=

∞∑
k=0

k∑
n=0

m({x ∈ E | k 5 f(x) < k + 1})

=
∞∑
k=0

km({x ∈ E | k 5 f(x) < k + 1})

=
∞∑
k=0

ykm(Ek) <∞

if and only if ∫
E

f(x)dx <∞.

• (∗1) by assumption f(x) < ∞. {x ∈ E | f(x) = n} = {x ∈ E | n 5 f(x) < ∞} =⋃∞
k=n{x ∈ E | k 5 f(x) < k + 1}.

• (∗2) if an,k = 0 then
∑∞

n=1

∑∞
k=1 an,k =

∑∞
k=1

∑∞
n=1 an,k. Let an,k = χn5k ·m({x ∈

E | k 5 f(x) < k + 1}) where χn5k = 1 if n 5 k, otherwise = 0.

26 (Example 7) In this question, we use Theorem 4.9 (1) again.
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STEP 1. We pick {yk}∞k=0 where yk = k2 in Theorem 4.9. By Theorem 4.9,∫
E
f 2(x)dx < ∞ if and only if

∑∞
k=0 ykm(Ek) < ∞ where Ek = {x ∈ E | k2 5 f 2(x) <

(k + 1)2}.

STEP 2.
∞∑
n=1

nm({x ∈ E | f(x) = n}) =
∞∑
n=0

nm({x ∈ E | f(x) = n})

=
∞∑
n=0

nm({x ∈ E | f(x)2 = n2})

=
∞∑
n=0

∞∑
k=n

nm({x ∈ E | k2 5 f(x)2 < (k + 1)2})

∗1
=

∞∑
k=0

k∑
n=0

nm({x ∈ E | k2 5 f(x)2 < (k + 1)2})

∗2
=

∞∑
k=0

k(k + 1)

2
m({x ∈ E | k2 5 f(x)2 < (k + 1)2})

=
∞∑
k=0

k(k + 1)

2
m(Ek) <∞

if and only if
∞∑
k=0

k2m(Ek)

(
=
∞∑
k=0

ykm(Ek)

)
<∞

This is because k 5 k2 so
∑∞

k=0 k
2m(Ek) <∞⇒

∑∞
k=0 km(Ek) <∞.

• (∗1) Since each term is positive, so we may swap
∑

n and
∑

k.

• (∗2)
∑k

n=0 n = k(k+1)
2

.

27 (Exercise 7) Let

E1
def
= {x ∈ E | 0 5 f(x) 5 1}, and E2

def
= {x ∈ E | f(x) > 1}.

By Corollary 4.7 ∫
E

f(x)2dx =

∫
E1

f(x)2dx+

∫
E2

f 2(x)dx

5
∫
E1

1dx+

∫
E2

f(x)3dx

= m(E1) +

∫
E2

f(x)3dx

5 m(E) +

∫
E

f(x)3dx <∞.
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• x ∈ E1 ⇒ f(x) 5 1.

• x ∈ E2 ⇒ f(x)2 5 f(x)3 because f(x) = 1.

28 (Exercise 8) In this question, we use Theorem 4.9 (1) again.

STEP 1. We pick {yk}∞k=0 where yk = k3 in Theorem 4.9. By Theorem 4.9,∫
E
f 3(x)dx < ∞ if and only if

∑∞
k=0 ykm(Ek) < ∞ where Ek = {x ∈ E | k3 5 f 3(x) <

(k + 1)3}.

STEP 2.

∞∑
n=1

n2m({x ∈ E | f(x) = n})

=
∞∑
n=0

n2m({x ∈ E | f(x) = n})

=
∞∑
n=0

nm({x ∈ E | f(x)3 = n3})

=
∞∑
n=0

∞∑
k=n

n2m({x ∈ E | k3 5 f(x)3 < (k + 1)3})

=
∞∑
k=0

k∑
n=0

n2m({x ∈ E | k3 5 f(x)3 < (k + 1)3})

=
∞∑
k=0

k(k + 1)(2k + 1)

6
m({x ∈ E | k3 5 f(x)3 < (k + 1)3})

=
∞∑
k=0

k(k + 1)(2k + 1)

6
m(Ek) <∞

if and only if
∞∑
k=0

k3m(Ek)

(
=
∞∑
k=0

ykm(Ek)

)
<∞

This is because k 5 k2 5 k3 so
∑∞

k=0 k
3m(Ek) < ∞ ⇒

∑∞
k=0 km(Ek) < ∞ and∑∞

k=0 k
2m(Ek) <∞.

29 (Exercise 9) Use Fatou’s lemma.

STEP 1. By Fatou’s lemma∫
e

lim inf
k→∞

fk(x)dx 5 lim inf
k→∞

∫
e

fk(x)dx.
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Since limk→∞ fk(x) = f(x), we have∫
e

f(x)dx 5 lim inf
k→∞

∫
e

fk(x)dx.

STEP 2. Since fk(x) 5 f(x),
∫
e
fk(x)dx 5

∫
e
f(x)dx. Therefore we have

lim sup
k→∞

∫
e

fk(x)dx 5
∫
e

f(x)dx

Now the proof is complete.

30 (Exercise 10)

STEP 1. Let us recall that lim supn→∞En = {x ∈ [0, 1] | #{n | x ∈ En} = ∞}.
In otherwords, lim supn→∞En is the set of x ∈ E which is contained by infinitely many
En, (n = 1). m(lim supn→∞En) = 0 means that for almost every x ∈ [0, 1], x is contained

by only finite number of En. Let f(x)
def
=
∑∞

n=1 χEn(x). We can say that f(x) is the
number of n s.t x ∈ En. By the argument, f(x) <∞ a.e x ∈ [0, 1].

STEP 2. Let Am
def
= {x ∈ [0, 1] | f(x) 5 m}. Then Am ↗ {x ∈ [0, 1] | f(x) <∞}.

Since Am is an increasing sequence of point sets (i.e Am ⊂ Am+1), limm→∞m(An) =
m({x ∈ [0, 1] | f(x) <∞}) = 1. This implies that we ∀ε > 0 we can find sufficiently large
M s.t m(AM) > 1− ε. Therefore m([0, 1] \ AM) < ε.

STEP 3. Let us consider the integral below.∫
AM

f(x)dx.

By Theorem 4.6, ∫
AM

f(x)dx =

∫
AM

∞∑
n=1

χEn(x)dx

=
∞∑
n=1

∫
AM

χEn(x)dx

=
∞∑
n=1

m(AM ∩ En)

On the otherhand, f(x) 5M on AM , so we have∫
AM

f(x)dx 5
∫
AM

Mdx = Mm(AM) 5M <∞.

So A
def
= AM is the desired measurable set on [0, 1].
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§ 4.2

31 (Definition: integral of general measurable functions) Let

f+(x)
def
= max{0, f(x)} = f(x) · χ{x∈E|f(x)=0}(x),

f−(x)
def
= max{0,−f(x)} = f(x) · χ{x∈E|f(x)50}(x).

Then f(x) = f+(x)− f−(x) and |f(x)| = f+(x) + f−(x). Let

S+ def
=

∫
E

f+(x)dx, and S−
def
=

∫
E

f−(x)dx.

Note that 0 5 S+, S− 5∞.

(1)
∫
E
f(x)dx

def
= S+ − S−.

∫
E
f(x)dx is defined when at least one of S+ < ∞

or S− < ∞ holds. Then we say that
∫
E
f(x)dx exists. If S+ = ∞, S− < ∞, then∫

E
f(x)dx =∞, and if S+ <∞, S− =∞, then

∫
E
f(x)dx = −∞.

(2) When both S+, S− <∞, we say that f(x) is integrable.

(3)
∫
E
|f(x)|dx =

∫
E
f+(x)dx+

∫
E
f−(x)dx = S+ + S− by Corollary 4.7. So∫

E

|f(x)|dx <∞ ⇔ S+ + S− <∞

⇔ S+, S− <∞
⇔ f(x) is integrable.

(4)
∣∣∫
E
f(x)dx

∣∣ = |S+ − S−| 5 S+ + S− =
∫
E
|f(x)|dx.

32 (Example 1) Let us recall that f is integrable if and only if |f | is integrable. If f
is bounded then |f | 5M <∞ for some M > 0.

∫
E
|f(x)|dx 5

∫
E
Mdx = M ·m(E) <∞.

(∵ m(E) <∞ by assumption.)

33 (Some Properties)

(1) f(x) ∈ L(E) means that f(x) is integrable⇔ |f(x)| is integrable. If not |f(x)| <
∞ a.e x ∈ E, then m({x ∈ E | |f(x)| = ∞}) > 0. Then, we have

∫
E
|f(x)|dx =∫

{x∈E||f(x)|=∞} |f(x)|dx =
∫
{x∈E||f(x)|=∞}∞dx = ∞ · m({x ∈ E | |f(x)| = ∞}) = ∞.

(contradiction!!) So |f(x)| <∞ a.e x ∈ E holds.

(2) f(x) = 0 a.e x ∈ E ⇔ |f(x)| = 0 a.e x ∈ E ⇒
∫
E
|f(x)|dx = 0 (See §4.1

Properties of integral of non-negative measurable functions). And 0 =
∫
E
|f(x)|dx =∣∣∫

E
f(x)dx

∣∣. So
∫
E
f(x)dx = 0.

(3) See §4.1 Properties of integral of non-negative measurable functions. From the
assumption, we find out that |f(x)| is integrable. So f(x) is integrable.

235



4.2.

(4) Let E
def
= Rd and let fk(x)

def
= |f(x)| · χ{x∈E||x|=k}. Then 0 5 fk(x) 5 |f(x)| so

fk(x) is integrable. And {fk(x)}k=1 is a decreasing sequence of integrable functions (i.e
fk+1(x) 5 fk(x)), and

fk(x)→ 0,∀x ∈ E,

because ∀x ∈ E, by taking sufficiently large k ∈ N, we have |x| < k. By §4.1 Example 2,
we have

lim
k→∞

∫
E

|fk(x)|dx =

∫
E

0 dx = 0.

By §4.1 properties of integral,∫
E

|fk(x)|dx =

∫
{x∈E||x|=k}

|f(x)|dx.

Now the proof is comlete.

34 (Theorem 4.10 Linearity of Lebesgue Integral)

(1)

case 1. (C > 0)∫
E

Cf(x)dx
∗1
=

∫
E

(Cf)+(x)dx−
∫
E

(Cf)−(x)dx

∗2
=

∫
E

Cf+(x)dx−
∫
E

Cf−(x)dx

∗3
= C

∫
E

f+(x)dx− C
∫
E

f−(x)dx = C

∫
E

f(x)dx

• (∗1) By definition.

• (∗2) C > 0. So (Cf)+ = C(f+).

• (∗3) See Theorem 4.5.

case 2. (C = 0) Obvious.

case 3. (C < 0) Repeat the similar argument. But note that (Cf)+ = −Cf−,
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(Cf)− = −Cf+.∫
E

Cf(x)dx =

∫
E

(Cf)+(x)dx−
∫
E

(Cf)−(x)dx

=

∫
E

(−C) · f−(x)dx−
∫
E

(−C)f+(x)dx

∗4
= (−C) ·

∫
E

f−(x)dx− (−C)

∫
E

f+(x)dx

= −C ·
∫
E

f−(x)dx+ C ·
∫
E

f+(x)dx

= C

(∫
E

f+(x)dx−
∫
E

f−(x)dx

)
= C ·

∫
E

f(x)dx

• (∗4) Recall that
∫
E
αf(x)dx = α

∫
E
f(x)dx if α > 0 and f(x) is a non-negative

measurable function.

(2) f(x) ∈ L(E) and
∫
E
g(x)dx exists. So

∫
E
f+(x)dx,

∫
E
f−(x)dx < ∞, and at

least one of
∫
E
g+(x)dx <∞ or

∫
E
g−(x)dx <∞ holds. Let

h(x)
def
= f(x) + g(x).

By separating each function to a positive part and a negative part, we have

h+ − h− = f+ − f− + g+ − g−,

hence
h+ + f− + g− = h− + f+ + g+

So we have ∫
E

(h+ + f− + g−)dx =

∫
E

(h− + f+ + g+)dx,

and by Theorem 4.5, (we sometimes omit dx)∫
E

h+ +

∫
E

f− +

∫
E

g− =

∫
E

h− +

∫
E

f+ +

∫
E

g+.

case 1. (
∫
E
g− < ∞) h− 5 f− + g− so

∫
E
h− < ∞. Since we may subtract finite

terms (
∫
E
h−,

∫
E
f−,

∫
E
g−) from both sides, we have∫
E

h+ +

∫
E

f− +

∫
E

g− −
∫
E

h− −
∫
E

f− −
∫
E

g−

=

∫
E

h− +

∫
E

f+ +

∫
E

g+ −
∫
E

h− −
∫
E

f− −
∫
E

g−,

and this implies that ∫
E

h+ −
∫
E

h−

=

∫
E

f+ +

∫
E

g+ −
∫
E

f− −
∫
E

g−,
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so we have ∫
E

h =

∫
E

f +

∫
E

g.

case 2. (
∫
E
g+ < ∞) Similarly, h+ 5 f+ + g+ so

∫
E
h+ < ∞, and by subtracting

them from the both sides like the previous step, we obtain∫
E

h+ +

∫
E

f− +

∫
E

g− −
∫
E

h+ −
∫
E

f+ −
∫
E

g+

=

∫
E

h− +

∫
E

f+ +

∫
E

g+ −
∫
E

h+ −
∫
E

f+ −
∫
E

g+,

and this implies that ∫
E

h− −
∫
E

h+

=

∫
E

f− +

∫
E

g− −
∫
E

f+ −
∫
E

g+,

so we have

−
∫
E

h = −
∫
E

f −
∫
E

g,

and we have the desired result by multiplying −1 to the both sides.

35 (Example 2) We separate [0, 1] into E1
def
== {x ∈ [0, 1] | |f(x)| > e − 1} and

E2
def
= {x ∈ [0, 1] | |f(x)| 5 e− 1}. |f(x)| ln(1 + |f(x)|) is non-negative.∫

[0,1]

|f(x)|dx =

∫
E1

|f(x)|dx+

∫
E2

|f(x)|dx (4.1)

5
∫
E1

|f(x)| ln (1 + |f(x)|) dx+

∫
E2

(e− 1)dx (4.2)

5
∫

[0,1]

|f(x)| ln (1 + |f(x)|) dx+

∫
[0,1]

(e− 1)dx <∞ (4.3)

(4.4)

36 (Example 3) Let gn(x)
def
= fn(x) − f1(x) = 0. {gn(x)}n=1 is an increasing

sequence of non-negative measurable functions. By monotone convergence theorem, we
have

lim
n→∞

∫
E

gn(x)dx =

∫
E

(f(x)− f1(x))dx

238



4.2.

Since f1 ∈ L(E),

lim
n→∞

∫
E

gn(x)dx = lim
n→∞

(∫
E

fn(x)dx−
∫
E

f1(x)

)
dx

= lim
n→∞

∫
E

fn(x)dx−
∫
E

f1(x)dx

and ∫
E

(f(x)− f1(x))dx =

∫
E

f(x)dx−
∫
E

f1(x)dx.

∫
E
f1(x)dx is finite, so we may add

∫
E
f1(x)dx to the both sides. Then we have the desired

result. (Notice) The original textbook gives an assumption f ∈ L(E) however we do not
need to assume that f ∈ L(E).

37 (Example 4) Let gn(x)
def
= fn(x)− g(x) = 0. Since {gn(x)}n=1 is a sequence of

non-negative measurable function, so we can apply Fatou’s lemma to gn.∫
E

lim inf
n→∞

gn(x)dx 5 lim inf
n→∞

∫
E

gn(x)dx

And ∫
E

lim inf
n→∞

gn(x)dx =

∫
E

lim inf
n→∞

(fn(x)− g(x))dx

=

∫
E

(lim inf
n→∞

fn(x)− g(x))dx

∗
=

∫
E

lim inf
n→∞

fn(x)dx−
∫
E

g(x)dx

lim inf
n→∞

∫
E

gn(x)dx
∗
= lim inf

n→∞

∫
E

fn(x)dx−
∫
E

g(x)dx

• (∗) g(x) is integrable. See Theorem 4.10.

• Finally, since
∫
E
g(x)dx is finite, we can add it to the both sides.

38 (Example 5)

39 (Exercise 1)

−(f− + g−) 5 min{f(x), g(x)}
5 max{f(x), g(x)} 5 f+(x) + g+(x).

So |m(x)|, |M(x)| 5 |f(x)|+ |g(x)| ∈ L(E).
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40 (Exercise 2)

STEP 1. Since xy /∈ Q a.e (x, y) ∈ [0, 1]× [0, 1], (∗) ,∫
[0,1]×[0,1]

f(x)dx = 1.

STEP 2. (proof of (∗)) We prove that

m({(x, y) ∈ [0, 1]× [0, 1] | xy ∈ Q}) = 0.

Let us consider a curve (or a line if r = 0) Cr
def
= {(x, y) ∈ [0, 1] × [0, 1] | xy = r} where

r ∈ Q ∩ [0, 1]. It is enough for us to show that m(Cr) = 0.

case 1. (r = 0) Lines {0} × [0, 1] and [0, 1]× {0} have measure zero. For all ε > 0,
{0} × [0, 1] ⊂ (− ε

2
, ε

2
)× [0, 1]. m((− ε

2
, ε

2
)× [0, 1]) = ε.

case 2. (r > 0) We cover a curve Cr by n rectangles. Let us pick n+1 points {xi}ni=0

where r = x0 < x1 < x2 < · · · < xn = 1, xi − xi−1 = 1−r
n

. Let us consider rectangles

Ii
def
= [xi−1, xi]× [ r

xi
, r
xi−1

], i = 1 · · ·n. Then m(Ii) = m([xi−1, xi]× [ r
xi
, r
xi−1

]) = r(xi−1−xi)2

xi−1xi
.

Since Cr ⊂ ∪ni=1Ii, we have

m∗(Cr) 5
n∑
i=1

r(xi − xi−1)2

xi−1xi
.

Moreover (xi − xi−1) = 1−r
n

and r 5 x0 5 · · · 5 xn, therefore,

m∗(Cr) 5
n∑
i=1

r(xi − xi−1)2

xi−1xi
5

n∑
i=1

r(1− r)2

n2r2
=

(1− r)2

nr
.

This holds for all n ∈ N, so by taking n→∞, we have

m∗(Cr) = 0.

41 (Exercise 3) We show that

lim
k→∞

m ({x ∈ E | |f(x)| > k})
1
k

→ 0.

So, we prove that
lim
k→∞

k ·m ({x ∈ E | |f(x)| > k})→ 0.

First,

k ·m ({x ∈ E | |f(x)| > k}) =

∫
E

kχ{x∈E||f(x)|>k}(x)dx

∗
5

∫
E

|f(x)|χ{x∈E||f(x)|>k}(x)dx.
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• (∗) k < |f(x)| if χ{x∈E||f(x)|>k}(x) = 1.

Let
fk(x)

def
= |f(x)|χ{x∈E||f(x)|>k}(x).

Then fk(x) is a decreasning sequence of integrable functions. (i.e fk+1(x) 5 fk(x).)
Moreover fk(x)→∞·χ{x∈E||f(x)|=∞} = 0 a.e x ∈ E because f(x) is integrable so |f(x)| <
∞ a.e x ∈ E. So we conclude that

fk(x)
a.e−→ 0 on E.

By §4.1,Example 2, we have

lim
k→∞

∫
E

fk(x)dx =

∫
E

0 dx = 0.

42 (Exercise 4)

STEP 1. Let ε > 0. limn→∞m({x ∈ E | |fn(x) − f(x)| > ε}) = 0 if and only if
limn→∞ εm({x ∈ E | |fn(x)− f(x)| > ε}) = 0

STEP 2.

lim sup
n→∞

εm ({x ∈ (0,∞) | |fn(x)− f(x)| > ε})

= lim sup
n→∞

εm
(
{x ∈ (0,∞) | |f(x)| · χ[n,∞)(x) > ε}

)
= lim sup

n→∞
εm ({x ∈ [n,∞) | |f(x)| > ε})

= lim sup
n→∞

∫
(0,∞)

ε · χ{x∈[n,∞)||f(x)|>ε}(x)dx

5 lim sup
n→∞

∫
(0,∞)

|f(x)| · χ{x∈[n,∞)||f(x)|>ε}(x)dx

∗1
5 lim sup

n→∞

∫
(0,∞)

|f(x)| · χ{x∈[n,∞)}(x)dx
∗2
= 0

• (∗1) We get rid of |f(x)| > ε from the indicator function χ{··· }. This means that we
give a weaker condition for the indicator function to be 1. (Hence greater.)

• (∗2) This is similar to the previous question. fn(x)
def
= |f(x)|χ{x∈[n,∞)}(x) is inte-

grable for all n ∈ N, fn+1(x) 5 fn(x) and fn(x)→ 0 for all x ∈ (0,∞). So By §4.1
Example 2 we have the desired conclusion.

43 (Exercise 5)
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STEP 1. Let us recall that if f(x) is a non negative measurable function with∫
E
f(x)dx = 0 then f(x) = 0 a.e x ∈ E.

STEP 2. C =
∫

[0,1]
f(x)dx. By the hint,

eC(f(x)− C) + eC 5 ef(x) ⇒ ef(x) − eC(f(x)− C)− eC = 0,

and the equality holds if f(x) = C. Since ef(x) − eC(f(x) − C) − eC is a non-negative
measurable function, we have∫

[0,1]

(
ef(x) − eC(f(x)− C)− eC

)
= 0.

By assumption, f(x) is integrable,∫
[0,1]

(
ef(x) − eC(f(x)− C)− eC

)
=

∫
[0,1]

ef(x)dx− eC
∫

[0,1]

f(x)dx+ C · eC − eC

∗1
=

∫
[0,1]

ef(x)dx− C · eC + C · eC − eC

=

∫
[0,1]

ef(x)dx− eC ∗2= 0

• (∗1) recall that C =
∫

[0,1]
f(x)dx

• (∗2) by assumption

By the statement in Step 1, we conclude that

ef(x) − eC(f(x)− C)− eC = 0 a.e x ∈ [0, 1].

The equality holds f(x) = C. So f(x) = C a.e x ∈ [0, 1].

44 (Exercise 6) We use Theorem 4.11. (Please see Theorem 4.11.)

STEP 1. Since I = EI ∪ I \ EI , by Theorem 4.6,∫
I

|f(x)− fI |dx =

∫
EI

|f(x)− fI |dx+

∫
I\EI
|f(x)− fI |dx.

And if x ∈ EI , f(x)− fI > 0, so∫
EI

|f(x)− fI |dx =

∫
EI

(f(x)− fI)dx.

Therefore, ∫
I

|f(x)− fI |dx =

∫
EI

(f(x)− fI)dx+

∫
I\EI
|f(x)− fI |dx.

It is enough for us to show that∫
I\EI
|f(x)− fI |dx =

∫
EI

(f(x)− fI)dx.
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STEP 2. Since f(x)− fI 5 0, we have∫
I\EI
|f(x)− fI |dx =

∫
I\EI

(fI − f(x))dx.

Next, fI − f(x) is integrable on I because f(x) ∈ L(R1), so f(x) ∈ L(I) and |fI −
f(x)| 5 |fI |+ |f(x)| ∈ L(I). (I is bounded.) By Theorem 4.11,∫

EI

(fI − f(x))dx+

∫
I\EI

(fI − f(x))dx =

∫
I

(fI − f(x))dx.

(Let us pay attention to the fact that the both terms on the left side are also integrable
because I, I \ EI are the subsets of I.) And∫

I

(fI − f(x))dx = |I| · fI −
∫
I

f(x)dx

= |I| · 1

|I|

∫
I

f(x)dx−
∫
I

f(x)dx = 0.

So ∫
EI

(fI − f(x))dx+

∫
I\EI

(fI − f(x))dx = 0.

Therefore, (Theorem 4.10)∫
I\EI

(fI − f(x))dx = −
∫
EI

(fI − f(x))dx =

∫
EI

(f(x)− fI)dx.

Now the proof is complete.

45 (Theorem 4.11) By definition,∫
E

f(x)dx =

∫
E

f+(x)dx−
∫
E

f−(x)dx.

Note that
∫
E
f(x)dx exists implies that

∫
E
f+(x)dx < ∞ or

∫
E
f−(x)dx < ∞ holds. By

Corollary 4.7, we have ∫
E

f+(x)dx =
∞∑
k=1

∫
Ek

f+(x)dx

= lim
n→∞

n∑
k=1

∫
Ek

f+(x)dx.

Similarly, ∫
E

f−(x)dx =
∞∑
k=1

∫
Ek

f−(x)dx

= lim
n→∞

n∑
k=1

∫
Ek

f−(x)dx.
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Let

an
def
=

n∑
k=1

∫
Ek

f+(x)dx and bn
def
=

n∑
k=1

∫
Ek

f−(x)dx,

then an, bn are monotone increasing, and an ↗
∑∞

k=1

∫
Ek
f+(x)dx, bn ↗

∑∞
k=1

∫
Ek
f−(x)dx.

Since limn→∞ an <∞ or limn→∞ bn <∞,

lim
n→∞

an − lim
n→∞

bn = lim
n→∞

(an − bn).

Therefore ∫
E

f(x)dx =

∫
E

f+(x)dx−
∫
E

f−(x)dx

=
∞∑
k=1

∫
Ek

f+(x)dx−
∞∑
k=1

∫
Ek

f−(x)dx

= lim
n→∞

an − lim
n→∞

bn

= lim
n→∞

(an − bn)

= lim
n→∞

(
n∑
k=1

∫
Ek

f+(x)dx−
n∑
k=1

∫
Ek

f−(x)dx

)

= lim
n→∞

n∑
k=1

(∫
Ek

f+(x)dx−
∫
Ek

f−(x)dx

)
= lim

n→∞

n∑
k=1

(∫
Ek

(f+(x)dx− f−(x))dx

)
= lim

n→∞

n∑
k=1

(∫
Ek

f(x)dx

)
=
∞∑
k=1

∫
Ek

f(x)dx

46 (Example 6) We can easily find out that ∀ai, bi ∈ [a, b], we have
∫

(ai,bi)
f(x)dx =

0. By assumption
∫

[a,bi]
f(x)dx = 0,

∫
[a,ai]

f(x)dx = 0. Since they are integrable, we have∫
[a,bi]

f(x)dx−
∫

[a,ai]
f(x)dx =

∫
(ai,bi]

f(x)dx =
∫

(ai,bi)
f(x)dx. (∵ m({bi}) = 0.)

STEP 1. In this question, we consider the contraposition. Suppose m({x ∈ [a, b] |
f(x) 6= 0}) > 0. Since m({a}),m({b}) = 0, m({x ∈ (a, b) | f(x) 6= 0}) > 0. At least
m({x ∈ (a, b) | f(x) > 0}) > 0 or m({x ∈ (a, b) | f(x) < 0}) > 0 holds. We suppose that
m({x ∈ (a, b) | f(x) > 0}) > 0.

Let A
def
= {x ∈ (a, b) | f(x) > 0}. 0 < m(A) 5 b − a and A ∈ M . So there exists

F : a closed set, s.t F ⊂ A,m(A \ F ) < ε = m(A). Since m(A) < ∞, m(A \ F ) =
m(A)−m(F ) < m(A), m(F ) > 0.

STEP 2. Suppose
∫
F
f(x)dx = 0. Since f(x) is non-negative on F , f(x) = 0 a.e

x ∈ F by properties of integral of non-negative measurable functions. However, f(x) > 0
on F and m(F ) > 0, so f(x) = 0 a.e x ∈ F does not hold. (contradiction!!) Therefore∫
F
f(x)dx > 0. (Moreover f(x) ∈ L([a, b]) so

∫
F
f(x) <∞.)
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Let G = (a, b) \ F . Then (a, b) = F ∪ G.
∫

(a,b)
f(x)dx =

∫
F
f(x)dx +

∫
G
f(x)dx = 0.

So
∫
G
f(x)dx < 0.

STEP 3. Since G is an open set, there exist disjoint open intervals {(an, bn)}∞n=1

s.t G =
⋃∞
n=1(an, bn).

∫
G
f(x)dx =

∑∞
n=1

∫
(an,bn)

f(x)dx = 0. This contradicts to the

conclusion of Step 2.

47 (Example 7) g(x) is bounded a.e x ∈ E means that ∃k < ∞ s.t m({x ∈ E |
|g(x)| > k}) = 0. We suppose that g(x) is bounded a.e x ∈ E does NOT hold, and derive
a contradiction. In other words, we suppose that

∀k ∈ N,m({x ∈ E | |g(x)| > k}) > 0.

STEP 1. We claim that there exists a subsequence {ki}i∈N ⊂ N s.t m({x ∈ E |
ki < |g(x)| 5 ki+1}) > 0. By assumption,

m ({x ∈ E | |g(x)| > k}) ∗1
= m ({x ∈ E | k < |g(x)| <∞})

= m

(
∞⋃
i=1

{x ∈ E | k < |g(x)| 5 k + i}

)
∗2
= lim

i→∞
m ({x ∈ E | k < |g(x)| 5 k + i}) > 0

• (∗1) g(x) : E 7→ R by assumption.

• (∗2) {x ∈ E | k < |g(x)| 5 k + i} is increasing with respect to i. So we can swap m
and lim.

This means that there exists i0 s.t m({x ∈ E | k < |g(x)| 5 k + i0}) > 0. Next m({x ∈
E | |g(x)| > k + i0}) > 0 by assumption. By repeating the similar argument, we have i1
s.t m({x ∈ E | ki0 < |g(x)| 5 k + i0 + i1}) > 0.

STEP 2. Let Ei
def
= {x ∈ E | ki < |g(x)| 5 ki+1} We define

f(x)
def
=

∞∑
i=1

1

i3/2 ·m(Ei)
χEi(x).

Then ∫
E

f(x)dx
∗3
=
∞∑
i=1

∫
E

1

i3/2 ·m(Ei)
χEi(x)dx =

∞∑
i=1

1

i3/2
<∞

• (∗3) Use Theorem 4.6.
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However, ∫
E

|f(x)g(x)|dx =

∫
E

|g(x)| ·
∞∑
i=1

1

i3/2 ·m(Ei)
χEi(x)dx

=

∫
E

∞∑
i=1

|g(x)|
i3/2 ·m(Ei)

χEi(x)dx

∗4
=

∫
E

∞∑
i=1

ki
i3/2 ·m(Ei)

χEi(x)dx

∗5
=

∫
E

∞∑
i=1

i

i3/2 ·m(Ei)
χEi(x)dx

=

∫
E

∞∑
i=1

1

i1/2 ·m(Ei)
χEi(x)dx

∗6
=

∞∑
i=1

∫
E

1

i1/2 ·m(Ei)
χEi(x)dx

=
∞∑
i=1

1

i1/2
=∞,

so we have |f(x)g(x)| /∈ L(E). (contradiction!!)

• (∗4) g(x) > ki on Ei.

• (∗5) ki = i because it is a subsequence of natural numbers.

• (∗6) Theorem 4.6.

48 (Theorem 4.12)

STEP 1. Let gn(x)
def
= |f(x)|χ{x∈||f(x)|>n}(x). gn(x) is a decreasing sequence of

integrable functions. limn→∞ gn(x) = ∞ · χ{x∈||f(x)|=∞}(x). However, f(x) ∈ L(E), so
|f(x)| < ∞ a.e x ∈ E by Theorem 4.3. (i.e m({x ∈ E | |f(x)| = ∞}) = 0.) Therefore
limn→∞ gn(x) = 0 a.e x ∈ E. By Example 2 in §4.1, we have limn→∞

∫
E
gn(x)dx = 0. For

any ε > 0, we have sufficiently large n0 s.t
∫
E
gn0(x)dx < ε

2
.

STEP 2. Let A ⊂ E,A ∈M be an arbitrary measurable subset of E with m(A) <
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ε
2n0

. ∣∣∣∣∫
A

f(x)dx

∣∣∣∣ 5
∫
A

|f(x)|dx

∗1
=

∫
{x∈A||f(x)|>n0}

|f(x)|dx+

∫
{x∈A||f(x)|5n0}

|f(x)|dx

∗2
5

∫
{x∈E||f(x)|>n0}

|f(x)|dx+

∫
{x∈A||f(x)|5n0}

n0dx

∗3
=

∫
E

|f(x)| · χ{x∈E||f(x)|>n0}dx+ n0m({x ∈ A | |f(x)| 5 n0})dx

=

∫
E

gn0(x)dx+ n0m({x ∈ A | |f(x)| 5 n0})dx

∗4
5

∫
E

gn0(x)dx+ n0m(A) <
ε

2
+
ε

2

• (∗1) divide A into two disjoint measurable sets.

• (∗2) A ⊂ E and x ∈ {x ∈ A | |f(x)| 5 n0} ⇒ |f(x)| 5 n0.

• (∗3) apply properties of integral in §4.1 ; integral of a simple function

• (∗4) {x ∈ A | |f(x)| 5 n0} ⊂ A.

49 (Example 8)

STEP 1. Let Et
def
= E ∩ (−∞, t) ∈M . Let g(t)

def
=
∫
Et
f(x)dx. Since f(x) ∈ L(E),

g(t) is well-defined and finite. We show that g(t) is a continuous function.

g(t+ ∆t)− g(t) =

∫
Et+∆t

g(x)dx−
∫
Et

g(x)dx

=

∫
Et+∆t\Et

g(x)dx

=

∫
E∩[t,t+∆t)

g(x)dx

Since m(E ∩ [t, t+ ∆t)) 5 m([t, t+ ∆t)) = ∆t, by Theorem 4.12, if ∆t↘ 0, g(t+ ∆t)−
g(t)→ 0 for all t ∈ R. So we conclude that g(t) is continuous.

STEP 2. Next, we show that limt→∞ g(t) =
∫
E
f(x) = A. limt→−∞ g(t) = 0.

Since g(t) =
∫
Et
f(x)dx =

∫
E
f(x) · χEt(x)dx, and f(x) · χEt is monotone increasing

with respect to t, limt→∞ g(t) = limt→∞
∫
E
f(x) ·χEt(x)dx =

∫
E
f(x)dx = A by monotone

convergence theorem. And limt→−∞ g(t) = limt→−∞
∫
E
f(x) · χEt(x)dx =

∫
E

0 dx = 0 by
Example 2 in §4.1. (Note that Et ↘ ∅ as t→ −∞. Let us pick an arbitrary point x0 ∈ R.
If t is sufficiently small, x0 /∈ (−∞, t). This implies that (−∞, t)↘ ∅ as t→ −∞, hence
Et ↘ ∅ because Et ⊂ (−∞, t).)
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STEP 3. By intermediate value theorem, we can find t0 s.t g(t0) = A
3
. So e

def
=

Et0 = E ∩ (−∞, t0) is the desired subset of E.

50 (Theorem 4.13)

STEP 1. (non-negative measurable simple function) Let f(x)
def
=
∑p

i=1 aiχEi(x)
where Ei ∈M , ai = 0. Then

∫
Rd f(x)dx =

∑p
i=1 aim(Ei). And f(x+y0)dx =

∑p
i=1 aiχEi(x+

y0) =
∑p

i=1 aiχEi−y0(x). Let us recall that we proved that ∀a ∈ Rd and E ∈M ;E ⊂ Rd,
E+a ∈M and m(E+a) = m(E) in Theorem 2.5. Therefore f(x+y0) is also a non-negative
measurable simple function and

∫
Rd f(x + y0)dx =

∑p
i=1 aim(Ei−y0

) =
∑p

i=1 aim(Ei). So∫
Rd f(x)dx =

∫
Rd f(x+ y0)dx.

STEP 2. (non-negative measurable function) Let f(x) be a non-negative mea-
surable function. We can find a sequence of non-negative measurable simple functions
{fn(x)} s.t fn(x) ↗ f(x) for all x ∈ Rd by Theorem 3.9. So limn→∞ fn(x + y0) =
f(x + y0). By Theorem 4.4 (monotone convergence theorem) and the previous result,∫
Rd f(x+ y0)dx = limn→∞

∫
Rd fn(x+ y0)dx = limn→∞

∫
Rd fn(x)dx =

∫
Rd f(x).

STEP 3. (measurable function) By the previous result,
∫
Rd f

+(x)dx =
∫
Rd f

+(x+
y0)dx and

∫
Rd f

−(x)dx =
∫
Rd f

−(x+y0)dx.
∫
Rd f(x)dx exists. At least one of

∫
Rd f

+(x)dx,∫
Rd f

−(x)dx is finite. So we are allowed to subtract one from another.
∫
Rd f

+(x)dx −∫
Rd f

−(x)dx =
∫
Rd f

+(x+y0)dx−
∫
Rd f

−(x+y0)dx. And this implies the desired conclusion.

51 (Example 9) It is enough for us to show that

lim
n→∞

f(x+ n) = 0 a.e x ∈ [0, 1).

STEP 1. Let us consider
∫

[0,1)

∑∞
n=0 |f(x+ n)|dx. By Theorem 4.6, we have∫

[0,1)

∞∑
n=1

|f(x+ n)|dx =
∞∑
n=0

∫
[0,1)

|f(x+ n)|dx.

By Theorem 4.13, we have
∞∑
n=0

∫
[0,1)

|f(x+ n)|dx =
∞∑
n=0

∫
[n,n+1)

f(x)dx.

By Theorem 4.11, we have
∞∑
n=0

∫
[n,n+1)

|f(x)|dx =

∫
[0,∞)

|f(x)|dx <∞.

STEP 2. From the argument above, we find out that
∑∞

n=1 |f(x+n)| is integrable
on [0, 1). So we have

∞∑
n=0

|f(x+ n)| <∞ a.e x ∈ [0, 1).
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For a fixed x ∈ [0, 1), if
∑∞

n=0 |f(x + n)| converges, limn→∞ |f(x + n)| = 0 according to
knowledge of basic calculus. So limn→∞ |f(x+ n)| = 0 a.e x ∈ [0, 1).

52 (Example 10) Let us recall that E ∈M ;E ⊂ R; a ∈ R \ {0} then m∗(aE) =
|a|m∗(E) and aE ∈M . (See Theorem 2.5)

STEP 1. (non-negative measurable simple function I) Let f(x)
def
= cχE(x). Then

g(x) = f(ax) = cχE(ax) = cχa−1E(x).
∫
I
f(x)dx = cm(E∩I).

∫
J
g(x)dx =

∫
J
cχa−1E(x)dx =

cm(a−1E ∩ J) = cm(a−1(E ∩ I)) = c
|a|m(E ∩ I) = 1

|a|

∫
I
f(x)dx. So

∫
I
f(x)dx =

|a|
∫
J
g(x)dx.

STEP 2. (non-negative measurable simple function II) When f(x) =
∑p

i=1 ciχEi(x),
by repeating the similar argument, we have

∫
I
f(x)dx = |a|

∫
J
g(x)dx.

STEP 3. (non-negative measurable function) Let f(x) be a non-negative measur-
able function. Let g(x) = f(ax) We can find a sequence of non-negative measurable simple
functions {fn(x)}n=1 s.t fn(x)↗ f(x). Let gn(x) = fn(ax). Then gn(x)↗ f(ax) = g(x).
By the previous result, we have

∫
I
fn(x)dx = |a|

∫
J
gn(x). By monotone convergence

theorem limn→∞
∫
I
fn(x)dx =

∫
I
f(x)dx and limn→∞ |a|

∫
J
gn(x)dx = |a|

∫
J
g(x)dx.

STEP 4. (general measurable function) f(x) = f+(x)− f−(x). Let g(x) = f(ax).
Then g+(x) = max{0, g(x)} = max{0, f(ax)} = f+(ax). Similarly g−(x) = f−(ax).
Since

∫
I
f+(x)dx = |a|

∫
J
g+(x) and

∫
I
f−(x)dx = |a|

∫
J
g−(x)dx and one of them is finite,

so by subtracting one from another, we have the desired conclusion.

53 (Exercise 7) Let n be a natural number. Since the both sides are finite, so we
can subtract one from another. So we have

∫
[a,x]

(f(t)−g(t))dt = 0 for all x ∈ [a, a+n] ⊂ R.

By Example 6, f(x) − g(x) = 0 a.e x ∈ [a, a + n]. So m({x ∈ [a, a + n] | f(x) − g(x) 6=
0}) = 0. Since this holds for all n ∈ N, m (

⋃∞
n=1{x ∈ [a, a+ n) | f(x)− g(x) 6= 0}) = 0

And we have m({x ∈ [a,∞) | f(x) − g(x) 6= 0}) = 0. This implies that f(x) = g(x) a.e
x ∈ [a,∞).

54 (Exercise 8) φ(x)
def
= χ{x∈R|f(x)=0}. Since 0 5 φ(x) 5 1, φ(x) is bounded.∫

R f(x)φ(x) =
∫
{x∈R|f(x)=0} f(x)dx = 0. By properties of integral in §4.1, we have f(x) = 0

a.e x ∈ {x ∈ R | f(x) = 0}. (i.e m({x ∈ R | f(x) > 0}) = 0)

Similarly, let φ(x)
def
= −χ{x∈R|f(x)50}. We have f(x) = 0 a.e x ∈ {x ∈ R | f(x) 5 0}

(i.e m({x ∈ R | f(x) < 0}) = 0)
By merging these two results, we have m({x ∈ R | f(x) 6= 0}) = 0. This implies that

f(x) = 0 a.e x ∈ R.

55 (Theorem 4.14 L.D.C.T) We apply Fatou’s lemma (Theorem 4.8) to {2g(x)−
|fk(x)− f(x)|}k=1, where 2g(x)− |fk(x)− f(x)| = 0 for all k = 1 a.e x ∈ E. Let us recall
that we suppose that fk(x) = 0 in the assumption of Fatou’s lemma. However, even if
fk(x) = 0 for all k = 1 a.e x ∈ E, the conclusion of Fatou’s lemma still holds.
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Let N
def
=
⋃∞
k=1{x ∈ E | fk(x) < 0} then m(N) = 0. Since if x ∈ E \N then fk(x) = 0

for all k = 1, we have ∫
E\N

lim inf
k→∞

fk(x)dx 5 lim inf
k→∞

∫
E\N

fk(x)dx.

The left hand side is equal to
∫
E

lim infk→∞ fk(x)dx and the right hand side is equal to
lim infk→∞

∫
E
fk(x)dx because N is a measure zero set. (

∫
E

=
∫
E\N +

∫
N

=
∫
E

.)

STEP 1. First, we prove that supk=1 |fk(x)| 5 g(x) a.e x ∈ E. |fk(x)| 5 g(x) a.e

x ∈ E for each k ∈ N. Let Nk
def
= {x ∈ E | |fk(x)| > g(x)}. Let us recall that

∞⋃
k=1

Nk = {x ∈ E | sup
k=1

|fk(x)| > g(x)}.

Then m(
⋃∞
k=1Nk) = 0. So supk=1 |fk(x)| 5 g(x) a.e x ∈ E.

STEP 2. Next, we prove that supk=1 |fk(x)− f(x)| 5 2g(x) a.e x ∈ E. Since

• if limk→∞ fk(x) exists, then limk→∞ |fk(x)| 5 supk=1 |fk(x)|,

• limk→∞ |fk(x)| = |f(x)| a.e x ∈ E,

we conclude that
|f(x)| 5 g(x) a.e x ∈ E.

By triangular inequality and the previous two results, we have

sup
k=1

|fk(x)− f(x)| 5 sup
k=1

|fk(x)|+ |f(x)|

5 g(x) + g(x) = 2g(x) a.e x ∈ E.

Equivalently,
2g(x)− sup

k=1

|fk(x)− f(x)| = 0 a.e x ∈ E.

STEP 3. Note that

2g(x)− |fk(x)− f(x)| = 2g(x)− sup
k=1

|fk(x)− f(x)|,

which explains that 2g(x)−|fk(x)−f(x)| = 0 for all k = 1 a.e x ∈ E. By Fatou’s lemma,
we have∫

E

lim inf
k→∞

(2g(x)− |fk(x)− f(x)|)dx 5 lim inf
k→∞

∫
E

(2g(x)− |fk(x)− f(x)|)dx

The left hand side is∫
E

lim inf
k→∞

(2g(x)− |fk(x)− f(x)|)dx =

∫
E

2g(x)dx.

The right hand side is

lim inf
k→∞

∫
E

(2g(x)− |fk(x)− f(x)|)dx ∗1
= lim inf

k→∞

(∫
E

2g(x)dx−
∫
E

|fk(x)− f(x)|dx
)

∗2
5

∫
E

2g(x)dx− lim sup
k→∞

∫
E

|fk(x)− f(x)|dx
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• (∗1) 0 5
∫
E

2g(x) <∞. By Theorem 4.10 we can assure that linearity holds.

• (∗2) recall that lim infn→∞−an = − lim supn→∞ an

Finally we have ∫
E

2g(x)dx 5
∫
E

2g(x)dx− lim sup
n→∞

∫
E

|fk(x)− f(x)|dx.

Since
∫
E

2g(x) <∞, we may subtract it from the both sides. And we have

lim sup
n→∞

∫
E

|fk(x)− f(x)|dx = 0.

By triangular inequality, this also implies that

lim sup
n→∞

∣∣∣∣∫
E

(fk(x)− f(x))dx

∣∣∣∣ 5 lim sup
n→∞

∫
E

|fk(x)− f(x)|dx = 0.

Since fk(x) is integrable, (again by Theorem 4.10),

lim sup
n→∞

∣∣∣∣∫
E

fk(x)dx−
∫
E

f(x)dx

∣∣∣∣ = 0.

This implies the desired conclusion.

Note.

• fk(x) = 0 a.e x ∈ E holds for each k = 1.

• fk(x) = 0 for all k = 1 a.e x ∈ E.

these two statements have the different meaning, but they are equivalent. (You can prove
this like Step 1.)

56 (Theorem 4.15) The Lebesgue Dominated Convergence Theorem holds even

if the condition fk(x)
a.e−→ f(x) changes to fk(x)

m−→ f(x). Let us recall that

an → a ∈ R

if and only if
∀{nk}k=1 ⊂ N, ∃{nk`} s.t ank` → a,

where {nk`} is a further subsequence of {nk}.
Let us consider a sequence an

def
=
∫
E
|fn(x) − f(x)|dx. Let nk be an arbitrary subse-

quence of natural numbers. We show that there exists a sub-subsequence nk` s.t

lim
`→∞

∫
E

|fnk` (x)− f(x)|dx = 0.

This implies that limn→∞
∫
E
|fn(x)− f(x)|dx = 0.
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STEP 1. Since fn(x)
m−→ f(x), ∀nk (subsequence) there exists nk` (subsubsequence)

s.t fnk` (x)
a.u−→ f(x) (Theorem 3.17).

a.u−→ always implies
a.e−→. So there exists fnk` (x)

a.e−→
f(x).

STEP 2. Obviously, sup`=1 |fnk` (x)| 5 supn=1 |fn(x)| 5 g(x) ∈ L(E) a.e x ∈ E, so

by Theorem 4.14, we have lim`→∞
∫
E
|fnk` (x)−f(x)|dx = 0. So we have limn→∞

∫
E
|fn(x)−

f(x)|dx = 0.

STEP 3. By triangular inequality, limn→∞ |
∫
E

(fn(x)−f(x))dx| = 0. Since
∫
E
fn(x)dx

is finite, linearlity holds in integral. So limn→∞ |
∫
E
fn(x)dx−

∫
E
f(x)dx| = 0. This implies

the desired conclusion.

57 (Example 12) All we have to do is prove that

lim
n→∞

∫
[0,1]

x sinx
1+(nx)α

dx
1
n

= lim
n→∞

∫
[0,1]

(nx) sinxdx

1 + (nx)α
dx = 0.

STEP 1. Let fn(x)
def
= (nx) sinx

1+(nx)α
. Then |fn(x)| 5 nx

1+(nx)α
. We hope to find an

integrable bound function. Let gn(x)
def
= nx

1+(nx)α
. g′n(x) = n−n(α−1)(nx)α

1+(nx)α
. When (nx)α =

1
α−1

(i.e x = xn
def
= 1

n
( 1
α−1

)
1
α ), g′n(x) = 0. (There exists Nα ∈ N s.t ∀n > Nα xn ∈ (0, 1).)

Then gn(x) takes the maximum value Mα =
( 1
α−1

)
1
α

1+ 1
α−1

which is not related to n. So |fn(x)| 5
Mα ∈ L([0, 1]), ∀n > Nα. (We may ignore n = 1, 2 · · ·Nα because we take limn→∞ ·)

STEP 2. By Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
[0,1]

fn(x)dx =

∫
[0,1]

lim
n→∞

fn(x)dx =

∫
[0,1]

0 dx = 0.

58 (Example 13) Our goal is to prove that

lim
n→∞

∫
[α,∞)

x exp(−n2x2)
1+x2 dx
1
n2

= 0.

So we prove that

lim
n→∞

∫
[α,∞)

n2x exp(−n2x2)

1 + x2
dx = 0.

By Example 10, we have (t = nx)

= lim
n→∞

∫
[nα,∞)

t exp(−t2)

n2 + t2
dt

And

= lim
n→∞

∫
[0,∞)

t exp(−t2)

n2 + t2
χ[nα,∞)(t)dt.
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Since
t exp(−t2)

n2 + t2
χ[nα,∞)(t) 5

t exp(−t2)

1 + t2
5 exp(−t2) ∈ L([0,∞)),

we can apply Lebesgue Dominated Convergence Theorem. limn→∞
t exp(−t2)
n2+t2

χ[nα,∞)(t) = 0.
So the proof is complete. (Notice) exp(−t2) 5

∑∞
n=0 2−nχ[n,n+1)(t) ∈ L([0,∞)).

59 (Exercise 1) We show that∫ x

a

f(t)φ(t)dt = φ(x)− φ(a),∀x ∈ [a, b]

By assumption, we have
∫ x
a
f(t)φn(t)dt = φn(x) − φn(a). By taking limit, we have

limn→∞
∫ x
a
f(t)φn(t)dt = limn→∞(φn(x) − φn(a)). By Lebesgue Dominated Convergence

Theorem,

lim
n→∞

∫ x

a

f(t)φn(t)dt =

∫ x

a

f(t)φ(t)dt

because |f(t)φn(t)| 5 F (t) ∈ L([a, x]). (F (t) ∈ L([a, b]) implies that F (t) ∈ L([a, x]) for
all x ∈ [a, b]) The right hand side is φ(x)− φ(a). So the proof is complete.

60 (Exercise 2) We use Lebesgue Dominated Convergence Theorem. (converge

in measure version) Suppose that cos(nx)
m−→ 0. cos(nx)

m−→ 0 on [−π, π) if and only
if cos2(nx)

m−→ 0 on [−π, π). |cos2(nx)| 5 1 ∈ L([−π, π)). By Lebesgue Dominated
Convergence Theorem (converge in measure version), we have limn→∞

∫
[−π,π)

cos2(nx)dx =∫
[−π,π)

0 dx = 0. However this conclusion is false because∫
[−π,π)

cos2(nx)dx =

∫
[−π,π)

cos(2nx) + 1

2
dx = π 6= 0.

61 (Exercise 3) Since |g(x)| 5
∫

(0,∞)
|f(t)|
x+t

dt 5
∫

(0,∞)
f(t)
x
dx <∞, g(x+h)−g(x) is

well-defined. (i.e not∞−∞. both g(x+h), g(x) are finite. ) We show that limh→0 |g(x+
h)− g(x)| = 0 for all x ∈ (0,∞). Let {hn}n=1 be a sequence of real numbers with hn → 0
as n→∞. And we show that limn→∞ |g(x+ hn)− g(x)| = 0.

Since |hn| → 0, we may assume that |hn| 5 x
2

with out loss of generality. Then
x
2

+ t 5 x+ t+ hn. Note that 0 < x2

2
< (x

2
+ t)(x+ t) 5 (x+ t+ hn)(x+ t). So we have

|hn| · |f(t)|
(x+ t+ hn)(x+ t)

5
x

2
· 2

x2
· |f(t)| = |f(t)|

x
∈ L((0,∞)).

Finally,

lim
n→∞

|g(x+ hn)− g(x)| ∗1
= lim

n→∞

∣∣∣∣∫
(0,∞)

−hnf(t)

(x+ t+ hn)(x+ t)
dt

∣∣∣∣
∗2
5 lim

n→∞

∫
(0,∞)

|hn| · |f(t)|
(x+ t+ hn)(x+ t)

dt

∗3
=

∫
(0,∞)

0 dt = 0.

Now the proof is complete.
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• (∗1) Integral has linearity
∫
f1dx+

∫
f2dx =

∫
(f1 +f2)dx when at least one of them

is integrable.

• (∗2) triangular inequality

• (∗3) L.D.C.T.

62 (Exercise 4) We can answer this question without employing Lebesgue’s Domi-
nated Convergence Theorem. However, we present a solution with L.D.C.T.

∫
Ek
|f(x)|dx =∫

E
|f(x)|χEk(x)dx. Since |f(x)χEk | 5 |f(x)| ∈ L(E), by L.D.C.T

lim
k→∞

∫
E

|f(x)|χEk(x)dx =

∫
E

lim
k→∞
|f(x)|χEk(x)dx

∗
=

∫
E

0 dx.

• (∗) Fix x ∈ E. For all |f(x)| > 0, if k is sufficiently large |f(x)| = 1
k
. Then

χEk(x) = 0.

63 (Exercise 5) Let us recall that a sequence {an}n=1 converges to a, (i.e. an → a)
if and only if ∀nk (subsequene) there exists nkm (subsubsequence) s.t ankm → a. Let nk
be an arbitrary subsequence of natural numbers. We show that there exists nkm s.t∫
E
|fnkm (x)gnkm (x)− f(x)g(x)|.

STEP 1.
1

ε
·
∫
E

|fn(x)− f(x)|dx =
∫
{x∈E||fn(x)−f(x)|>ε}

1

ε
|fn(x)− f(x)|dx

=
∫
{x∈E||fn(x)−f(x)|>ε}

1 dx

= m({x ∈ E | |fn(x)− f(x)| > ε})
By taking n→∞, we have fn(x)

m−→ f(x) on E. So for all subsequence nk there exists
nkm s.t fnkm (x)

a.u−→ f(x).
a.u−→ implies that

a.e−→. So there exists fnkm (x)
a.e−→ f(x) on E.

STEP 2. ∫
E

|fnkm (x)gnkm (x)− f(x)g(x)|dx

=

∫
E

|fnkm (x)gnkm (x)− fnkm (x)g(x) + fnkm (x)g(x)− f(x)g(x)|dx

5
∫
E

|fnkm (x)gnkm (x)− fnkm (x)g(x)|dx

+

∫
E

|fnkm (x)g(x)− f(x)g(x)|dx

=

∫
E

|fnkm (x)| · |gnkm (x)− g(x)|dx+

∫
E

|fnkm (x)− f(x)| · |g(x)|dx
∗
5

∫
E

M · |gnkm (x)− g(x)|dx+

∫
E

|fnkm (x)− f(x)| · |g(x)|dx
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• (∗) supm=1 |fnkm (x)| 5 supn=1 |fn(x)| 5M .

In the last part of the inequality above, |fnkm (x) − f(x)| · |g(x)| 5 2M · |g(x)| ∈
L(E), we can apply Lebesgue Dominated Convergence Theorem. (limm→∞ |fnkm (x)| 5
supm=1 |fnkm (x)|). By taking m↗∞, we have the desired conclusion.

64 (Exercise 6) We show that

lim
k→∞

∫
E

|fk(x)− f(x)|dx = 0.

Note that ∫
E

|fk(x)− f(x)|dx 5
∫
E

sup
a∈E
|fk(a)− f(a)|dx

= m(E) · sup
a∈E
|fk(a)− f(a)|. (m(E) <∞).

Since fk(x)
u−→ f(x),

lim
k→∞

sup
x∈E
|fk(x)− f(x)| = 0.

Now the proof is complete.

65 (Corollary 4.16) By Theorem 4.6,

∞∑
k=1

∫
E

|fk(x)|dx =

∫
E

∞∑
k=1

|fk(x)|dx <∞.

This implies that
∑∞

k=1 |fk(x)| < ∞ a.e x ∈ E. Let Sn(x)
def
=
∑n

k=1 fk(x) and
limn→∞ Sn(x) exists a.e x ∈ E. (∵ absolute convergence) Let

S(x)
def
=

{
limn→∞ Sn(x) if the limit exists

0 otherwise
.

S(x) is a measurable function and limn→∞ Sn(x) = S(x) a.e x ∈ E. supn=1 |Sn(x)| 5∑∞
k=1 |fk(x)| ∈ L(E). By Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
E

Sn(x)dx =

∫
E

S(x)dx

The left hand side is

lim
n→∞

∫
E

Sn(x)dx = lim
n→∞

n∑
k=1

∫
E

fk(x)dx.

So now we have the desired conclusion.

66 (Theorem 4.17)
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STEP 1. Let {hn}n=1 ⊂ R be a sequence with hn → 0. By the definition of
differentiation,

∂

∂y

∫
E

f(x, y)dx = lim
n→∞

1

hn

(∫
E

f(x, y + hn)dx−
∫
E

f(x, y)dx

)
.

Since f(x, y) is integrable with respect to x for all y ∈ (a, b),

1

hn

(∫
E

f(x, y + hn)dx−
∫
E

f(x, y)dx

)
,

is well-defined. (∞−∞ does not happen.) Since integral has linearity,

1

hn

(∫
E

f(x, y + hn)dx−
∫
E

f(x, y)dx

)
=

∫
E

f(x, y + hn)− f(x, y)

hn
dx.

STEP 2. Since f(x, y) is differentiable with respect to y ∈ (a, b), there exists
cn ∈ (y, y + hn) or cn ∈ (y + hn, y)

f(x, y + hn)− f(x, y)

hn
=

∂

∂y
f(x, y)

∣∣∣
y=cn

.

by mean-value theorem. By assumption,
∣∣∣∂f(x,y)

∂y

∣∣∣ 5 F (x) ∈ L(E), so we have

sup
n=1

∣∣∣∣f(x, y + hn)− f(x, y)

hn

∣∣∣∣ = sup
n=1

∣∣∣∣ ∂∂yf(x, y)
∣∣∣
y=cn

∣∣∣∣ 5 F (x), ∀n ∈ N.

F (x) is not related to n. By Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
E

f(x, y + hn)− f(x, y)

hn
dx =

∫
E

lim
n→∞

f(x, y + hn)− f(x, y)

hn
dx

=

∫
E

∂

∂y
f(x, y)dx.

Now we have the desired conclusion.

67 (Example 14)

68 (Exercise 7) Suppose that
∫
E
f(x) cosxdx = 1, and let us try to derive a

contradiction. Note that ∫
E

f(x)dx−
∫
E

f(x) cosxdx = 0,

hence ∫
E

f(x)(1− cosx)dx = 0,

because |
∫
E
f(x)dx| <∞ and thus linearity holds in integral. (Theorem 4.10)

Since f(x) = 0, 1−cosx = 0, f(x)(1−cosx) = 0. By properties about integral of non-
negative measurable functions,

∫
E
f(x)(1− cosx)dx = 0 implies that f(x)(1− cosx) = 0

a.e x ∈ E. Therefore f(x) = 0 a.e x ∈ E or 1− cosx = 0 a.e x ∈ E holds.
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case 1. (f(x) = 0 a.e x ∈ E) Suppose f(x) = 0 a.e x ∈ E then
∫
E
f(x)dx = 0.

(contradiction!!)

case 2. (1 − cosx = 0 a.e x ∈ E) Suppose that 1 − cosx = 0 a.e x ∈ E. However
{x ∈ E | 1 − cosx = 0} ⊂

⋃
n∈Z{2nπ} and m(

⋃∞
n∈Z{2nπ}) = 0. So 1 − cosx = 0 a.e

x ∈ E can not occur except m(E) = 0. However if m(E) = 0, then
∫
E
f(x)dx = 0 6= 1.

The both cases above contradict to the assumption. So we conclude that∫
E

f(x) cosxdx 6= 1.

69 (Exercise 8) First,
∑∞

n=1

∫
R |fn(x) − f(x)|dx 5

∑∞
n=1

1
n2 = π2

6
< ∞. By

Theorem 4.6,
∫
R
∑∞

n=1 |fn(x)− f(x)|dx <∞. By properties of integral, this implies that∑∞
n=1 |fn(x)− f(x)| <∞ a.e x ∈ R. So limn→∞ |fn(x)− f(x)| = 0 a.e x ∈ R. (See books

of basic calculus.)

70 (Exercise 9) Let us consider∫
[2,∞)

∞∑
n=2

∣∣ann−x∣∣ dx ∗1
=

∞∑
n=2

∫
[2,∞)

∣∣ann−x∣∣
∗2
=

∞∑
n=2

|an|
∫

[2,∞)

n−x

∗3
=

∞∑
n=2

|an|
1

n2 log n

∗4
5

∞∑
n=2

1

n2
<∞.

• (∗1) Theorem 4.6

• (∗2) linearity of integral

• (∗3, 4) by assumption

By Corollary 4.16, we have∫
[2,∞)

∞∑
n=2

ann
−xdx =

∞∑
n=2

∫
[2,∞)

ann
−xdx

and the right hand side is
∑∞

n=2
an

n2 logn
.

71 (Exercise 10) Let {hn}n=1 be a sequence with hn → 0. F (y + hn) − F (y) =∫
E
f(x, y + hn)dx −

∫
E
f(x, y)dx. Since |f(x, y)| 5 g(x) ∈ L(E) for all y ∈ Rd, both∫

E
f(x, y + hn)dx,

∫
E
f(x, y)dx are finite, hence well-defined. (not ∞−∞) By linearity,
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∫
E
f(x, y+hn)dx−

∫
E
f(x, y)dx =

∫
E

(f(x, y+hn)−f(x, y)). And |f(x, y+hn)−f(x, y)| 5
2g(x) ∈ L(E). By Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
E

(f(x, y + hn)− f(x, y))dx =

∫
E

lim
n→∞

(f(x, y + hn)− f(x, y))dx
∗
=

∫
E

0 dx = 0.

• (∗) holds because f(x, y) is continuous with respect to y ∈ Rd.

§ 4.3

72 (Theorem 4.18)

STEP 1. We have already shown that there exists a sequence of Lebesgue measur-
able simple functions defined on E {fn(x)}n=1 with a compact support s.t |fn(x)| 5 |f(x)|
and fn(x) → f(x) as n → ∞. Since |fn(x) − f(x)| 5 |fn(x)| + |f(x)| 5 2|f(x)| ∈ L(E),
by applying Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
E

|fn(x)− f(x)|dx =

∫
E

lim
n→∞

|fn(x)− f(x)|dx =

∫
E

0 dx.

This implies that for an arbitrary positive number ε > 0, there exists sufficiently large n0

s.t
∫
E
|fn0(x)− f(x)|dx < ε

2
. Let f̃(x)

def
= fn0(x).

STEP 2. Since f̃(x) is a measurable simple function, we suppose that f̃(x) =∑p
i=1 aiχEi(x) where {ai}pi=1 ⊂ R, Ei ∈M , E =

⋃p
i=1Ei. Let M

def
= max{|ai|}pi=1. Then

|f̃(x)| 5M <∞.
f̃(x) has a compact support, so we may suppose that if ai 6= 0, Ei ⊂ B : a bounded

ball on Rd. We may regard f̃(x) as a measurable function defined on B because f̃(x) =∑p
i=1,ai 6=0 aiχEi(x) + 0 · χB\⋃pi=1,ai 6=0 Ei

(x).

Now we apply Corollary 3.19 to f̃(x) as a measurable function defined on B. We have
g(x) ∈ C(Rd) s.t m({x ∈ B | f̃(x) 6= g(x)}) < δ = ε

4M
. Since |f̃(x)| 5 M , |g(x)| 5 M on

Rd. Moreover, g(x) has a compact support. (if x /∈ B, g(x) = 0) (See Corollary 3.19.)

∫
E

|f̃(x)− g(x)|dx =

∫
E∩B
|f̃(x)− g(x)|dx+

∫
E\B
|f̃(x)− g(x)|dx

∗1
=

∫
E∩B
|f̃(x)− g(x)|dx

∗2
5

∫
B

|f̃(x)− g(x)|dx

=

∫
{x∈B|f̃ 6=g}

|f̃(x)− g(x)|dx

∗3
5

∫
{x∈B|f̃ 6=g}

2Mdx = 2M ·m({x ∈ B | f̃ 6= g}) < ε

2
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• (∗1) x /∈ B, f̃(x), g(x) = 0.

• (∗2) E ∩B ⊂ B

• (∗3) |f̃(x)− g(x)| 5 |f̃(x)|+ |g(x)| 5 2M

STEP 3.∫
E

|f(x)− g(x)|dx 5
∫
E

|f(x)− f̃(x)|dx+

∫
E

|f̃(x)− g(x)|dx < ε

2
+
ε

2
.

73 (Corollary 4.19, 4.20) We may find {gk(x)} ⊂ C(Rd) s.t
∫
E
|f(x)−gk(x)|dx <

1
k2 . Then

∑∞
k=1

∫
E
|f(x)− gk(x)|dx =

∫
E

∑∞
k=1 |f(x)− gk(x)| <∞.

∑∞
k=1 |f(x)− gk(x)| ∈

L(E) hence
∑∞

k=1 |f(x)− gk(x)| <∞ a.e x ∈ E. So limk→∞ |f(x)− gk(x)| = 0 a.e x ∈ E.
We present an alternative solution. We may find {gk(x)} ⊂ C(Rd) s.t

∫
E
|f(x) −

gk(x)|dx < 1
k
. Then gk(x)

m−→ f(x) on E because

ε ·m({x ∈ E | |f(x)− gk(x)| > ε}) =

∫
{x∈E||f(x)−gk(x)|>ε}

ε dx

5
∫
{x∈E||f(x)−gk(x)|>ε}

|f(x)− gk(x)|dx

5
∫
E

|f(x)− gk(x)|dx→ 0

Since gk(x)
m−→ f(x), for every subsequence k` (we may let k` = ` here), we can find a sub-

subsequence k`m s.t gk`m (x)
a.u−→ f(x) on E. (hence

a.e−→ f(x) on E). So the subsubsequence
is the desired sequence.

74 (Example 1) Suppose that f(x) = 0 a.e x ∈ Rd is not true. In other words,
suppose that m({x ∈ Rd | f(x) > 0}) > 0 or m({x ∈ Rd | f(x) < 0}) > 0. Without loss
of generality, we may suppose that m({x ∈ Rd | f(x) > 0}) > 0.

Let Ẽ
def
= {x ∈ Rd | f(x) > 0}. We can find a bounded measurable subset of Ẽ, E with

m(E) > 0. Let Ek
def
= Ẽ ∩B(0, k). Then Ek ↗ Ẽ and m(Ek)↗ m(Ẽ) > 0. Therefore we

can find k0 ∈ N s.t m(Ek0) > 0. Let E
def
= Ek0 .

We apply Corollary 4.19, 4.20 to χE(x). (χE(x) ∈ L(Rd).) We can find a sequence
of continuous functions {gk(x)}k=1 ⊂ C(Rd) with a bounded support s.t

∫
Rd |χE(x) −

fk(x)|dx→ 0 and gk(x)
a.e−→ χE(x) on Rd. Let us pay attention to the fact that |gk(x)| = 1

because |χE(x)| 5 1. (In Theorem 4.18 or Corollary 3.19, |f(x)| 5M ⇒ |g(x)| 5M)
Since |f(x)gk(x)| 5 |f(x)| ∈ L(Rd), by Lebesgue Dominated Convergence theorem,

we have

lim
k→∞

∫
Rd
f(x)gk(x)dx =

∫
Rd

lim
k→∞

f(x)gk(x)dx

=

∫
Rd
f(x)χE(x)dx

=

∫
E

f(x)dx
∗
> 0
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• (∗) f(x) > 0 on E and m(E) > 0 then
∫
E
f(x)dx > 0.

However,
∫
Rd f(x)gk(x)dx = 0 by assumption. (contradiction!!) So m({x ∈ Rd |

f(x) > 0}) = 0. Similarly m({x ∈ Rd | f(x) < 0}) = 0. Now the proof is complete.

75 (Theorem 4.21) Let ε > 0 be an arbitrary positive number.

STEP 1. By Theorem 4.18, we can find a continuous function g ∈ C(Rd) with a
bounded support s.t ∫

Rd
|f(x)− g(x)|dx < ε

4
.

Let h(x)
def
= f(x)− g(x). Then

∫
Rd |h(x)|dx < ε

4
.

STEP 2. Suppose that supp(g) ⊂ K
def
= B(0,M), (0 < M < ∞). Since we take

x0 → 0, we may consider that |x0| 5 1. Therefore, K1
def
= B(0,M + 1) contains the

support of g(x+ x0)− g(x). And we have∫
Rd
|g(x+ x0)− g(x)|dx =

∫
K1

|g(x+ x0)− g(x)|dx.

Let K2
def
= B(0,M+2). g(x) is continuous on Rd, so is on K2 which is a bounded closed

set. Let us recall that a continuous function defined on a bounded closed (compact) set
is uniformly continuous. Therefore ∃δ > 0, ∀x, y ∈ K2 with |x − y| < δ, |g(x) − g(y)| <

ε
2m(K1)

. If |x0| < δ, we have ∀x ∈ K1, |g(x+ x0)− g(x)| < ε
2m(K1)

. So we have∫
Rd
|g(x+ x0)− g(x)|dx =

∫
K1

|g(x+ x0)− g(x)|dx

5
∫
K1

ε

2m(K1)
dx =

ε

2

STEP 3.∫
Rd
|f(x+ x0)− f(x)|dx 5

∫
Rd
|g(x+ x0)− g(x)|dx+

∫
Rd
|h(x+ x0)− h(x)|dx

∗1
5

ε

2
+

∫
Rd
|h(x+ x0)|dx+

∫
Rd
|h(x)|dx

∗2
5

ε

2
+ 2

∫
Rd
|h(x)|dx

∗3
<

ε

2
+
ε

2

• (∗1) Step2 and triangular inequality

• (∗2) Theorem 4.13 states that translation does not change the value of integral on
Rd.

• (∗3) Step1
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76 (Example 3)

STEP 1. m(E) =
∫
Rd χE(x)dx =

∫
Rd(χE(x))2dx.

STEP 2. m(E ∩ E+h) =
∫
Rd χE∩E+h

(x)dx =
∫
Rd χE(x) · χE+h

(x)dx.

STEP 3.

|m(E)−m(E ∩ E+h)| =

∣∣∣∣∫
Rd

(χE(x))2dx−
∫
Rd
χE(x) · χE+h

(x)dx

∣∣∣∣
∗1
5

∫
Rd
χE(x)

∣∣χE(x)− χE+h
(x)
∣∣ dx

∗2
5

∫
Rd

∣∣χE(x)− χE+h
(x)
∣∣ dx

∗3
5

∫
Rd
|χE(x)− χE(x− h)| dx

∗4→ 0

• (∗1) triangular inequality

• (∗2) χE(x) 5 1

• (∗3) x ∈ E+h if and only if x− h ∈ E

• (∗4) Theorem 4.21.

77 (Corollary 4.22) It is enough for us to prove that for all ε > 0, there exists a
step function with a compact support (a bounded support) s.t∫

E

|f(x)− φ(x)|dx < ε.

STEP 1. We have already proven that there exists a continuous function g ∈ C(Rd)
with a compact support s.t ∫

E

|f(x)− g(x)|dx < ε

2
.

So we prove that there exists a step function φ(x) with a compact support s.t∫
E

|g(x)− φ(x)|dx < ε

2
,

then the proof is complete.
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STEP 2. Suppose that supp(g) ⊂
∏d

i=1(−N,N ] whereN ∈ N. Let I =
∏d

i=1(−N,N ].

(This is a half open rectangle in Rd). We define In,k
def
=
∏d

i=1

(
ki
2n
, ki+1

2n

]
where n ∈ N, k ∈

Zd. Let
gn(x)

def
=

∑
k∈{−N ·2n,−N ·2n+1,··· ,N ·2n−1}d

inf
a∈In,k

{g(a)} · χIn,k(x).

This definition seems a bit complicated but we just divide I into small rectangles {In,k}k
and take infimum of g(x) in each rectangle. When n goes to infinity, the division of I
becomes finer. Since g(x) is continuous, gn(x) ↗ g(x) as n → ∞. gn(x) 5 gn+1(x) holds
because for all x0 ∈ In,k we can find k′ s.t x0 ∈ In+1,k′ ⊂ In,k and inf A = inf B if A ⊂ B.

We apply monotone convergence theorem to gn(x) and we have limn→∞
∫
E
gn(x)dx =∫

E
g(x)dx. (gn(x) is not necessarily non-negative, but we can consider the sequence of

{gn(x)− g1(x)}. g1(x) ∈ L(E). See Example 3 in §4.1.)

0 5
∫
E

|gn(x)− g(x)|dx =

∫
E

(g(x)− gn(x))dx

∗
=

∫
E∩I

(g(x)− gn(x))dx

5
∫
I

(g(x)− gn(x))dx

=

∫
I

g(x)dx−
∫
I

gn(x)dx <
ε

2

for sufficiently large n0 ∈ N. Let φ(x)
def
= gn0(x).

• (∗) x /∈ I, g(x), gn(x) = 0.

STEP 3. Now the proof is almost complete.
∫
E
|f(x) − φ(x)|dx 5

∫
E
|f(x) −

g(x)|dx+
∫
E
|g(x)−φ(x)|dx < ε

2
+ ε

2
= ε. We can find a sequence of step functions {φn(x)}

with a compact support s.t
∫
E
|f(x)−φn(x)| < 1

n2 . So we have
∑∞

n=1

∫
E
|f(x)−φn(x)|dx =∫

E

∑∞
n=1 |f(x)− φn(x)|dx <∞. This implies that

∑∞
n=1 |f(x)− φn(x)|dx <∞ a.e x ∈ E

hence φn(x)
a.e−→ f(x) a.e x ∈ E. (This technique is the same as that of Corollary 4.19,

4.20)

78 (Example 4) Let φ(x) be a step function s.t
∫

[a,b]
|f(x)−φ(x)|dx < ε

2M
. We do

not know if supp(φ) ⊂ [a, b]. However φ(x) · χ[a,b] is also a step function and its support
is a subset of [a, b]. Therefore we may suppose that supp(φ) ⊂ [a, b].
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STEP 1.∣∣∣∣∫
[a,b]

f(x)gn(x)dx

∣∣∣∣ =

∣∣∣∣∫
[a,b]

(f(x)− φ(x) + φ(x))gn(x)dx

∣∣∣∣
∗1
5

∣∣∣∣∫
[a,b]

(f(x)− φ(x))gn(x)dx

∣∣∣∣+

∣∣∣∣∫
[a,b]

φ(x)gn(x)dx

∣∣∣∣
5

∫
[a,b]

|(f(x)− φ(x))gn(x)| dx+

∣∣∣∣∫
[a,b]

φ(x)gn(x)dx

∣∣∣∣
5 M ·

∫
[a,b]

|f(x)− φ(x)| dx+

∣∣∣∣∫
[a,b]

φ(x)gn(x)dx

∣∣∣∣
5

ε

2
+

∣∣∣∣∫
[a,b]

φ(x)gn(x)dx

∣∣∣∣
• (∗1) |(f(x)− φ(x))gn(x)| 5M |f(x)− φ(x)| ∈ L([a, b]) so we may separate into two

integrals.

STEP 2. Let φ(x)
def
=
∑p

i=1 aiχ[xi−1,xi)(x) where a = x0 < x1 < · · · < xp = b. By
assumption, it is easy to find out that

∫
[xi−1,xi)

gn(x)→ 0 as n→∞.

∫
[a,b]

φ(x)gn(x)dx =

∫
[a,b]

p∑
i=1

aiχ[xi−1,xi)(x) · gn(x)dx

=

p∑
i=1

∫
[a,b]

aiχ[xi−1,xi)(x) · gn(x)dx

=

p∑
i=1

∫
[xi−1,xi)

aign(x)dx

=

p∑
i=1

ai

∫
[xi−1,xi)

gn(x)dx

For each i = 1, 2 · · · , p, when n is sufficiently large |
∫

[xi−1,xi)
gn(x)dx| < ε

2p|ai| . So we have∣∣∣∣∫
[a,b]

φ(x)gn(x)dx

∣∣∣∣ 5
p∑
i=1

|ai|
∣∣∣∣∫

[xi−1,xi)

gn(x)dx

∣∣∣∣
5

p∑
i=1

ε

2p
=
ε

2

Now the proof is complete.

79 (Example 5) Let B ∈ M be an arbitrary Lebesgue measurable set with
m(B) <∞.
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STEP 1. Let fn(x)
def
= χA(x) · sin(λnx) and let f(x)

def
= limn→∞ fn(x). (Let us pay

attention to the fact that this limit converges for all x ∈ R.) Since |fn(x)| 5 χA(x) ∈ L(B),
by Lebesgue Dominated Convergence Theorem (or Bounded Convergence Theorem), we
have

lim
n→∞

∫
B

fn(x)dx =

∫
I

f(x)dx

STEP 2. We prove that

lim
n→∞

∫
B

fn(x)dx = 0.

We apply Corollary 4.22 to χA∩B(x) ∈ L(R). ∀ε > 0, we can find a step function
φε(x) =

∑p
i=1 ciχ(ai−1,ai](x) s.t∫

R
|χA∩B(x)− φε(x)| dx < ε

2
.

So, ∣∣∣∣∫
B

fn(x)dx

∣∣∣∣ =

∣∣∣∣∫
B

χA(x) · sin(λnx)dx

∣∣∣∣
=

∣∣∣∣∫
R
χA∩B(x) · sin(λnx)dx

∣∣∣∣
=

∣∣∣∣∫
R
(χA∩B(x)− φε(x) + φε(x)) · sin(λnx)dx

∣∣∣∣
∗1
5

∣∣∣∣∫
R
(χA∩B(x)− φε(x)) · sin(λnx)dx

∣∣∣∣+

∣∣∣∣∫
R
φε(x) · sin(λnx)dx

∣∣∣∣
∗2
5

∫
R
|χA∩B(x)− φε(x)) · sin(λnx)| dx+

∣∣∣∣∫
R
φε(x) · sin(λnx)dx

∣∣∣∣
∗3
5

∫
R
|χA∩B(x)− φε(x)| dx+

∣∣∣∣∫
R
φε(x) · sin(λnx)dx

∣∣∣∣
<

ε

2
+

∣∣∣∣∫
R
φε(x) · sin(λnx)dx

∣∣∣∣
=

ε

2
+

∣∣∣∣∣
∫
R

p∑
i=1

ciχ(ai−1,ai](x) · sin(λnx)dx

∣∣∣∣∣
=

ε

2
+

∣∣∣∣∣
p∑
i=1

ci ·
∫
R
χ(ai−1,ai](x) · sin(λnx)dx

∣∣∣∣∣
=

ε

2
+

∣∣∣∣∣
p∑
i=1

ci ·
∫ ai

ai−1

sin(λnx)dx

∣∣∣∣∣
=

ε

2
+

∣∣∣∣∣
p∑
i=1

ci ·
−(cosλnai − cosλnai−1)

λn

∣∣∣∣∣
=

ε

2
+

2

λn

p∑
i=1

|ci|
∗4
<
ε

2
+
ε

2
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• (∗1) triangular inequality.

• (∗2)
∣∣∫ f ∣∣ 5 ∫ |f |

• (∗3) | sinλnx| 5 1

• (∗4) λn →∞. By taking sufficiently large n, · · · < ε
2
.

So we conclude that limn→∞
∣∣∫
B
fn(x)dx

∣∣ = 0. By Step 1, we have
∫
B
f(x)dx = 0

for all B ∈ M with m(B) < ∞. Let Bn = {x ∈ [−n, n] | f(x) > 0}. And we have∫
Bn(x)

f(x)dx = 0. So m(Bn) = 0. By considering
⋃∞
n=1 Bn, we have m({x ∈ R | f(x) >

0}) = 0. Similarly, m({x ∈ R | f(x) < 0}) = 0. So f(x) = 0 a.e x ∈ R.

STEP 3. By the previous result, we have∫
B

(f(x))2dx = 0, ∀B ∈M

Let B ∈ M with m(B) < ∞. Let us pay attention to the fact that limn→∞(fn(x))2 =
(limn→∞ fn(x))2 = (f(x))2.∫

B

(f(x))2dx =

∫
B

lim
n→∞

(fn(x))2dx

∗5
= lim

n→∞

∫
B

(fn(x))2dx

= lim
n→∞

∫
B

χA(x) · sin2 λnxdx

= lim
n→∞

∫
B

χA(x) · 1− cos 2λnx

2
dx

=
m(A ∩B)

2
− lim

n→∞

1

2

∫
B

χA(x) · cos 2λnxdx

∗6
=

m(A ∩B)

2

• (∗5) Lebesgue Dominated Convergence Theorem

• (∗6) We repeat the similar argument to prove that limn→∞
∫
B
χA(x)·cos 2λnxdx = 0.

Let us consider
∫
R(χA∩B(x)− φε(x) + φε(x)) · cos 2λnxdx ...

So m(A ∩ B) = 0 for ∀B ∈ M with m(B) < ∞. Let us consider Bn = [−n, n] and we
have m(

⋃∞
n=1 A ∩Bn) = m(A) = 0.

80 (Example 6) Let F (x)
def
= xf(x).

∫
[0,1]

F (x)dx = 0. This means that F (x) ∈
L([0, 1]) so

∫
[0,1]
|F (x)|dx <∞. (Let F (x) = 0 if x /∈ [0, 1].)

STEP 1. By assumption, ∀m ∈ N ∪ {0}, we have∫
[0,1]

xmF (x)dx = 0.
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Therefore ∀P (x) : polynomial, we have∫
[0,1]

F (x) · P (x)dx = 0.

STEP 2. Let φ(x) be an arbitrary continuous function on R. Then φ(x) ∈
C([0, 1]). By Weierstrass’s Approximation Theorem, there exists a polynomial Pε(x) s.t
supx∈[0,1] |φ(x)− Pε(x)| < ε where ε is an arbitrary positive number.∣∣∣∣∫

R
F (x)φ(x)dx

∣∣∣∣ =

∣∣∣∣∫
[0,1]

F (x)φ(x)dx

∣∣∣∣
=

∣∣∣∣∫
[0,1]

F (x)(φ(x)− Pε(x) + Pε(x))dx

∣∣∣∣
5

∣∣∣∣∫
[0,1]

F (x)(φ(x)− Pε(x))dx

∣∣∣∣+

∣∣∣∣∫
[0,1]

F (x) · Pε(x)

∣∣∣∣
=

∣∣∣∣∫
[0,1]

F (x)(φ(x)− Pε(x))dx

∣∣∣∣+ 0

5
∫

[0,1]

|F (x)| |φ(x)− Pε(x)| dx

5
∫

[0,1]

|F (x)| · εdx

5 ε ·
∫

[0,1]

|F (x)| dx

Since
∫

[0,1]
|F (x)|dx <∞, by taking ε→ 0, we have

∫
R F (x)φ(x)dx = 0 for all φ(x) ∈

C(R). By §4.3 Example 1, we have F (x) = 0 a.e x ∈ R hence F (x) = 0 a.e x ∈ [0, 1].
And let us recall that F (x) = xf(x), and now we conclude that f(x) = 0 a.e x ∈ [0, 1].

81 (Example 7)

§ 4.4

82 (Darbourx Theorem)

(1) We define ∫ b

a

f(x)dx
def
= inf

∆
{S(∆)}

and ∫ b

a

f(x)dx
def
= sup

∆
{S(∆)},

where ∆ is a partition of [a, b].
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(2) We show that ∀{∆n} a sequence of partition of [a, b] with |∆n| → 0 we have

S(∆n)→
∫ b
a
f(x)dx and S(∆n)→

∫ b
a
f(x)dx. But the proofs are similar so we only prove

S(∆n)→
∫ b
a
f(x)dx.

Let ε > 0 be an arbitrary positive number. By the definition of
∫ b
a
f(x)dx we can find

a partition ∆∗ s.t

S(∆∗) <

∫ b

a

f(x)dx+
ε

2
.

Suppose that ∆∗ = {x∗0, · · ·x∗K}. (In otherwords, the partition devides [a, b] into K

intervals.) Let M
def
= supx∈[a,b] f(x),m

def
= inf [a,b] f(x). (f(x) is bounded on x ∈ [a, b].) Let

us consider ∆n ∪ ∆∗. (This is called refinement because the partition becomes finer by
adding new partition points ). We have

0 5 S(∆n)− S(∆n ∪∆∗) 5 K · (M −m) · |∆n|.

Seemingly this inequality seems difficult to prove but actually not. To simplify the situ-
ation, let us begin with a simpler case ∆n ∪ {x∗}.

We add only one new partition point {x∗}. If xi = x∗, then S(∆n)− S(∆n ∪ {x∗}) =
0. If xi−1 < x∗ < xi, then S(∆n) − S(∆n ∪ {x∗}) = supa∈[xi−1,xi]

f(a)(xi − xi−1) −
supa∈[xi−1,x∗] f(a)(x∗ − xi−1) − supa∈[x∗,xi] f(a)(xi − x∗). At least supa∈[xi−1,xi]

f(a) =
supa∈[xi−1,x∗] f(a) or supa∈[xi−1,xi]

f(a) = supa∈[x∗,xi] f(a) holds. Without loss of gener-

ality, we may suppose the first case. Then S(∆n)− S(∆n ∪ {x∗}) = (supa∈[xi−1,xi]
f(a)−

supa∈[x∗,xi] f(a))(xi − x∗) 5 (M −m)|∆n|.
From the argument above, we can easily find out that if we add K points, S(∆n) −

S(∆n ∪ ∆∗) 5 K · (M −m) · |∆n|. By taking sufficiently large n, (M −m) · |∆n| < ε
2
.

(Here K is already fixed before n→∞.)
Finally,

S(∆n)−
∫ b

a

f(x)dx

=
(
S(∆n)− S(∆n ∪∆∗)

)
+
(
S(∆n ∪∆∗)− S(∆∗)

)
+

(
S(∆∗)−

∫ b

a

f(x)dx

)
<

ε

2
+
(
S(∆n ∪∆∗)− S(∆∗)

)
+
ε

2
∗
5

ε

2
+ 0 +

ε

2
= ε

• (∗) S(∆n ∪∆∗) − S(∆∗) 5 0 because ∆n ∪∆∗ is a refinement of ∆∗. So S(∆∗) is
greater.

The proof for limn→∞ S(∆n)→
∫ b
a
f(x)dx is similar.

(3) If
∫ b
a
f(x)dx =

∫ b
a
f(x)dx, we say that f(x) is Riemann integrable on [a, b].
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83 (Lemma 4.23)

STEP 1. Let {∆n} be a sequence of partition points with |∆n| → 0. Without loss
of generality, we may suppose that ∆n ⊂ ∆n+1. By Darbourx theorem, S(∆n)−S(∆n)→∫ b
a
f(x)dx−

∫ b
a
f(x)dx.

STEP 2. Let ∆n
def
= {x(n)

0 , · · · , x(n)
kn
}, N def

=
⋃∞
n=1 ∆n and let

M
(n)
i

def
= sup

x∈(x
(n)
i−1,x

(n)
i )

f(x), m
(n)
i

def
= inf

x∈(x
(n)
i−1,x

(n)
i )

f(x).

We define

ωn(x)
def
=

{
M

(n)
i −m

(n)
i x ∈ (x

(n)
i−1, x

(n)
i )

0 x ∈ ∆n

.

By the assumption of ∆n ⊂ ∆n+1, ωn(x) is monotone decreasing if x /∈ N . So limn→∞ ωn(x)
exists. And we have

ω(x)
def
= lim

n→∞
ωn(x)

= ωf (x)
def
= lim

δ→0
sup

x′,x′′∈B(x,δ)

|f(x′)− f(x′′)|, x /∈ N

Let us fix x ∈ [a, b] \ N . First, we prove ω(x) = ωf (x). It is enough to prove that

ωn(x) = ωf (x) for all n ∈ N. We can find i s.t x ∈ (x
(n)
i−1, x

(n)
i ). We can always take δ > 0 s.t

B(x, δ) ⊂ (x
(n)
i−1, x

(n)
i ). Therefore ωn(x) = M

(n)
i −m(n)

i = supx′,x′′∈B(x,δ) |f(x′)− f(x′′)| =
ωf (x).

Next, we prove ω(x) 5 ωf (x). It is enough to prove that ω(x) 5 supx′,x′′∈B(x,δ) |f(x′)− f(x′′)|
for all δ > 0. For all δ > 0, we can find n ∈ N and i s.t x ∈ (xni−1, x

(n)
i ) ⊂ B(x, δ), we

have ω(x) 5 ωn(x) = M
(n)
i −m

(n)
i 5 supx′,x′′∈B(x,δ) |f(x′)− f(x′′)|

Since m(N) = 0, we conclude that ωn(x)→ ωf (x) a.e x ∈ [a, b].

STEP 3. Since ωn(x) 5 supx∈[a,b] f(x) − infx∈[a,b] f(x) = M − m < ∞ (f(x) is
bounded.), by Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
[a,b]

ωn(x)dx =

∫
[a,b]

ωf (x)dx.
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It is easy to verify that the left hand side is
∫ b
a
f(x)dx−

∫ b
a
f(x).

∫
[a,b]

ωn(x)dx =

∫
[a,b]

kn∑
i=1

(M
(n)
i −m

(n)
i )χ

(x
(n)
i−1,x

(n)
i )

(x)dx

=
kn∑
i=1

∫
[a,b]

(M
(n)
i −m

(n)
i )χ

(x
(n)
i−1,x

(n)
i )

(x)dx

=
kn∑
i=1

(M
(n)
i −m

(n)
i )m((x

(n)
i−1, x

(n)
i ))

=
kn∑
i=1

(M
(n)
i −m

(n)
i )(x

(n)
i − x

(n)
i−1)

=
kn∑
i=1

M
(n)
i (x

(n)
i − x

(n)
i−1)−

kn∑
i=1

m
(n)
i (x

(n)
i − x

(n)
i−1)

= S(∆n)− S(∆n)→
∫ b

a

f(x)dx−
∫ b

a

f(x)

Now the proof is complete.

84 (Theorem 4.24) f(x) is Riemann integrable on [a, b]⇔
∫ b
a
f(x)dx−

∫ b
a
f(x)dx =

0⇔
∫

[a,b]
ωf (x)dx = 0⇔ ωf (x) = 0 a.e x ∈ [a, b]⇔ f(x) = 0 is continuous at a.e x ∈ [a, b].

Therefore f(x) is Riemann integrable if and only m(D) = 0 where D is a set of points of
discontinuity of f(x).

85 (Theorem 4.25)

STEP 1. (f(x) is Lebesgue measurable) By the conclusion of Theorem 4.24, f(x)
is continuous almost everywhere x ∈ [a, b]. Let D be the set of discontinuity of f(x). D
is a measure zero set. (D ∈M ) Then

{x ∈ [a, b] | f(x) > t}
= {x ∈ [a, b] | f(x) > t} \D ∪ {x ∈ [a, b] | f(x) > t} ∩D
= [a, b] \D ∩G ∪ {x ∈ [a, b] | f(x) > t} ∩D

where G is an open set. (f(x) is continuous on [a, b] \D. G ∈M ) Since D is a measure
zero set, {x ∈ [a, b] | f(x) > t} ∩D ⊂ D so {x ∈ [a, b] | f(x) > t} ∩D is also a measure
zero set hence measurable.

STEP 2. (f(x) is Lebesgue integrable) Since |f(x)| 5M <∞, (∵ f(x) is bounded
on [a, b] by assumption), f(x) ∈ L([a, b])
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STEP 3. ((L)
∫

[a,b]
f(x)dx = (R)

∫ b
a
f(x)dx) Let us pick a sequence of partitions

of the interval [a, b] {∆n}n=1 with |∆n| → 0. (We use the same notations as the previous
lemma and the theorems.) Since

kn∑
i=1

m
(n)
i · χ(x

(n)
i−1,x

(n)
i )

(x) 5 f(x) 5
kn∑
i=1

M
(n)
i · χ(x

(n)
i−1,x

(n)
i )

(x),

by taking integral of them, we have

kn∑
i=1

m
(n)
i ·m((x

(n)
i−1, x

(n)
i )) 5 (L)

∫
[a,b]

f(x)dx 5
kn∑
i=1

M
(n)
i ·m((x

(n)
i−1, x

(n)
i )).

The left hand side and the right hand side are S(∆n) and S(∆n) respectively, so we have

S(∆n) 5 (L)

∫
[a,b]

f(x)dx 5 S(∆n)

Since f(x) is Riemann integrable, so S(∆n), S(∆n) → (R)
∫ b
a
f(x)dx as n → ∞. So we

have the desired result.

86 (Exercise 1) See Exercise 27 in §Exercise. χE(x), E ⊂ [0, 1] is Riemann

integrable if and only if m(E \ E̊) = 0. If F is a closed set, F = F . So m(F \ F̊ ) =
m(F \ F̊ ) 5 m(F ) = 0. Hence χF (x) is Riemann integrable.

87 (Exercise 2) Let D1, D2 be sets of discontinuity of f(x) and g ◦ f(x) respec-
tively. If f(x) is continuous at x0 then g ◦ f(x) is also continuous at x0. So if g ◦ f(x)
is not continuous at x0, then f(x) is not continuous at x0. Therefore D2 ⊂ D1. D1 is a
measure zero set so is D2. This implies that g ◦ f(x) is also Riemann integrable.

88 (Exercise 3) LetD1, D2 be sets of discontinuity of f(x), g(x) respectively. Then
D1, D2 are measure zero set. Now let us pick an arbitrary point x0 ∈ [a, b] \ (D1 ∪ D2).
Since x0 ∈ [a, b] = E, therefore there exists {xn}n=1 ⊂ E s.t xn → x0. (You may
consider x0 ∈ E or x0 ∈ E ′. In any case, we can find {xn} ⊂ E s.t xn → x0. Here we
allow {xn} to contain the same points.) Moreover since x0 /∈ D1 and x0 /∈ D2, we have
f(xn) → f(x0) and g(xn) → g(x0). By assumption f(xn) = g(xn). So limn→∞ f(xn) =
limn→∞ g(xn)⇒ f(x0) = g(x0). We conclude that f(x) = g(x) for all x ∈ [a, b]\(D1∪D2)
hence f(x) = g(x) a.e x ∈ [a, b]. Now we have the desired conclusion.

89 (Theorem 4.26) As we have stated the proof is quite easy. Since |f(x)| ·
χEk(x) 5 |f(x)| · χEk+1

(x), by monotone convergence theorem, we have

lim
k→∞

∫
E

|f(x)| · χEk(x)dx =

∫
E

lim
k→∞
|f(x)| · χEk(x)dx.

The left hand side is

lim
k→∞

∫
E

|f(x)| · χEk(x)dx = lim
k→∞

∫
Ek

|f(x)| dx <∞.
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by the properties of Lebesgue integral of non-negative measurable functions. The right
hand side is ∫

E

lim
k→∞
|f(x)| · χEk(x)dx =

∫
E

|f(x)| dx

because if Ek → E then χEk(x)→ χE(x). (We have proven this before.) So we conclude
that

∫
E
|f(x)| <∞. Finally since

|f(x) · χEk(x)| 5 |f(x)| ∈ L(E),

by Lebesgue Dominated Convergence Theorem, we have

lim
k→∞

∫
E

f(x) · χEk(x)dx =

∫
E

lim
k→∞

f(x) · χEk(x)dx

=

∫
E

f(x) · χE(x)dx =

∫
E

f(x)dx.

The left hand side is

lim
k→∞

∫
E

f(x) · χEk(x)dx = lim
k→∞

∫
Ek

f(x)dx

So the proof is complete.

90 (Example 1) Let f(x) = sinx
x

. We prove that the Riemann improper integral
of f(x) is finite, however the Lebesgue integral of |f(x)| is inifinity.

STEP 1.

(R)

∫
(0,∞)

f(x)dx = lim
t→∞

(R)

∫ t

0

sinx

x
dx.

Let a(t)
def
= (R)

∫ t
0

sinx
x
dx. We prove that limt1<t2→∞ |a(t1)− a(t2)| = 0. We can find

k 5 ` ∈ N s.t 2(k − 1)π < t1 5 2kπ 5 2`π 5 t2 < 2(`+ 1)π.

|a(t1)− a(t2)| =

∣∣∣∣∫ t2

t1

sinx

x
dx

∣∣∣∣
=

∣∣∣∣∫ 2kπ

t1

sinx

x
dx+

∫ 2`π

2kπ

sinx

x
dx+

∫ t2

2`π

sinx

x
dx

∣∣∣∣
5

∣∣∣∣∫ 2kπ

t1

sinx

x
dx+

∫ 2`π

2kπ

sinx

x
dx+

∫ t2

2`π

sinx

x
dx

∣∣∣∣
5

∫ 2kπ

t1

|sinx|
x

dx+

∣∣∣∣∫ 2`π

2kπ

sinx

x
dx

∣∣∣∣+

∫ t2

2`π

|sinx|
x

dx

5
∫ 2kπ

t1

|sinx|
t1

dx+

∣∣∣∣∫ 2`π

2kπ

sinx

x
dx

∣∣∣∣+

∫ t2

2`π

|sinx|
t1

dx

5
∫ 2kπ

t1

1

t1
dx+

∣∣∣∣∫ 2`π

2kπ

sinx

x
dx

∣∣∣∣+

∫ t2

2`π

1

t1
dx

=
(2kπ − t1)

t1
+

∣∣∣∣∫ 2`π

2kπ

sinx

x
dx

∣∣∣∣+
(t2 − 2`π)

t1

5
2π

t1
+

∣∣∣∣∫ 2`π

2kπ

sinx

x
dx

∣∣∣∣+
2π

t1
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Since 2π
t1
→ 0 as t1 →∞, it is enough for us to prove that

lim
k,`→∞

∫ 2`π

2kπ

sinx

x
dx = 0.

It is not difficult to verify that
∫ 2`π

2kπ
sinx
x
dx = 0 because

`−k−1∑
m=0

∫ (2k+2m+2)π

(2k+2m)π

sinx

x
dx

=
`−k−1∑
m=0

(∫ (2k+2m+1)π

(2k+2m)π

sinx

x
dx+

∫ (2k+2m+2)π

(2k+2m+1)π

sinx

x
dx

)

=
`−k−1∑
m=0

(∫ (2k+2m+1)π

(2k+2m)π

sinx

(2k + 2m+ 1)π
dx+

∫ (2k+2m+2)π

(2k+2m+1)π

sinx

(2k + 2m+ 1)π
dx

)
= 0.

We separate each term into two parts. (sinx = 0 and sinx 5 0). Next,

0 5
`−k−1∑
m=0

∫ (2k+2m+2)π

(2k+2m)π

sinx

x
dx

=
`−k−1∑
m=0

(∫ (2k+2m+1)π

(2k+2m)π

sinx

x
dx+

∫ (2k+2m+2)π

(2k+2m+1)π

sinx

x
dx

)

5
`−k−1∑
m=0

(∫ (2k+2m+1)π

(2k+2m)π

sinx

(2k + 2m)π
dx+

∫ (2k+2m+2)π

(2k+2m+1)π

sinx

(2k + 2m+ 2)π
dx

)

=
`−k−1∑
m=0

(
2

(2k + 2m)π
− 2

(2k + 2m+ 2)π

)

=
`−k−1∑
m=0

(
4π

(2k + 2m)(2k + 2m+ 2)π2

)

=
`−k−1∑
m=0

(
1

(k +m)(k +m+ 1)π

)

=
`−1∑
m=k

(
1

m · (m+ 1)π

)
<

∞∑
m=k

(
1

m · (m+ 1)π

)
=

1

kπ
→ 0 as k →∞

Therefore |a(t1)− a(t2)| is a Cauchy sequence. Hence a(t) converges.
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STEP 2. Next we prove that |sinx|
x

/∈ L([0,∞))

(L)

∫ ∞
0

|sinx|
x

dx =
∞∑
k=1

(L)

∫ (k+1)π

kπ

|sinx|
x

dx

=
∞∑
k=0

(L)

∫ (k+ 5
6

)π

(k+ 1
6

)π

|sinx|
x

dx

=
∞∑
k=0

(L)

∫ (k+ 5
6

)π

(k+ 1
6

)π

1

2
· 1

x
dx

=
∞∑
k=0

(L)

∫ (k+ 5
6

)π

(k+ 1
6

)π

1

2
· 1

(k + 5
6
)π
dx

=
∞∑
k=0

1

2
· 1

(k + 5
6
)π
· 4π

6

=
1

3
·
∞∑
k=0

1

(k + 5
6
)

=
1

3
·
∞∑
k=1

1

k
=∞

91 (Example 3)

STEP 1. Let us consider ∫
(0,1)

− lnx

1− x
dx.

Since ∀x ∈ (0, 1), 1
1−x =

∑∞
n=0 x

n. So∫
(0,1)

− lnx

1− x
dx =

∫
(0,1)

(− lnx)
∞∑
n=0

xndx

∗1
=

∞∑
n=0

∫
(0,1)

(− lnx) · xndx

=
∞∑
n=0

∫
(0,1]

(− lnx) · xndx

• (∗1) By a corollary of monotone convergence theorem. (Theorem 4.6)

STEP 2. We find ∫
(0,1]

(− lnx) · xndx.

By monotone convergence theorem, we have

lim
ε→+0

∫
[ε,1]

(− lnx) · xndx.
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Since
∫

[ε,1]
(− lnx) · xndx is Riemann integrable (because the function is continuous on

[ε, 1]), (R)
∫

[ε,1]
(− lnx) · xndx = (L)

∫
[ε,1]

(− lnx) · xndx. So let us we find

lim
ε→+0

(R)

∫
[ε,1]

(− lnx) · xndx.

By integration by substitution (let x = e−t, u = (n+ 1)t), we have

lim
ε→+0

(R)

∫
[ε,1]

(− lnx) · xndx

= lim
ε→+0

(R)

∫
[0,− ln ε]

t · e−(n+1)tdt

= lim
ε→+0

(R)

∫
[0,−(n+1) ln ε]

u

(n+ 1)2
· e−udt

= (R)

∫
[0,∞)

u

(n+ 1)2
· e−udt

∗2
=

1

(n+ 1)2

• (∗2) Let us recall the definition of Gamma function. Γ(α)
def
=
∫

[0,∞)
xα−1e−xdx.

Γ(n) = (n− 1)! if n ∈ N.

STEP 3. Finally, ∫
(0,1)

− lnx

1− x
dx =

∞∑
n=0

1

(n+ 1)2

∗3
=
π2

6
.

• (∗3) This is a well-known fact. We use this fact without proof.

So I = −π2

6
.

92 (Notice)
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93 (Exercise 4) We prove that
∫

[0,∞)
|sinx2|dx =∞.

(L)

∫
[0,∞)

∣∣sinx2
∣∣dx =

∞∑
n=0

(L)

∫ √(n+1)π

√
nπ

∣∣sinx2
∣∣dx

=
∞∑
n=0

(R)

∫ √(n+1)π

√
nπ

∣∣sinx2
∣∣dx

∗1
=

∞∑
n=0

(R)
1

2

∫ (n+1)π

nπ

|sin t|√
t
dt

=
∞∑
n=0

(L)
1

2

∫ (n+1)π

nπ

|sin t|√
t
dt

=
∞∑
n=0

(L)
1

2

∫ (n+ 5
6

)π

(n+ 1
6

)π

|sin t|√
t
dt

=
∞∑
n=0

(L)
1

2

∫ (n+ 5
6

)π

(n+ 1
6

)π

1

2
√
t
dt

=
∞∑
n=0

(L)
1

2

∫ (n+ 5
6

)π

(n+ 1
6

)π

1

2
√

(n+ 5
6
π)
dt

=
∞∑
n=0

1

2
· 4π

6
· 1

2
√

(n+ 5
6
π)

=
∞∑
n=0

π

6
· 1√

(n+ 5
6
π)

=∞

• (∗1) Let us regard the integral as a Riemann integral and do integration by sub-
stitution. We still do not know whether we can do integration by substitution in
Lebesgue integral.

§ 4.5

94 (Lemma 4.28)

(1) (af(x, y) ∈ F )

STEP 1. (a) If y 7→ f(x, y) is non-negative measurable, then y 7→ a · f(x, y) is
also non-negative measurable on Rq.

STEP 2. (b) If F (x)
def
=
∫
Rq f(x, y)dy is non-negative measurable, so is aF (x).

Since a · F (x) =
∫
Rq a · f(x, y)dy, af(x, y) also satiefies (b).
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STEP 3. (c) Since
∫
Rp F (x)dx =

∫
Rd f(x, y)dxdy, we have

a ·
∫
Rp
F (x)dx = a ·

∫
Rd
f(x, y)dxdy.

By linearity of integral we have∫
Rp
a · F (x)dx =

∫
Rd
a · f(x, y)dxdy.

Since a · F (x) = a ·
∫
Rq f(x, y)dy =

∫
Rq a · f(x, y)dy, by substituting this to the formula

above, we have ∫
Rp

(∫
Rq
a · f(x, y)dy

)
dx =

∫
Rd
a · f(x, y)dxdy.

(2) (f1(x, y) + f2(x, y) ∈ F )

STEP 1. (a) Suppose N1, N2 are measure zero sets and if xi /∈ Ni then y 7→
fi(x, y) is non-negative measurable on Rq. (i = 1, 2). x /∈ N1 ∪ N2 (m(N1 ∪ N2) = 0)
then both y 7→ f1(x, y), y 7→ f2(x, y) are non-negative measurable on Rq so we have
y 7→ f1(x, y) + f2(x, y) is non-negative measurable on Rq. So f1(x, y) + f2(x, y) satisfies
(a).

STEP 2. (b) Let F1(x)
def
=
∫
Rq
f1(x, y)dy and let F2(x)

def
=
∫
Rq
f2(x, y)dy. By

assumption, F1(x), F2(x) are non-negative measurable functions on Rp. So F1(x)+F2(x) is
also non-negative measurable functions. Moreover by linearity of integral of non-negative
measurable functions, we have F1(x) + F2(x) =

∫
Rq (f1(x) + f2(x)) dx. So f1(x) + f2(x)

satisfies (b).

STEP 3. (c) By assumption,
∫
Rp F1(x)dx =

∫
Rd f1(x, y)dxdy and

∫
Rp F2(x)dx =∫

Rd f2(x, y)dxdy. Therefore,
∫
Rp F1(x)dx+

∫
Rp F2(x)dx =

∫
Rd f1(x, y)dxdy+

∫
Rd f2(x, y)dxdy.

Since integrals of non-negative measurable functions have linearity so we have∫
Rp

(F1(x) + F2(x)) dx =

∫
Rd

(f1(x, y) + f2(x, y)) dxdy.

So f1(x, y) + f2(x, y) satisfies (c).

(3) (f(x, y)− g(x, y) ∈ F )

STEP 1. This is just a review. If f(x), g(x) are measurable function on E ∈ M
and f(x) − g(x) is well-defined (i.e ∞−∞ does not happen.), then f(x) − g(x) is also
measurable. (See Chapter 3.)

Now suppose that if f(x), g(x) are measurable on E ∈M and f(x)− g(x) is defined
a.e x ∈ E then f − g is measurable on E. (i.e ∞−∞ happens but it happens only at
x in a measure zero set.) There exists N ⊂ E and m(N) = 0 and f(x) − g(x) is well-
defined on E \ N . Let us consider {x ∈ E | f(x) − g(x) > t} = {x ∈ E | f(x) − g(x) >
t} \ N ∪ {x ∈ E | f(x) − g(x) > t} ∩ N . {x ∈ E | f(x) − g(x) > t} \ N = {x ∈ E \ N |
f(x)− g(x) > t} ∈M because we may regard f(x), g(x) as measurable functions defined
on E \ N , and f(x) − g(x) is defined on E \ N so f(x) − g(x) is measurable on E \ N .
And {x ∈ E | f(x)− g(x) > t} ∩N ⊂ N ∈M . So the proof is complete.
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STEP 2. Let F1(x)
def
=
∫
Rq f(x, y)dy and F2(x)

def
=
∫
Rq g(x, y)dy. Since

∫
Rp F2(x)dx <

∞, F2(x) < ∞ a.e x ∈ Rp. And if F2(x) =
∫
Rq g(x, y)dy < ∞ (here x is fixed.),

y 7→ g(x, y) <∞ a.e y ∈ Rq.

Let P (x)
def
= ”y 7→ g(x, y) < ∞ a.e y ∈ Rq”. From the argument above, we conclude

that the proposition P (x) is true a.e x ∈ Rp.
(In the argument above, let us recall the fact that when f is non-negative

∫
E
f <∞⇒

f <∞ a.e x ∈ E.)

STEP 3. (a) By assumption for a.e x ∈ Rp, y 7→ f(x, y) and y 7→ g(x, y) are
non-negative and measurable. We know that y 7→ f(x, y) − g(x, y) is non-negative by
assumption. We still need to prove that y 7→ f(x, y) − g(x, y) is measurable a.e x ∈ Rp.
However it is enough for us to prove that y 7→ f(x, y)− g(x, y) is well-defined a.e x ∈ Rp.

Let us fix x ∈ Rp where P (x) is true. Since y 7→ g(x, y) < ∞ a.e y ∈ Rq, y 7→
f(x, y) − g(x, y) is well-defined a.e y ∈ Rq. (i.e ∞ − ∞ does not happen.) Therefore
y 7→ f(x, y)− g(x, y) is measurable. So y 7→ f(x, y)− g(x, y) is measurable a.e x ∈ Rp.

STEP 4. (b) F1(x) − F2(x) is well-defined a.e x ∈ Rp because F2(x) < ∞ a.e
x ∈ Rp. F1(x), F2(x) are measurable on Rp, so F1(x)− F2(x) is also measurable.

STEP 5. (c) Since g(x, y) ∈ L(Rd),
∫
Rp F2(x)dx =

∫
Rd g(x, y)dxdy < ∞. (finite)

Therefore, we may subtract it from
∫
Rp F1(x)dx =

∫
Rd f(x, y)dxdy. (We just want to avoid

∞−∞.) So
∫
Rp F1(x)dx−

∫
Rp F2(x)dx =

∫
Rd f(x, y)dxdy−

∫
Rd g(x, y)dxdy. By Theorem

4.10, this implies that
∫
Rp (F1(x)− F2(x)) dx =

∫
Rd (f(x, y)− g(x, y)) dxdy.

(4) (f(x, y) ∈ F )

STEP 1. (a) By assumption, there exists {Nk}k=1 with mp(Nk) = 0 for all k ∈ N
s.t ∀k ∈ N,∀x /∈ Nk, y 7→ fk(x, y) is a measurable function on Rq. Let N

def
=
⋃∞
k=1Nk.

Then mp(N) = 0. ∀x /∈ N, y 7→ fk(x, y) is a measurable function on Rq for all k ∈ N.
So if x /∈ N, then y 7→ limk→∞ fk(x, y) is a measurable function. This means that for a.e
x ∈ Rp, y 7→ limk→∞ fk(x, y)(= f(x, y)) is a measurable function. Obviously f(x, y) = 0.
Now the proof is complete.

STEP 2. (b) Let Fk(x)
def
=
∫
Rq fk(x, y)dy and let F (x)

def
=
∫
Rq f(x, y)dy. By assump-

tion, Fk(x) is a non-negative measurable function on Rp for all k ∈ N. Since f(x, y) is a
measurable funtion for a.e x ∈ Rp, F (x) is defined a.e x ∈ Rp. By monotone convergence
theorem, if x /∈ N ,

lim
k→∞

Fk(x) =

∫
Rq

lim
k→∞

fk(x, y)dy

=

∫
Rq
f(x, y)dy = F (x).

So limk→∞ Fk(x) = F (x) a.e x ∈ Rp. Since limk→∞ Fk(x) is measurable on Rp (because the
limit of a sequence of measurable functions is also measurable), F (x) is also measurable
on Rp. Obviously F (x) is non-negative.

STEP 3. (c) By assumption,∫
Rq
Fk(x)dx =

∫
Rd
fk(x, y)dxdy.
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By taking k →∞, we have

lim
k→∞

∫
Rq
Fk(x)dx = lim

k→∞

∫
Rd
fk(x, y)dxdy.

(The sequence is of integrals is monotone increasing, so the limits exist.) By monotone
convergence theorem, ∫

Rq
lim
k→∞

Fk(x)dx =

∫
Rd

lim
k→∞

fk(x, y)dxdy.

Since limk→∞ Fk(x) = F (x) a.e x ∈ Rp and fk(x, y)→ f(x, y), we have∫
Rq
F (x)dx =

∫
Rd
f(x, y)dxdy.

Now the proof is complete.

(5) (f(x, y) ∈ F ) Let us consider gk(x, y) = f1(x, y) − fk(x, y) = 0. Since fk(x) ∈
L(Rd), we have gk(x, y) ∈ F by (3). Moreover gk(x, y)↗ f1(x, y)− f(x, y). So f1(x, y)−
f(x, y) ∈ F by (4). Finally, f(x, y) = f1(x, y) − (f1(x, y) − f(x, y)) = f(x, y) ∈ F by
(3). (f1(x, y)− f(x, y) 5 f1(x, y) ∈ L(Rd))

95 (Theorem 4.27) First we prove that f(x, y)
def
= χE(x, y) ∈ F for all E ∈Md.

However, we can not prove this directly. So we first start with E = I1 × I2 where I1, I2

are half open rectangles on Rp and Rq respectively.

(1) (E = I1 × I2 where I1, I2 are half open rectangles.)

STEP 1. (a)

y 7→ f(x, y)
def
=

{
χI2(y) x ∈ I1

0 x /∈ I1

From this, we can find out that y 7→ f(x, y) is a measurable fuction on Rq for all x ∈ Rp.

STEP 2. (b)

F (x)
def
=

∫
Rq
χI1(x)χI2(y)dy = mq(I2) · χI1(x).

is a measurable function on Rp.

STEP 3. (c)∫
Rp
F (x)dx =

∫
Rp
mq(I2) · χI1(x)dx = mp(I1) ·mq(I2)

and ∫
Rd
f(x, y)dxdy =

∫
Rd
χI1×I2(x, y)dxdy = md(I1 × I2).

We claim that mp(I1) ·mq(I2) = md(I1 × I2). Suppose that I1 =
∏p

i=1(a1,i, b1,i] and I2 =∏q
j=1(a2,j, b2,j]. Then I1×I2 =

∏p
i=1(a1,i, b1,i]×

∏q
j=1(a2,j, b2,j] is also a half open rectangle.

Since m(I) = |I|, both mp(I1)·mq(I2) and md(I1×I2) are
∏p

i=1(b1,i−a1,i)·
∏q

j=1(b2,j−a2,j).
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(2) (E ∈ Od) In Chapter 1, we proved that an open set is decomposed into a
disjoint union of half open rectangles. We may suppose that E =

⋃∞
k=1 Ik where {Ik}k=1

are disjoint half open rectangles on Rd. Let En
def
=
⋃n
k=1 Ik. Let fn(x, y)

def
= χEn(x, y) =∑n

k=1 χIk(x, y). Each χIk(x, y) ∈ F and by Lemma 4.27, fn(x, y) =
∑n

k=1 χIk(x, y) ∈ F .
Since fn(x)↗ χE(x, y). Again by Lemma 4.27, we have χE(x, y) ∈ F .

(3) (E is a bounded closed set) We can find 0 < r < ∞ s.t E ⊂ B(0, r). Let
G1 = B(0, r) and let G2 = G1 \ E. Then G1, G2 ∈ Od. χE(x) = χG1\G2(x, y) =
χG1(x, y) − χG2(x, y). Since χG1(x, y), χG2(x, y) ∈ F and χG2(x, y) ∈ L(Rd), by Lemma
4.27, χE(x, y) ∈ F .

(4) (E is a measure zero set) md(E) = 0. In Chapter 2, we proved that we can find
a sequence open sets {Gn} ⊂ Od s.t E ⊂ Gn and md(Gn) ↘ 0 as n → ∞. Without loss
of generality, we may suppose that Gn+1 ⊂ Gn because G1 ∩G2 ⊂ G1 and G1 ∩G2 is also
an open set. Let H =

⋂∞
k=1Gk and Gn ↘ H. χG1(x) ∈ L(Rd), χGk(x, y) ↘ χH(x, y) so

by Lemma 4.27, χH(x, y) ∈ F .

Let FH(x)
def
=
∫
Rq χH(x, y)dy.

∫
Rp FH(x)dx =

∫
Rd χH(x, y)dxdy = md(H) = 0. (H is

also a measure zero set.) From this fact, we find out that FH(x) = 0 a.e ∈ Rp. So for
a.e x ∈ Rp, FH(x) =

∫
Rp χH(x, y) = 0. Furthermore, this implies that for a.e x ∈ Rp,

”χH(x, y) = 0 a.e y ∈ Rq” holds.

STEP 1. (a) Let us recall that 0 5 χE(x, y) 5 χH(x, y). Therefore, for a.e x ∈ Rp,
”χE(x, y) = 0 a.e y ∈ Rq” also holds. So for a.e x ∈ Rp, y 7→ χE(x, y) is a measurable
function on Rq.

STEP 2. (b) We can define FE(x)
def
=
∫
Rq χE(x, y)dy a.e x ∈ Rp. Though FE(x) is

a function defined a.e x ∈ Rp (not defined every x ∈ Rp), FE(x) 5 FH(x) a.e x ∈ Rp, and
FH(x) = 0 a.e x ∈ Rp implies that FE(x) = 0 a.e x ∈ Rp. So we find out that FE(x) is
also a measurable function on Rp.

STEP 3. (c) Finally,
∫
Rp FE(x)dx = 0 (because FE(x) = 0 a.e x ∈ Rp) and∫

Rd χE(x, y)dxdy = md(E) = 0. Now we conclude that χE(x, y) ∈ F .

(5) (E ∈ M ) In Chapter 2, we proved that we can decompose a measurable set
E =

⋃∞
k=1 Fk∪Z where {Fk}k=1 are bounded closed sets and Z is a measure zero set. (We

may suppose
⋃∞
k=1 Fk and Z are disjoint.) Let K

def
=
⋃∞
k=1 Fk and let Kn

def
=
⋃n
k=1 Fk. Kn

is also a bounded closed set so χKn(x, y) ∈ F , and χKn(x, y)↗ χK(x, y) so χK(x, y) ∈ F
by Lemma 4.27. χE(x, y) = χK(x, y) + χZ(x, y). Since both χK(x, y), χZ(x, y) ∈ F . so
χE(x, y) ∈ F by Lemma 4.27.

Finally, we prove that f(x, y) ∈ F if f(x, y) is a non-negative measurable function on
Rd. There exists a sequence of non-negative measurable functions fn(x, y)↗ f(x, y) and
fn(x, y) ∈ F so f(x, y) ∈ F . (fn(x, y) =

∑pn
i=1 an,i · χEn,i(x, y) ∈ F .)

96 (Theorem 4.28) By Theorem 4.27, f+(x, y), f−(x, y) ∈ F . Let F+(x)
def
=∫

Rq f
+(x, y)dy and let F−(x)

def
=
∫
Rq f

−(x, y)dy.
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STEP 1. (a∗) By assumption, we have
∫
Rp F+(x)dx =

∫
Rd f

+(x, y)dy < ∞ and∫
Rp F−(x)dx =

∫
Rd f

−(x, y)dy < ∞. From this fact, we have F+(x), F−(x) < ∞ a.e
x ∈ Rp. Furthermore, we have ”y 7→ f+(x, y) < ∞ a.e y ∈ Rq” a.e x ∈ Rp and ”y 7→
f−(x, y) < ∞ a.e y ∈ Rq” a.e x ∈ Rp. Now let us fix x ∈ Rp where y 7→ f+(x, y) < ∞
a.e y ∈ Rq and y 7→ f−(x, y) < ∞ a.e y ∈ Rq. Since y 7→ f+(x, y) − f−(x, y) is defined
a.e y ∈ Rq (i.e ∞−∞ does not occur a.e y ∈ Rq), y 7→ f+(x, y)− f−(x, y) is measurable
on Rq because sum and difference of two measurables functions are measurable as long
as they are defined a.e. So for almost every x ∈ Rp, ”y 7→ f(x, y) is measurable on Rq”
holds.

STEP 2. (b∗) Let F (x)
def
=
∫
Rq f(x, y)dy. By definition of integral, F (x) =∫

Rq f
+(x, y)dy −

∫
Rq f

−(x, y)dy = F+(x) − F−(x). Since F+(x), F−(x) < ∞ a.e x ∈ Rp,
and they are measurable on Rp, F (x) is also defined a.e x ∈ Rp (i.e∞−∞ does not occur
a.e x ∈ Rp), hence measurable on Rp. (As long as ∞−∞ does not occur a.e, f − g is
also measurable if f, g are measurable.)

STEP 3. (c∗) Since
∫
Rp F+(x)dx =

∫
Rd f

+(x, y)dxdy < ∞ and
∫
Rp F−(x)dx =∫

Rd f
−(x, y)dxdy < ∞, we have

∫
Rp(F+(x) − F−(x))dx =

∫
Rd(f

+(x, y) − f−(x, y))dxdy.
So
∫
Rp F (x)dx =

∫
Rd f(x, y)dxdy. (Let us recall that if integrals of f, g exist and at least

f ∈ L(Rd) or g ∈ L(Rd) holds, then
∫

(f + g) =
∫
f +

∫
g).

97 (Example 1)

STEP 1. Let g(x, y)
def
= sin ax · f(y) · e−xy. It is easy to verify that g(x, y) is a

measurable function defined on [0,∞) × [0,∞). Let us recall that we may regard f(y)
is a measurable function defined on [0,∞) × [0,∞) because { (x, y) ∈ [0,∞) × [0,∞) |
f(y) > t} = [0,∞)× {y ∈ [0,∞) | f(y) > t}, and if E1, E2 ∈M1 then E1 × E2 ∈M2.

We may regard g(x, y) as a measurable function defined on [α, β]× [0,∞). (0 < α <
β <∞) Let us consider the following integral. Since |g(x, y)| 5 |f(y)| ∈ L([α, β]×[0,∞)),
we apply Fubini’s theorem g(x, y) as a measurable function defined on [α, β]× [0,∞).∫ β

α

(∫ ∞
0

sin ax · f(y) · e−xydy
)
dx

=

∫ ∞
0

(∫ β

α

sin ax · f(y) · e−xydx
)
dy

STEP 2. Let us define

Gα,β(y)
def
=

∫ β

α

sin ax · f(y) · e−xydx.

We prove that Gα,β(y) is bounded by an integrable function. (We would like to use
Lebesgue Dominated Convergence Theorem later.) Since

(R,L)

∫ β

α

sin axe−xydx

=
1

y2 + a2

(
y sin aαe−αy + a cos aαe−αy − y sin aβe−βy − a cos aβe−βy

)
,
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and by triangular inequality,∣∣∣∣∫ β

α

sin axe−xydx

∣∣∣∣ 5 2y + 2a

y2 + a2

∗1
5 2,

we have
|Gα,β(y)| 5 2 |f(y)| ∈ L([0,∞)).

• (∗1) 2y+2a
y2+a2 = 2+2t

1+t2
where t = a

y
> 0.

STEP 3. Finally, by Lebesgue Dominated Convergence Theorem, we have

lim
α→+0,β→∞

∫ β

α

(∫ ∞
0

sin ax · f(y) · e−xydy
)
dx

∗2
= lim

α→+0,β→∞

∫ ∞
0

(∫ β

α

sin ax · f(y) · e−xydx
)
dy

∗3
=

∫ ∞
0

(
lim

α→+0,β→∞

∫ β

α

sin ax · f(y) · e−xydx
)
dy

∗4
=

∫ ∞
0

(
af(y)

y2 + a2

)
dy

• (∗2) Step1

• (∗3) Lebesgue Dominated Convergence theorem

• (∗4) limα→+0,β→∞ f(y)· 1
y2+a2

(
y sin aαe−αy + a cos aαe−αy − y sin aβe−βy − a cos aβe−βy

)

98 (Example 2) Let us consider the following integral and apply Tonelli’s Theo-
rem. ∫

x,y∈[0,∞)×[0,∞)

2y exp
(
−(1 + x2)y2

)
dxdy

=

∫
x∈[0,∞)

(∫
y∈[0,∞)

2y exp
(
−(1 + x2)y2

)
dy

)
dx · · · (i)

=

∫
y∈[0,∞)

(∫
x∈[0,∞)

2y exp
(
−(1 + x2)y2

)
dx

)
dy · · · (ii)

STEP 1. First we find (i).
∫
y∈[0,∞)

2y exp(−(1 + x2)y2)dy = 1
1+x2 because by

monotone convergence theorem,

lim
c→∞

(L)

∫
y∈[0,c]

2y exp(−(1 + x2)y2)dy.

Moreover 2y exp(−(1 + x2)y2) is Riemann integrable on [0, c] so we find

lim
c→∞

(R)

∫
y∈[0,c]

2y exp(−(1 + x2)y2)dy.

And this is 1
1+x2 . Finally, we find

∫
x∈[0,∞)

1
1+x2dx. Similarly, we can find the integral as

Riemann improper integral and we have
∫
x∈[0,∞)

1
1+x2 = π

2
.
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STEP 2. Second we find (ii).∫
y∈[0,∞)

(∫
x∈[0,∞)

2y exp
(
−(1 + x2)y2

)
dx

)
dy

=

∫
y∈[0,∞)

2y exp(−y2)

(∫
x∈[0,∞)

exp
(
−x2y2

)
dx

)
dy

We consider ∫
x∈[0,∞)

exp
(
−x2y2

)
dx.

Since m({0}) = 0 and by monotone convergence theorem,

= lim
c→∞

∫
x∈(0,c)

exp
(
−x2y2

)
dx.

We apply §4.2 Example 10 (let z
def
= yx),

= lim
c→∞

1

y

∫
z∈(0,yc)

exp
(
−z2

)
dz.

Again by monotone convergence theorem, we have

=
1

y

∫
z∈(0,∞)

exp
(
−z2

)
dz

=
1

y

∫
z∈[0,∞)

exp
(
−z2

)
dz

Therefore

(ii) = 2 ·
(∫

[0,∞)

exp(−y2)dy

)2

.

Finally, 2 ·
(∫

[0,∞)
exp(−y2)dy

)2

= π
2

and we have
∫

[0,∞)
exp(−y2)dy =

√
π

2
.

99 (Exercise 1) Since f(x, y) is integrable on [0, 1] × [0, 1], we apply Fubini’s
Theorem. ∫ 1

0

(∫ x

0

f(x, y)dy

)
dx =

∫ 1

0

(∫ 1

0

f(x, y) · χ[0,x](y)dy

)
dx

∗1
=

∫ 1

0

(∫ 1

0

f(x, y) · χ[0,x](y)dx

)
dy

∗2
=

∫ 1

0

(∫ 1

0

f(x, y) · χ[y,1](x)dx

)
dy

=

∫ 1

0

(∫ 1

y

f(x, y)dx

)
dy
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• (∗1) Fubini’s Theorem

• (∗2) When 0 5 x, y 5 1, 0 5 y 5 x if and only if y 5 x 5 1

100 (Exercise 2) We apply Tonell’s Theorem.∫
Rd
m(A−x ∩B)dx =

∫
Rd

(∫
Rd
χA−x∩B(y)dy

)
dx

∗1
=

∫
Rd

(∫
Rd
χA−x(y) · χB(y)dy

)
dx

∗2
=

∫
Rd

(∫
Rd
χA(x+ y) · χB(y)dy

)
dx

∗3
=

∫
Rd

(∫
Rd
χA(x+ y) · χB(y)dx

)
dy

∗4
=

∫
Rd
χB(y) ·

(∫
Rd
χA(x+ y)dx

)
dy

∗5
=

∫
Rd
χB(y) ·

(∫
Rd
χA(x)dx

)
dy

=

∫
Rd
χB(y) ·m(A)dy

= m(A) ·
∫
Rd
χB(y)dy

= m(A) ·m(B)

• (∗1) χA1(x)χA2(x) = χA1∩A2(x)

• (∗2) y ∈ A−x if and only if x+ y ∈ A

• (∗3) Tonelli’s Theorem

• (∗4) χB(y) is not related to x so we may put it outside of
∫
Rd · · · dx by linearity of

integral.

• (∗5) Theorem 4.13

101 (Theorem 4.30) Let E ∈Md where d = p + q. Let us consider a measurable
function χE(x, y), x ∈ Rp, y ∈ Rq. We apply Tonell’s Theorem to χE(x, y). For a.e x ∈ Rp,
y 7→ χE(x, y) is a measurable function on Rq. When x ∈ Rp is fixed, χE(x, y) = χE|x(y).
So for a.e x ∈ Rp, y 7→ χE|x(y) is a measurable function on Rq.

Furthermore, ∫
Rd
χE(x, y)dxdy =

∫
Rp

∫
Rq
χE(x, y)dydx.
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The right hand side is ∫
Rp

∫
Rq
χE|x(y)dydx

=

∫
Rp
m(E|x)dx.

Now we have the desired conclusion.

102 (Theorem 4.31)

(1) We show that E1 ∈Mp, E2 ∈Mq then E1 × E2
def
= {(x, y) | x ∈ E1, y ∈ E2} ∈

Mp+q. Let us recall that E1 = K1∪Z1, E2 = K2∪Z2 where K1, K2 are Fσ sets and Z1, Z2

are measure zero sets. So E1 × E2 = K1 ×K2 ∪K1 × Z2 ∪ Z1 ×K2 ∪ Z1 × Z2.

STEP 1. First we show that K1×K2 is measurable on Rp+q. K1×K2 =
⋃
i∈N F1,i×⋃

j∈N F2,j where F1,i, F2,j are closed sets on Rp and Rq respectively. So we prove that⋃
i,j∈N F1,i × F2,j is measurable. It is enough for us to prove that F1 × F2 (F1, F2 are

closed sets.) is also a closed set. Let {(xn, yn)} ⊂ F1 × F2 and (xn, yn) → (x, y). Since
xn → x ∈ F1 and yn → y ∈ F2, (x, y) ∈ F1 × F2. So F1 × F2 is also a closed set on Rp+q.

STEP 2. We prove that A×Z is a measure zero set if m∗p(A) <∞ and mq(Z) = 0

(A ⊂ Rp, B ⊂ Rq). Let a
def
= m∗p(A) < ∞. We can find open intervals {I1,n} on Rp s.t

A ⊂
⋃
n∈N I1,n and a 5

∑∞
n=1 |I1,n| < a + 1. Let ε > 0 be an arbitrary positive number.

We can also find open intervals {I2,m} on Rq s.t Z ⊂
⋃
m∈N I2,m and

∑∞
m=1 |I2,m| <

ε. Then A × Z ⊂
⋃
n∈N I1,n ×

⋃
m∈N I2,m =

⋃
n,m∈N I1,n × I2,m. So m∗p+q(A × Z) 5∑∞

n=1

∑∞
m=1 |I1,n| |I2,m| =

∑∞
n=1 |I1,n|

∑∞
m=1 |I2,m| < (1 + a) · ε.

STEP 3. In Step2, we assumed that m∗p(A) <∞, however A×Z is still a measure

zero set when m∗p(A) = ∞. Let An
def
= A ∩ B(0, n) where B(0, n) is an open ball with

radius n whose center is at origin. Then A =
⋃
n∈NAn. So A× Z =

⋃
n∈NAn × Z. Each

An × Z is a measure zero set so A × Z is also a measure zero set. (An is bounded so it
has a finite measure.)

From the arguments above, we find out that E1 × E2 is measurable on Rp+q.

(2) We apply Tonell’s Theorem to χE1×E2(x, y) = χE1(x) · χE2(y). (This equality
holds obviously.) Let us consider

∫
Rp+q χE1×E2(x, y)dxdy and

∫
Rp
(∫

Rq χE1(x) · χE2(y)dy
)
dx.

The left hand side is mp+q(E1 × E2), and the right hand side is mp(E1) ×mq(E2). Now
we have the desired conclusion.

103 (Corollary 4.32) Let Ek
def
= {x ∈ E | (k − 1) · δ 5 f(x) < k · δ}. Without loss

of generality, we may suppose that md(E) <∞.

STEP 1. Let δ > 0 be an arbitrary positive number.

G(E; f) =
∞⋃
k=1

G(Ek; f).
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Since f(x) is real-valued, E =
⋃∞
k=1Ek. Therefore {(x, y) ∈ Rd+1 | x ∈ E, y = f(x)} =⋃∞

k=1{(x, y) ∈ Rd+1 | x ∈ Ek, y = f(x)}. (The left hand side is G(E; f) and the right
hand side is

⋃∞
k=1 G(Ek; f))

STEP 2. By sub-additivity of an outer measure (m∗d+1(·)),

m∗d+1(G(E; f)) 5
∞∑
k=1

m∗d+1(G(Ek; f)).

Moreover, G(Ek; f) ⊂ Ek × {y ∈ R | (k − 1) · δ 5 y < k · δ}, so

m∗d+1(G(Ek; f)) 5 md+1(Ek × [(k − 1) · δ, k · δ)) = md(Ek) · δ.

(In the inequality above, since Ek ∈Md and [(k−1) ·δ, k ·δ) ∈M , Ek× [(k−1) ·δ, k ·δ) ∈
Md+1). Therefore we have

m∗d+1(G(E; f)) 5
∞∑
k=1

m∗d+1(G(Ek; f)) 5
∞∑
k=1

δ ·md(Ek) = δ ·md(E).

Since md(E) <∞, by taking δ ↘ 0, we have the desired conclusion.

STEP 3. If m(E) = ∞, we consider Er
def
= E ∩ B(0, r), r = 1, 2, 3 · · · . Then

E =
⋃∞
r=1Er hence G(E, f) =

⋃∞
r=1G(Er, f). md+1(G(Er; f)) = 0 for each r = 1, 2, 3 · · · .

So md+1(
⋃∞
r=1G(Er; f)) = 0.

104 (Theorem 4.33 -1)

STEP 1. (f(x) is a non-negative measurable simple function.) Suppose that

f(x)
def
=
∑p

i=1 aiχAi(x), Ai ∈ M , Ai ⊂ E. Suppose that A1, · · ·Ap are disjoint and
E =

⋃p
i=1 Ai. Then G(E; f) = {(x, y) ∈ Rd+1 | x ∈ E, 0 5 y 5

∑p
i=1 aiχAi(x)}.

When x ∈ Ai, 0 5 y 5 ai. Therefore G(E; f) =
⋃p
i=1{(x, y) ∈ Rd+1 | x ∈ Ai, 0 5

y 5 f(x)} =
⋃p
i=1Ai × [0, ai] (this is a disjoint union). So we have md+1(G(E; f)) =

md+1 (
⋃p
i=1Ai × [0, ai]) =

∑p
i=1 aimd(Ai) =

∫
E
f(x)dx.

STEP 2. (f(x) is a non-negative measurable function.) We find a sequence of non-
negative measurable simple functions fn(x)↗ f(x). By monotone convergence theorem,
we have

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.

The left hand side is

lim
n→∞

∫
E

fn(x)dx = lim
n→∞

md+1(G(E; fn)).

Since fn 5 fn+1, G(E; fn) ⊂ G(E; fn+1). Therefore the right hand side is

lim
n→∞

md+1(G(E; fn)) = md+1

(
∞⋃
n=1

G(E; fn)

)
.
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Let us consider
⋃∞
n=1G(E; fn).

{(x, y) ∈ Rd+1 | x ∈ E, 0 5 y < f(x)}
∗1
⊂

∞⋃
n=1

G(E; fn) =
∞⋃
n=1

{(x, y) ∈ Rd+1 | x ∈ E, 0 5 y 5 fn(x)}

∗2
⊂ {(x, y) ∈ Rd+1 | x ∈ E, 0 5 y 5 f(x)} = G(E; f).

• (∗1) Equality does not necessarily hold. However
⋃∞
n=1{(x, y) ∈ Rd+1 | x ∈ E, 0 5

y < fn(x)} = {(x, y) ∈ Rd+1 | x ∈ E, 0 5 y < f(x)}.

• (∗2) Equality does not necessarily hold. If for all x ∈ E, there exists N ∈ N,
fn(x) = f(x),∀n = N then the equality hold.

Therefore, we have

∞⋃
n=1

G(E; fn) ∪G(E; f) = G(E; f).

Since md+1(G(E; f)) = 0, we have

md+1

(
∞⋃
n=1

G(E; fn)

)
= md+1 (G(E; f)) .

The left hand side is
∫
E
f(x)dx. Now the proof is complete.

105 (Theorem 4.33 -2) Let us consider G(E; f)|y=a. G(E; f)|y=a = {x ∈ E |
f(x) = a}. (If you do not know why, you may draw a graph.) By Tonelli’s Theorem, x 7→
χG(E;f) is a measurable function for a.e y ∈ R. Therefore, G(E; f)|y = {x ∈ E | f(x) = y}
is Lebesgue measurable for a.e y ∈ R. (∗) Let t ∈ R be an arbitrary real number. We can
find a sequence of {yk}k=1 s.t yk ↘ t and {x ∈ E | f(x) = yk} is measurable for all k ∈ N.
(Otherwise, there exists an interval (c, d) ⊂ R s.t ∀y ∈ (c, d), {x ∈ E | f(x) = y} /∈Md.
This contradicts to (∗).) So {x ∈ E | f(x) > t} =

⋃∞
k=1{x ∈ E | f(x) = yk} ∈Md.

106 (Definition of Convolution) If f(x), g(x) are measurable functions on Rd and
f(x − y)g(y) is integrable with respect to y then we define the convolution of f(x) and
g(x) as

(f ∗ g)(x)
def
=

∫
Rd
f(x− y)g(y)dy.

107 (Theorem 4.34)

STEP 1. Let us recall Corollary 3.24. (x, y) 7→ f(x− y) is a Lebesgue measurable
function on R2d. (x, y) 7→ g(y) is also a Lebesgue measurable function on R2d. Therefore
f(x− y)g(y) is a Lebesgue measurable function on R2d.
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STEP 2. By Tonelli’s Theorem∫
R2d

|f(x− y)g(y)| dxdy =

∫
Rd

(∫
Rd
|f(x− y)g(y)| dx

)
dy

=

∫
Rd
|g(y)|

(∫
Rd
|f(x− y)| dx

)
dy

∗
=

∫
Rd
|g(y)|

(∫
Rd
|f(x)| dx

)
dy

=

∫
Rd
|g(y)| dy ·

∫
Rd
|f(x)| dx <∞

.

• (∗) Theorem 4.13.

Therefore f(x− y)g(y) ∈ L(R2d). By Fubini’s Theorem,

(f ∗ g)(x)
def
=

∫
Rd
f(x− y)g(y)dy

is a measurable function on Rd.

108 (Example 5) Suppose there exists u(x) ∈ L(R) s.t ∀f(x) ∈ L(R),

f(x) = (u ∗ f)(x) a.e x ∈ R.

STEP 1. Let us apply Lebesgue Dominated Convergence Theorem to u(x)·χ[−2δ,2δ](x).
Since |u(x)| · χ[−2δ,2δ](x) 5 |u(x)| ∈ L(R1), by taking δ ↘ 0, we have

lim
δ→+0

∫
R
|u(x)| · χ[−2δ,2δ](x)dx = 0.

This implies that there exists sufficiently small δ > 0 s.t∫
R
|u(x)| · χ[−2δ,2δ](x)dx < 1.

So
∫

[−2δ,2δ]
|u(x)| dx < 1.
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STEP 2. Let f(x)
def
= χ[−δ,δ]. By assumption,

f(x)
a.e x∈R

= (u ∗ f)(x)dx =

∫
R
u(x− y)f(y)dy

=

∫
R
u(x− y)χ[−δ,δ](y)dy

∗1
=

∫
R
u(−y)χ[−δ,δ](y + x)dy

=

∫
R
u(−y)χ[−δ−x,δ−x](y)dy

=

∫
[−δ−x,δ−x]

u(−y)dy

∗2
=

∫
[x−δ,x+δ]

u(y)dy

• (∗1) Theorem 4.13. Translation does not change the value of integral. y → y + x

• (∗2) See §4.2. Example 10. a = −1.

So there exists x0 ∈ [−δ, δ] s.t

f(x0) = 1 =

∫
[x0−δ,x0+δ]

u(y)dy

STEP 3. Finally, consider

1 =

∣∣∣∣∫
[x0−δ,x0+δ]

u(y)dy

∣∣∣∣ 5
∫

[x0−δ,x0+δ]

|u(y)| dy

∗3
5

∫
[−2δ,2δ]

|u(y)| dy < 1.

• (∗3) Since x0 ∈ [−δ, δ], −2δ 5 x0 − δ 5 x0 + δ 5 2δ

So there is a contradiction.

109 (Definition 4.4) Let f(x) be a measurable function defined on E ∈ M . We
define the distribution function f∗(λ) as

f∗(λ)
def
= m ({x ∈ E | |f(x)| > λ})
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110 (Theorem 4.35) We use Tonell’s Theorem.∫
E

|f(x)|p dx ∗1
=

∫
E

(
(R)

∫
[0,f(x)]

pλp−1dλ

)
dx

∗2
=

∫
E

(
(L)

∫
[0,f(x)]

pλp−1dλ

)
dx

∗3
=

∫
E

(∫
[0,f(x))

pλp−1dλ

)
dx

=

∫
E

(∫
[0,∞)

pλp−1χ[0,f(x))(λ)dλ

)
dx

=

∫
E

(∫
[0,∞)

pλp−1χ{x∈E|f(x)>λ}(x)dλ

)
dx

∗4
=

∫
[0,∞)

(∫
E

pλp−1χ{x∈E|f(x)>λ}(x)dx

)
dλ

=

∫
[0,∞)

pλp−1 ·
(∫

E

χ{x∈E|f(x)>λ}(x)dx

)
dλ

=

∫
[0,∞)

pλp−1 ·m({x ∈ E | f(x) > λ})dλ

=

∫
[0,∞)

pλp−1 · f∗(λ)dλ

• (∗1) (R)
∫

[0,a]
ptp−1dt = ap.

• (∗2) Riemann integrable implies Lebesgue integrable. (The integrals are all Lebesgue
integrals from the second line.)

• (∗3) a single point is a measure zero set. So the integral does not change even if we
get rid of it from the range of integral.

• (∗4) Tonell’s Theorem. (When the function is non-negative, we may always swap
the order of iterated integrals.)

§ 4.6

111 (Exercise 1)

0 =

∫
E

f(x)dx =
∫
{x∈E|f(x)>1/n}

f(x)dx

=
∫
{x∈E|f(x)>1/n}

1

n
dx

=
1

n
m({x ∈ E | f(x) > 1/n})
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So m({x ∈ E | f(x) > 1/n}) = 0 for all n ∈ N. Therefore

m

(
∞⋃
n=1

{x ∈ E | f(x) > 1/n}

)
= m({x ∈ E | f(x) > 0}) = m(E) = 0

112 (Exercise 2) Let ε > 0 be a positive number. Since f ′(0) exists, ∃δ > 0 s.t∣∣∣f(x)
x
− f ′(0)

∣∣∣ < ε for all x ∈ (0, δ). And we have
∣∣∣f(x)
x

∣∣∣ 5 ∣∣∣f(x)
x
− f ′(0)

∣∣∣+ |f ′(0)| = M <∞

for all x ∈ (0, δ). Since f(x) is non-negative, f(x)
x

5M .∫
(0,∞)

f(x)

x
dx =

∫
(0,δ)

f(x)

x
dx+

∫
[δ,∞)

f(x)

x
dx

5
∫

(0,δ)

Mdx+

∫
[δ,∞)

f(x)

x
dx

5
∫

(0,δ)

Mdx+

∫
[δ,∞)

f(x)

δ
dx

= M · δ +
1

δ

∫
[δ,∞)

f(x)dx

5 M · δ +
1

δ

∫
(0,∞)

f(x)dx <∞

113 (Exercise 3) First we show some fundamental facts.

STEP 1. Let {an}, {bn} be sequences of real-numbers. We show that lim infn→∞(an+
bn) 5 lim infn→∞ an+lim supn→∞ bn. (We suppose that both limits on the right hand side
are finite.)

lim inf
n→∞

(an + bn) = lim
n→∞

inf
m=n

(am + bm)

∗1
5 lim

n→∞
inf
m=n

(am + sup
m′=n

bm′)

∗2
5 lim

n→∞
( inf
m=n

am + sup
m′=n

bm′)

∗3
= lim

n→∞
inf
m=n

am + lim
n→∞

sup
m′=n

bm′

• (∗1) when m = n, bm 5 supm′=n bm′

• (∗2) supm′=n bm′ is not related to m and finite for sufficiently large n, so we can
separate.

• (∗3) limn→∞(cn + dn) = limn→∞ cn + limn→∞ dn when both cn, dn converge.

290



4.6.

STEP 2. Let Ek ∈M for all k = 1. We show that

A
def
= lim sup

k→∞
χEk(x) = B

def
= χlim supk→∞ Ek(x).

We show A 5 B and A = B. A,B only take 0 or 1. It is enough for us to show that
A = 1⇒ B = 1 and B = 1⇒ A = 1.

Let us consider that x is fixed. First if A = 1, there are infinitely many k ∈ N
s.t χEk(x) = 1. In other words, there are infinitely many k ∈ N s.t x ∈ Ek. So x ∈
lim supk→∞Ek. Hence B = 1.

Next, if B = 1, then x ∈ lim supk→∞Ek. This means that x is contained infinitely
many k ∈ N. So χEk(x) = 1 occurs infinitely many times. Hence lim supk→∞ χEk(x) = 1.
But χEk(x) 5 1. Therefore A = lim supk→∞ χEk(x) = 1.

STEP 3. Let Ak
def
= E \ E2k and Bk

def
= E2k . Then m(Ak) <

1
2k

. This implies that
m(lim supk→∞Ak) = 0 by Borel-Cantelli’s lemma. (See §2.2. Example 2)∫

E

f(x)dx =

∫
E

(f(x) · χAk(x) + f(x) · χBk(x))dx

∗1
=

∫
E

lim inf
k→∞

(f(x) · χAk(x) + f(x) · χBk(x))dx

∗2
5

∫
E

(lim sup
k→∞

f(x) · χAk(x) + lim inf
k→∞

f(x) · χBk(x))dx

∗3
5

∫
E

(f(x) · χlim supk→∞ Ak(x) + lim inf
k→∞

f(x) · χBk(x))dx

∗4
=

∫
E

lim inf
k→∞

f(x) · χBk(x)dx

∗5
5 lim inf

k→∞

∫
E

f(x) · χBk(x)dx

∗6
= lim inf

k→∞

∫
Bk

f(x)dx

∗7
= lim inf

k→∞

∫
E

2k

f(x)dx

∗8
= lim

k→∞

∫
E

2k

f(x)dx <∞

• (∗1) f(x) · χAk(x) + f(x) · χBk(x) is not related to k. It does not change even if we
take lim infk→∞.

• (∗2) We apply the fact stated in Step 1.

• (∗3) We apply the fact stated in Step 2.

• (∗4) m(lim supk→∞Ak) = 0. So the first term in
∫
E

(· · · ) equals to 0 a.e x ∈ E.

• (∗5) Fatou’s lemma.
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• (∗6) This is a basic property about Lebesgue integral of non-negative measurable
functions.

• (∗7) Let us recall that Bk
def
= E2k .

• (∗8) By assumption, the limit exists. So we may change lim inf to lim. And it
converges. So it is finite.

114 (Exercise 4) We use Tonell’s Theorem.

∞ >

∫
R
F (x)dx =

∫
R

∫
(−∞,x]

f(t)dtdx

=

∫
R

∫
R
f(t) · χ(−∞,x](t)dtdx

=

∫
R

∫
R
f(t) · χ[t,∞)(x)dtdx

=

∫
R

∫
R
f(t) · χ[t,∞)(x)dxdt

=

∫
R
f(t)

∫
R
χ[t,∞)(x)dxdt

=

∫
R
f(t) ·m([t,∞))dt

=

∫
R
∞ · f(t)dt

= ∞ ·
∫
R
f(t)dt

So we conclude that
∫
R f(t)dt = 0. (In Lebesgue Integral, 0 · ∞ = 0)

115 (Exercise 5) Let Ek
def
= {x ∈ Rd | fk(x) > fk+1(x)}. Since {fk(x)}k=1 are

integrable,
∫
Ek
fk+1(x)dx−

∫
Ek
fk(x)dx =

∫
Ek

(fk+1(x)− fk(x))dx = 0. fk+1(x)− fk(x) <

0 on x ∈ Ek, so m(Ek) = 0, otherwise
∫
Ek

(fk+1(x) − fk(x))dx < 0. And we have

m(
⋃∞
k=1Ek) = 0. This implies that f1(x) 5 f2(x) 5 · · · 5 fk(x) 5 · · · a.e x ∈ Rd.

Finally, we have the desired conclusion by monotone convergence theorem.

116 (Exercise 6)

STEP 1. Since (
√
f(x) −

√
g(x))2 = f(x) − 2

√
f(x)g(x) + g(x) = 0, we have

f(x) + g(x) = 2
√
f(x)g(x) = 0. So

√
f(x)g(x) is also integrable on E.

STEP 2. Let us consider an equation with respect to t,
∫
E

(t·
√
f(x)−

√
g(x))2dx =

0. (This equation has at most one root.)
∫
E

(t ·
√
f(x) −

√
g(x))2dx =

∫
E

(t2f(x) −
2t
√
f(x)g(x) + g(x))dx. Since f(x), g(x),

√
f(x)g(x) are all integrable on E, we have

= t2 ·
∫
E
f(x)dx − t · 2

∫
E

√
f(x)g(x)dx +

∫
E
g(x)dx. The discriminant of the quadratic
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equation is equal or less than 0 since the equation has at most one root. So we have

4 ·
(∫

E

√
f(x)g(x)dx

)2

− 4
∫
E
f(x)dx ·

∫
E
g(x)dx 5 0. Thereore,

(∫
E

√
f(x)g(x)dx

)2

5
∫
E

f(x)dx ·
∫
E

g(x)dx

STEP 3. If f(x)g(x) = 1,
√
f(x)g(x) = 1. So we have

1 = (m(E))2 5

(∫
E

√
f(x)g(x)dx

)2

5
∫
E

f(x)dx ·
∫
E

g(x)dx.

117 (Exercise 7) Since g(x) ∈ L(Rd), we have
∫
E

((f(x)− g(x)) + g(x)) dx =∫
E

(f(x)−g(x))dx+
∫
E
g(x)dx. (Let us recall that

∫
E

(f1+f2) =
∫
E
f1+

∫
E
f2 if at least one

of f1, f2 is integrable on E.) 0 5 f(x)−g(x) 5 h(x)−g(x) and 0 5
∫
E

(h(x)−g(x))dx < ε,
so f(x)− g(x) is integrable. Therefore f(x) = (f(x)− g(x)) + g(x) is integrable.

118 (Exercise 8) We can take a subsequence of Ek s.t
∫
Rd

∣∣∣χEk(m)
(x)− f(x)

∣∣∣ dx <
1
m2 . So

∑∞
m=1

∫
Rd

∣∣∣χEk(m)
(x)− f(x)

∣∣∣ dx <∞. Since
∣∣∣χEk(m)

(x)− f(x)
∣∣∣ is non-negative, we

may swap
∑∞

m=1 and
∫
E

. And we have∫
Rd

∞∑
m=1

∣∣∣χEk(m)
(x)− f(x)

∣∣∣ dx <∞.
This implies that

∑∞
m=1

∣∣∣χEk(m)
(x)− f(x)

∣∣∣ <∞ a.e x ∈ E. (When f(x) is integrable on E,

|f(x)| <∞ a.e x ∈ E.) Since the infinite series converges, limm→∞

∣∣∣χEk(m)
(x)− f(x)

∣∣∣ = 0

a.e x ∈ E. So lim supm→∞ χEk(m)
(x) = f(x) a.e x ∈ E. (Since the limit exists a.e

x ∈ E, so lim inf(· · · ) = lim sup(· · · ) a.e x ∈ E. Therefore we may change it to
lim sup(· · · ) or lim inf(· · · ). Here we change it to lim sup(· · · ).) We have already dis-
cussed lim supk→∞ χEk(x) = χlim supk→∞ Ek(x). So

E = lim sup
m→∞

Ek(m) ∈M

is the desired measurable set.

119 (Exercise 9) Let E1
def
= [0, t] ∩ E, E2

def
= [0, t] \ E and E3

def
= (t, 1] ∩ E. Then

[0, t] = E1 ∪ E2 and E = E1 ∪ E3. Since m(E) = t, we have m(E2) = m(E3). (f(x) is
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bounded. So the following integrals are all finite.)∫
[0,t]

f(x)dx =

∫
E1∪E2

f(x)dx =

∫
E1

f(x)dx+

∫
E2

f(x)dx

∗1
5

∫
E1

f(x)dx+

∫
E2

f(t)dx

=

∫
E1

f(x)dx+ f(t) ·m(E2)

∗2
=

∫
E1

f(x)dx+ f(t) ·m(E3)

=

∫
E1

f(x)dx+

∫
E3

f(t)dx

∗3
5

∫
E1

f(x)dx+

∫
E3

f(x)dx

=

∫
E1∪E3

f(x)dx

=

∫
E

f(x)dx

• (∗1) f(x) 5 f(t) on x ∈ E2 ⊂ [0, t].

• (∗2) m(E2) = m(E3)

• (∗3) f(t) 5 f(x) on x ∈ E3 ⊂ (t, 1]

120 (Exercise 10)

STEP 1. Since |f(x)|χx∈Rd||x|>r(x) 5 |f(x)| ∈ L(Rd), we can apply Lebesgue Dom-
inated Convergence Theorem.

lim
r→∞

∫
{x∈Rd||x|>r}

|f(x)| dx = lim
r→∞

∫
Rd
|f(x)| · χ{x∈Rd||x|>r}(x)dx

=

∫
Rd

lim
r→∞
|f(x)| · χ{x∈Rd||x|>r}(x)dx

∗1
=

∫
Rd

0 dx = 0

• (∗1) Suppose that x0 ∈ Rd. When r is sufficiently large, r > |x0|. so χ{x∈Rd||x|>r}(x0) =
0.

STEP 2. Since E is bounded so we suppose that E ⊂ B(0,M). Let x ∈ E+y. Then
there exists z ∈ E s.t x = y+z. By triangular inequality, |x| = |y+z| = |y|−|z| = |y|−M .
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This implies that x ∈ E+y ⊂ {x ∈ Rd | |x| = |y| −M}.

lim sup
|y|→∞

∫
E+y

|f(x)|dx 5 lim
|y|→∞

∫
{x∈Rd||x|=|y|−M}

|f(x)|dx

= lim
r→∞

∫
{x∈Rd||x|>r}

|f(x)| dx = 0

121 (Exercise 11)

(1)

STEP 1. 1
1−r =

∑∞
n=0 r

n if |r| < 1. When x ∈ (0,∞), 0 < exp(−x) < 1. So we
have

xα−1

exp(x)− 1
=

xα−1 exp(−x)

1− exp(−x)

= xα−1 exp(−x) · 1

1− exp(−x)

= xα−1 exp(−x) ·
∞∑
n=0

exp(−nx)

=
∞∑
n=1

xα−1 · exp(−nx)

.

STEP 2. Since xα−1 · exp(−nx) is non-negative for all n = 1, by Theorem 4.6 we
have, ∫

(0,∞)

xα−1

exp(x)− 1
dx =

∫
(0,∞)

∞∑
n=1

xα−1 · exp(−nx)dx

=
∞∑
n=1

∫
(0,∞)

xα−1 · exp(−nx)dx.
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By monotone convergence theorem and §4.2 Example 10, we have
∞∑
n=1

∫
(0,∞)

xα−1 · exp(−nx)dx =
∞∑
n=1

lim
c→∞

∫
(0,c)

xα−1 · exp(−nx)dx

=
∞∑
n=1

lim
c→∞

∫
(0,c)

(
t

n

)α−1

· 1

n
· exp(−t)dt

=
∞∑
n=1

∫
(0,∞)

(
t

n

)α−1

· 1

n
· exp(−t)dt

=
∞∑
n=1

∫
(0,∞)

(
1

n

)α
· tα−1 · exp(−t)dt

=
∞∑
n=1

(
1

n

)α
· Γ(α)

In the equations above, we used the fact that

Γ(α)
def
= (R)

∫
[0,∞)

tα−1 exp(−t)dt = (R) lim
c→∞

∫
[0,c]

tα−1 exp(−t)dt

∗
= (L) lim

c→∞

∫
[0,c]

tα−1 exp(−t)dt

= (L)

∫
[0,∞)

tα−1 exp(−t)dt

= (L)

∫
(0,∞)

tα−1 exp(−t)dt

• (∗) On [0, c], tα−1 exp(−t) is continuous so it is Riemann integrable (∵ continuous
a.e [0, c]) and its integral is same as Lebesgue integral.

(2)

STEP 1.

sin ax

exp(x)− 1
= sin ax · exp(−x)

1− exp(−x)

= sin ax · exp(−x)
∞∑
n=0

exp(−nx)

=
∞∑
n=1

sin ax · exp(−nx)

STEP 2. ∣∣∣∣∣
k∑

n=1

sin ax · exp(−nx)

∣∣∣∣∣ 5
k∑

n=1

| sin ax| · exp(−nx)

5
∞∑
n=1

x · exp(−nx)
∗
∈ L(0,∞).
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• (∗)
∫

(0,∞)

∑∞
n=1 x · exp(−nx)dx =

∑∞
n=1

∫
(0,∞)

x · exp(−nx)dx =
∑∞

n=1

∫
(0,∞)

t
n2 ·

exp(−t)dt =
∑∞

n=1
1
n2 = π2

6
<∞.

STEP 3. Let us apply Lebesgue Dominated Convergence Theorem to gk(x)
def
=∑k

n=1 sin ax · exp(−nx).∫
(0,∞)

sin ax

exp(x)− 1
dx =

∫
(0,∞)

lim
k→∞

gk(x)dx

= lim
k→∞

∫
(0,∞)

gk(x)dx

= lim
k→∞

∫
(0,∞)

k∑
n=1

sin ax · exp(−nx)dx

= lim
k→∞

k∑
n=1

∫
(0,∞)

sin ax · exp(−nx)dx

=
∞∑
n=1

∫
(0,∞)

sin ax · exp(−nx)dx

=
∞∑
n=1

∫
[0,∞)

sin ax · exp(−nx)dx

STEP 4. We find
∫

[0,∞)
sin ax·exp(−nx)dx. Since | sin ax·exp(−nx)| 5 exp(−x) ∈

L([0,∞)) ⊂ L([0, c]), 0 < c <∞, by Lebesgue Dominated Convergence Theorem,

lim
c→∞

∫
[0,c]

sin ax · exp(−nx)dx = lim
c→∞

∫
[0,∞)

sin ax · exp(−nx) · χ[0,c](x)dx

=

∫
[0,∞)

lim
c→∞

sin ax · exp(−nx) · χ[0,c](x)dx

=

∫
[0,∞)

sin ax · exp(−nx)dx

Since Riemann integrable implies Lebesgue integrable, we have

(R)

∫
[0,c]

sin ax · exp(−nx)dx =
a

n2 + a2
− 1

n2 + a2
(n sin ac+ a cos ac) · exp(−nc)

= (L)

∫
[0,c]

sin ax · exp(−nx)dx.

So

lim
c→∞

∫
[0,c]

sin ax · exp(−nx)dx

= lim
c→∞

(
a

n2 + a2
− 1

n2 + a2
(n sin ac+ a cos ac) · exp(−nc)

)
=

a

n2 + a2
.
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Now the proof is complete.

122 (Exercise 12) Let S(x)
def
=
∑∞

n=−∞ f
(
x
a

+ n
)
. First we show that S(x) con-

verges absolutely a.e x ∈ [0, a]. Let us consider∫
[0,a]

∞∑
n=−∞

∣∣∣f (x
a

+ n
)∣∣∣ dx.

Since |f
(
x
a

+ n
)
| is non-negative, we may swap

∫
and

∑
by Theoerm 4.6, we have

∞∑
n=−∞

∫
[0,a]

∣∣∣f (x
a

+ n
)∣∣∣ dx.

By §4.2 Example 10,

∞∑
n=−∞

∫
[0,a]

∣∣∣f (x
a

+ n
)∣∣∣ dx =

∞∑
n=−∞

∫
[0,1]

a · |f (y + n) |dy.

Furthermore,

∞∑
n=−∞

∫
[0,1]

a · |f (y + n) | =
∞∑

n=−∞

∫
R
a · |f (y + n) |χ[0,1](y)dy

=
∞∑

n=−∞

∫
R
a · |f (y) |χ[0,1](y − n)dy

=
∞∑

n=−∞

∫
R
a · |f (y) |χ[n,n+1](y)dy

=
∞∑

n=−∞

∫
[n,n+1]

a · |f (y) |dy

=
∞∑

n=−∞

∫
[n,n+1)

a · |f (y) |dy

=

∫
(−∞,∞)

a · |f (y) |dy <∞

because f(x) ∈ L(R). Therefore we conclude that
∑∞

n=−∞ |f
(
x
a

+ n
)
| ∈ L([0, a]) and

thus
∑∞

n=−∞ |f
(
x
a

+ n
)
| < ∞ a.e x ∈ [0, a]. So S(x) converges absolutely a.e x ∈ [0, a].

It is easy to find out that S(x) = S(x + ka), k ∈ Z, so S(x) converges absolutely a.e
x ∈ R.
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123 (Exercise 13) Let us consider
∫
R
∑∞

n=1 n
−p |f(nx)| dx.∫

R

∞∑
n=1

n−p |f(nx)| dx ∗1
=

∞∑
n=1

∫
R
n−p |f(nx)| dx

∗2
=

∞∑
n=1

lim
c→∞

∫
(−c,c)

n−p |f(nx)| dx

∗3
=

∞∑
n=1

lim
c→∞

∫
(−nc,nc)

n−p
1

n
|f(y)| dy

∗4
=

∞∑
n=1

∫
(−∞,∞)

n−p
1

n
|f(y)| dy

∗5
=

∞∑
n=1

∫
(−∞,∞)

1

n1+p
|f(y)| dy

∗6
=

∞∑
n=1

1

n1+p

∫
(−∞,∞)

|f(y)| dy

∗7
< ∞

• (∗1) Theorem 4.6.

• (∗2) monotone convergence theorem to n−p |f(nx)| · χ(−c,c)(x).

• (∗3) §4.2 Example 10

• (∗4) monotone convergence theorem.

• (∗5) obvious.

• (∗6) obvious. (linearity of integral)

• (∗7) f ∈ L(R),
∑∞

n=1
1
nα
<∞ when α > 1.

124 (Exercise 14) Let

g(u)
def
=

∫
[0,∞)

xuf(x)dx.

If x > 0, then xu|f(x)| 5 xs|f(x)|+ xt|f(x)| ∈ L([0,∞)). (It is easy to verify this fact by
considering 0 < x < 1 and x = 1)

So xuf(x) is integrable hence g(u) is well-defined. Next we prove that g(u) is con-
tinuous. Consider {uk}k=1 ⊂ (s, t) s.t uk → u ∈ (s, t). By the previous inequality
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xuk |f(x)| 5 xs|f(x)|+ xt|f(x)| ∈ L([0,∞)). By Lebesgue Dominated Convergence Theo-
rem, we have

lim
k→∞

g(uk) = lim
k→∞

∫
[0,∞)

xukf(x)dx

=

∫
[0,∞)

lim
k→∞

xukf(x)dx

=

∫
[0,∞)

xuf(x)dx = g(u)

Now the proof is complete.

125 (Exercise 15)

STEP 1. Let k ∈ N.

c =

∫
[0,1]

(f(x))ndx

=

∫
{x∈[0,1]|f(x)>1+ 1

k
}
(f(x))ndx+

∫
{x∈[0,1]|0<f(x)51+ 1

k
}
(f(x))ndx

=
∫
{x∈[0,1]|f(x)>1+ 1

k
}

(
1 +

1

k

)n
dx

= m

({
x ∈ [0, 1] | f(x) > 1 +

1

k

})
·
(

1 +
1

k

)n
dx,∀n ∈ N

If m
({
x ∈ [0, 1] | f(x) > 1 + 1

k

})
> 0, the right hand side goes to infinity by taking

n→∞. So m
({
x ∈ [0, 1] | f(x) > 1 + 1

k

})
= 0 for all k ∈ N. Moreover,

m

(
∞⋃
k=1

{
x ∈ [0, 1] | f(x) > 1 +

1

k

})
= m ({x ∈ [0, 1] | f(x) > 1}) = 0.

This implies that 0 < f(x) 5 1 a.e x ∈ [0, 1].

STEP 2. Since 0 < f(x) 5 1 a.e x ∈ [0, 1] ⇒ 0 < (f(x))n 5 1 a.e x ∈ [0, 1] and
1 ∈ L([0, 1]), by Lebesgue Dominated Convergence theorem, we have

c = lim
n→∞

∫
[0,1]

(f(x))ndx =

∫
[0,1]

lim
n→∞

(f(x))ndx

=

∫
[0,1]

χ{x∈[0,1]|f(x)=1}(x)dx

= m({x ∈ [0, 1] | f(x) = 1})
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STEP 3.

c =

∫
[0,1]

(f(x))ndx

=

∫
{x∈[0,1]|0<f(x)<1}

(f(x))ndx+

∫
{x∈[0,1]|f(x)=1}

(f(x))ndx

=

∫
{x∈[0,1]|0<f(x)<1}

(f(x))ndx+m({x ∈ [0, 1] | f(x) = 1})

=

∫
{x∈[0,1]|0<f(x)<1}

(f(x))ndx+ c

So we have
∫
{x∈[0,1]|0<f(x)<1}(f(x))ndx = 0. Since f(x) > 0, we have m({x ∈ [0, 1] | 0 <

f(x) < 1}) = 0. This implies that f(x) = 1 a.e x ∈ [0, 1] hence c = 1.

126 (Exercise 16)

STEP 1. Let x ∈ [0, 1]. Then exp(x) − x − 1 = 0. So exp(x) = x + 1. By taking
ln(·) of the both sides, we have x = ln(x+1). Since x = x2, we have ln(x+1) = ln(x2 +1).
So x = ln(x2 + 1).

STEP 2. When n is sufficiently large, |f(x)|
n
∈ [0, 1] a.e x ∈ [0, 1] because |f(x)| ∈

L([0, 1]) implies that |f(x)| < ∞ a.e x ∈ [0, 1]. By the inequality above, when n is

sufficiently large, we have |f(x)|
n

= ln
(
|f(x)|2
n2 + 1

)
a.e x ∈ [0, 1]. By multiplying n to the

both sides, we have |f(x)| = n · ln
(
|f(x)|2
n2 + 1

)
and the left side is integrable on [0, 1]

hence we may apply Lebesgue Dominated Convergence Theorem.

STEP 3. By Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
[0,1]

n · ln
(
|f(x)|2

n2
+ 1

)
dx 5

∫
[0,1]

lim
n→∞

n · ln
(
|f(x)|2

n2
+ 1

)
dx

=

∫
[0,1]

lim
n→∞

|f(x)|2

n
· n2

|f(x)|2
· ln
(
|f(x)|2

n2
+ 1

)
dx

=

∫
[0,1]

lim
n→∞

|f(x)|2

n
· ln
(
|f(x)|2

n2
+ 1

) n2

|f(x)|2

dx

=

∫
[0,1]

0 · ln(e) dx =

∫
[0,1]

0 dx = 0.

127 (Exercise 17) |f(x)| · χEk(x) 5 |f(x)| · χE1(x) ∈ L(E1). By Lebesgue Domi-
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nated Convergence Theorem, we have

lim
k→∞

∫
Ek

f(x)dx = lim
k→∞

∫
E1

f(x) · χEk(x)dx

=

∫
E1

lim
k→∞

f(x) · χEk(x)dx

=

∫
E1

f(x) · χE(x)dx

=

∫
E

f(x)dx

128 (Exercise 18)

STEP 1. (m(E) =∞) By Fatou’s lemma, we have∫
E

lim inf
k→∞

(f(x))1/kdx 5 lim inf
k→∞

∫
E

(f(x))1/kdx.

Since f(x) > 0, the left hand side is
∫
E

1 dx = m(E) =∞. So we have

lim
k→∞

∫
E

(f(x))1/kdx =∞.

STEP 2. (m(E) <∞) We separate {x ∈ E | f(x) > 1} and {x ∈ E | 0 < f(x) 5
1}. Let p ∈ (0, 1]. If a > 1, then ap 5 a and if 0 < a 5 1, then a 5 ap 5 1. So we have

(f(x))1/k = (f(x))1/k · χ{x∈E|f(x)>1}(x) + (f(x))1/k · χ{x∈E|0<f(x)51}(x)

5 f(x) · χ{x∈E|f(x)>1}(x) + 1 · χ{x∈E|0<f(x)51}(x)

5 f(x) + 1 ∈ L(E)

By Lebesgue Dominated Convergence Theorem, we have the desired conclusion.

129 (Exercise 19) The proof is not easy. This exercies is related to Lp convergence,
absolute continuity, and uniform integrability.

130 (Exercise 20) Let gk(x)
def
= max{f1(x), f2(x), · · · , fk(x)}. Then gk(x) 5

gk+1(x) and gk(x) is non-negative. We apply monotone convergence theorem to gk(x).
We have

lim
k→∞

∫
E

gk(x)dx =

∫
E

lim
k→∞

gk(x)dx

=

∫
E

sup
k=1

{fk(x)}dx

∗
5 M <∞

Therefore supk=1{fk(x)} is integrable.
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• (∗) holds because
∫
E
gk(x)dx 5M so supk=1

∫
E
gk(x)dx 5M .

Since 0 5 fk(x) 5 supk=1{fk(x)} ∈ L(E), we can apply Lebesgue Dominated Convergence
Theorem. And we have the desired conclusion.

131 (Exercise 21)

STEP 1. Let {an}n=1 be a sequence of real numbers. We show that we can find a
subsequence nk s.t

lim
k→∞

ank = lim inf
n→∞

an.

case 1. (lim infn→∞ an =∞) This implies that an →∞ so we can let nk = k.

case 2. (lim infn→∞ an = −∞) limk→∞ infn=k an = −∞. Since infn=k an = −∞ for
all k, we can find nk s.t ank < −k.

case 3. (lim infn→∞ an ∈ (−∞,∞)) Let a
def
= lim infn→∞ an. bk

def
= infn=k an is an

increasing sequence with respect to k and bk ↗ a. We can find a subsequence k` s.t
0 5 a − bk` < 1

2`
. Since bk` = infn=k` an, we can find k∗` = k` s.t 0 5 ak∗` − bk` <

1
2`

. So

|a− ak∗` | 5 |a− bk` |+ |ak∗` − bk` | <
1
`
. So ak∗` → a.

STEP 2. We can find a subsequence {k`}`=1 s.t

lim
`→∞

∫
E

fk`(x)dx = lim inf
k→∞

∫
E

fk(x)dx (∗)

Let us recall that fk(x)
m−→ f(x) if and only if ∀k` ∃k`m s.t fk`m (x)

a.u−→ f(x) and that
a.u−→ implies

a.e−→. So we can find a subsubsequence k`m s.t fk`m (x)
a.e−→ f(x). We apply

Fatou’s lemma to fk`m (x) and we obtain∫
E

lim inf
m→∞

fk`m (x)dx 5 lim inf
m→∞

∫
E

fk`m (x)dx

∗1
= lim

`→∞

∫
E

fk`(x)dx

∗2
= lim inf

k→∞

∫
E

fk(x)dx

• (∗1) m→∞⇒ `m →∞.

• (∗2) See (∗).

The left hand side is
∫
E
f(x)dx. So we have the desired conclusion.

132 (Exercise 22) Let us apply Theorem 4.17.

STEP 1. Let

f(x, t)
def
= exp(−x2) cos 2tx, (x, t) ∈ [0,∞)× (−∞,∞).
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The partial derivative of f(x, t) with respect to t is

∂

∂t
f(x, t) = −2x exp(−x2) sin 2tx

And ∣∣∣∣ ∂∂tf(x, t)

∣∣∣∣ 5 2x exp(−x2)
(∗1)
∈ L([0,∞)).

We explain why (∗1) holds. We know that the improper Riemann integral

(R)

∫ ∞
0

2x exp(−x2)dx = (R) lim
c→∞

∫ c

0

2x exp(−x2)dx <∞.

For each 0 < c <∞,

(L)

∫
[0,c]

2x exp(−x2)dx = (R)

∫ c

0

2x exp(−x2)dx

because the right hand side is Riemann integrable. By taking c → ∞ and applying
monotone convergence theorem, we have

(L)

∫
[0,∞)

2x exp(−x2)dx = (R)

∫ ∞
0

2x exp(−x2)dx <∞.

STEP 2. Let

g(t)
def
=

∫
[0,∞)

f(x, t)dx.

And

g′(t)
∗2
=

∫
[0,∞)

∂

∂t
f(x, t)dx

=

∫
[0,∞)

−2x exp(−x2) sin 2txdx

∗3
= lim

c→∞

∫
[0,∞)

−2x exp(−x2) sin 2tx · χ[0,c](x)dx

= lim
c→∞

∫
[0,c]

−2x exp(−x2) sin 2txdx

• (∗2) By Theorem 4.17, we may swap ∂
∂t

and
∫

.

• (∗3) Lebesgue Dominated Convergence Theorem.
∣∣−2x exp(−x2) · χ[0,c](x)

∣∣ 5 2x exp(−x2) ∈
L([0,∞)).

We find the above integral

(L)

∫
[0,c]

−2x exp(−x2) sin 2xtdx
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using Riemann integral. (We have already learned it in basic caluclus.)
∫

[0,c]
−2x exp(−x2) sin 2xtdx

is Riemann integrable because this is a continuous function on [0, c].

(R)

∫ c

0

−2x exp(−x2) sin 2xtdx = (R) exp(−c2)− 2t

∫ c

0

exp(−x2) cos 2xtdx

And the Riemann integrals (R)
∫ c

0
−2x exp(−x2) sin 2xtdx and (R)

∫ c
0

exp(−x2) cos 2xtdx
are equal to Lebesgue integrals. Therefore we have

g′(t) = lim
c→∞

∫
[0,c]

−2x exp(−x2) sin 2txdx

= lim
c→∞

(
exp(−c2)− 2t

∫
[0,c]

exp(−x2) cos 2xtdx

)
= lim

c→∞
−2t ·

∫
[0,c]

exp(−x2) cos 2xtdx

∗4
= −2t ·

∫
[0,∞)

exp(−x2) cos 2xtdx

= −2t · g(t).

• (∗4) Lebesgue Dominated Convergence Theorem. |exp(−x2) cos 2xt| · χ[0,c](x) 5
exp(−x2) ∈ L([0,∞)).

By solving the differential equation, we have g(t) = g(0) · exp(−t2). And g(0) =
√
π

2
.

Now the proof is complete.

133 (Exercise 23)

STEP 1. As with Exercise 5, f1(x) 5 f2(x) 5 · · · 5 fk(x) 5 · · · a.e x ∈ Rd.
From this fact, fk(x) converges a.e x ∈ Rd because it is monotone increasing a.e x ∈ Rd.
Therefore f̃(x) is measurable.

f̃(x)
def
=

{
limk→∞ fk(x) if fk(x) converges

0 otherwise

STEP 2. Let gk(x)
def
= fk(x) − f1(x) = 0 a.e x ∈ Rd. gk(x)

a.e−→ f̃(x) − f1(x) a.e
x ∈ Rd (hence x ∈ E ∈M ). We apply monotone convergence theorem to gk(x).

lim
k→∞

∫
E

gk(x)dx =

∫
E

lim
k→∞

gk(x)dx,
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where E ∈M is an arbitrary Lebesgue measurable set on Rd. The left hand side is

lim
k→∞

∫
E

gk(x)dx = lim
k→∞

∫
E

(fk(x)− f1(x))dx

∗1
= lim

k→∞

(∫
E

fk(x)dx−
∫
E

f1(x)dx

)
= lim

k→∞

∫
E

fk(x)dx−
∫
E

f1(x)dx

∗2
=

∫
E

f(x)dx−
∫
E

f1(x)dx

• (∗1) f1(x), fk(x) ∈ L(Rd) so linearity holds. (When at least one of f1, f2 is integrable,∫
E

(f1 + f2) =
∫
E
f1 +

∫
E
f2.)

• (∗2) By assumption.

The right hand side is∫
E

lim
k→∞

gk(x)dx =

∫
E

(f̃(x)− f1(x))dx

(∗2)
=

∫
E

f̃(x)dx−
∫
E

f1(x)dx

• (∗2) f1(x) ∈ L(Rd) so linearity holds.

By adding
∫
E
f1(x)dx to the both sides, we have∫

E

f̃(x)dx =

∫
E

f(x)dx

for all E ∈M , E ⊂ Rd.

STEP 3. The integrals above are finite by assumption, so we can subtract one
from another. And the integral has linearity, so we have∫

E

(f̃(x)− f(x))dx = 0.

for all E ∈ M . Let E = {x ∈ Rd | f̃(x) − f(x) > 0}. And we have m({x ∈ Rd |
f̃(x) − f(x) > 0}) = 0. Similarly, we have m({x ∈ Rd | f̃(x) − f(x) < 0}) = 0. So
f̃(x) = f(x) a.e x ∈ Rd.

134 (Exercise 24)

STEP 1. Let {an}, {bn} be sequences of real numbers. Suppose that an → a ∈
(−∞,∞). Then lim infn→∞(an + bn) = a+ lim infn→∞ bn. First we prove this fact. Since

lim
n→∞

( inf
m′=n

am′ + inf
m=n

bm) 5 lim
n→∞

inf
m=n

(am + bm) 5 lim
n→∞

( sup
m′=n

am′ + inf
m=n

bm),
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we have

lim
n→∞

inf
m′=n

am′ + lim
n→∞

inf
m=n

bm 5 lim
n→∞

inf
m=n

(am + bm) 5 lim
n→∞

sup
m′=n

am′ + lim
n→∞

inf
m=n

bm.

Since lim infn→∞ an = lim supn→∞ an = a,

a+ lim
n→∞

inf
m=n

bm 5 lim
n→∞

inf
m=n

(am + bm) 5 a+ lim
n→∞

inf
m=n

bm.

Now we have the deisred conclusion.

STEP 2. We apply Fatou’s lemma to gn(x)− fn(x) = 0 and gn(x) + fn(x) = 0.∫
E

lim inf
n→∞

(gn(x)− fn(x))dx 5 lim inf
n→∞

∫
E

(gn(x)− fn(x))dx

∗1
= lim inf

n→∞

(∫
E

gn(x)dx−
∫
E

fn(x)dx

)
∗2
=

∫
E

g(x)dx+ lim inf
n→∞

(
−
∫
E

fn(x)dx

)
=

∫
E

g(x)dx− lim sup
n→∞

∫
E

fn(x)dx

• (∗1) By assmption, gn(x) is integrable for sufficiently large n. So we may separate
into two integrals.

• (∗2) Step 1.

By assumption, the left hand side is∫
E

(g(x)− f(x))dx.

And g(x) is integrable, so the left hand side is∫
E

g(x)dx−
∫
E

f(x)dx.

By subtracting
∫
E
g(x)dx (this is finite) from the both sides, we have

lim sup
n→∞

∫
E

fn(x)dx 5
∫
E

f(x)dx.

Let us repeat the similar argument to gn(x) + fn(x) and we have∫
E

f(x)dx 5 lim inf
n→∞

∫
E

fn(x)dx.

By merging these two results, we have the desired conclusion.
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135 (Exercise 25) D = D \D′ ∪D∩D′. Since D \D′ is a set of isolated points, so
D\D′ is countable. And D∩D′ ⊂ D′, so this is also countable. Therefore D is countable.
We conclude that f(x) is Riemann integrable.

136 (Exercise 26) It is enough for us to prove that

A
def
= {x ∈ R | f is discontinuous at x, lim

y→x+0
f(y) exists}

is countable.

137 (Exercise 27)

STEP 1. Let
ωf (x)

def
= lim

δ↘0
sup

x′,x′′∈B(x,δ)

|f(x′)− f(x′′)| .

Let us recall that the points of discontinuity of f is

{x ∈ [0, 1] | ωf (x) > 0}.

Let f(x)
def
= χE(x). We prove that χE\E̊(x) = ωf (x). Then {x ∈ [0, 1] | ωf (x) > 0} =

{x ∈ [0, 1] | ωf (x) = 1} = E \ E̊.

STEP 2. Let A
def
= ωf (x), B

def
= χE\E̊(x). We prove that A 5 B and A = B. (We

may suppose that x ∈ [0, 1] is fixed.)
First we show that A 5 B. Since both A,B take only 0 or 1, it is enough to show that

A = 1⇒ B = 1. Suppose that A = 1. Then ∀δ > 0, supx′,x′′∈B(x,δ) |χE(x′)− χE(x′′)| = 1.
This implies that there exists x′, x′′ ∈ B(x, δ) s.t χE(x′) = 1, χE(x′′) = 0. (Exactly
speaking, we can find a sequence {x′n}, {x′′n} ⊂ B(x, δ) s.t χE(x′n) − χE(x′′n) → 1. For
sufficiently large n, χE(x′n) = 1, χE(x′′n) = 0. Therefore there exists x′, x′′ ∈ B(x, δ) s.t
χE(x′) = 1, χE(x′′) = 0.) So ∀δ > 0, B(x, δ) ∩ E 6= ∅ and B(x, δ) ∩ Ec 6= ∅. Hence
x ∈ ∂E = E \ E̊. Therefore B = 1.

Next, we show that A = B. The proof is similar to the previous argument. Suppose
that B = 1. Then x ∈ ∂E = E \ E̊. So ∀δ > 0, B(x, δ)∩E 6= ∅ and B(x, δ)∩Ec 6= ∅. We
can find x′, x′′ ∈ B(x, δ) s.t χE(x′) = 1 and χE(x′′) = 0 for all δ > 0. Therefore ωf (x) = 1.
Now the proof is complete.

138 (Exercise 28) Let g(x)
def
= f(x2). Since x2 is continuous in R, if f(x) is

continuous at x0 ∈ [0, 1] then g(x) is also continuous at x0. This implies that

Dg
def
= {x0 ∈ [0, 1] | g(x) is is discontinuous at x0}

⊂ Df
def
= {x0 ∈ [0, 1] | f(x) is is discontinuous at x0}

Therefore Dg is also countable. We conclude that g is also integrable on [0, 1].

139 (Exercise 29) Since f(x) + g(y) ∈ L(E × E), by Fubini’s Theorem,∫
E

(f(x) + g(y))dx ∈ L(E) a.e y ∈ E.

308



4.6.

Therefore there exists y0 ∈ E s.t∫
E

(f(x) + g(y0))dx ∈ L(E).

g(y0) 6= ±∞ (otherwise, the integral above not integrable). So∫
E

(f(x) + g(y0))dx =

∫
E

f(x)dx+m(E) · g(y0) ∈ (−∞,∞).

Therefore
∫
E
f(x)dx ∈ (−∞,∞). Similarly

∫
E
g(y)dy ∈ (−∞,∞). Now the proof is

complete.

140 (Exercise 30) 1
(1+y)(1+x2y)

is non-negative so Tonelli’s Theorem assures us that

we may compute the integral as iterated integral or integral on R2.

STEP 1. ∫
(x,y)∈(0,∞)×(0,∞)

1

(1 + y)(1 + x2y)
dxdy

∗1
=

∫
y∈(0,∞)

(∫
x∈(0,∞)

1

(1 + y)(1 + x2y)
dx

)
dy

∗2
=

∫
y∈(0,∞)

(
lim
c→∞

∫
x∈(0,c)

1

(1 + y)(1 + x2y)
dx

)
dy

∗3
=

∫
y∈(0,∞)

(
lim
c→∞

∫
t∈(0,

√
yc)

1

(1 + y)(1 + t2)

1
√
y
dt

)
dy

∗4
=

∫
y∈(0,∞)

(∫
t∈(0,∞)

1

(1 + y)(1 + t2)

1
√
y
dt

)
dy

=

(∫
y∈(0,∞)

1

(1 + y)
√
y
dy

)(∫
t∈(0,∞)

1

(1 + t2)
dt

)

• (∗1) Tonell’s Theorem. We first compute
∫
x∈(0,∞)

· · · dx and then
∫
y∈(0,∞)

· · · dy.

• (∗2) monotone convergence theorem. limc→∞
∫

(0,c)
· · · = limc→∞

∫
(0,∞)

χ(0,c) · · · =∫
(0,∞)

limc→∞ χ(0,c)

• (∗3) t =
√
yx. §4.2. Example 10

• (∗4) monotone convergence theorem.

STEP 2. We use Riemann improper integral to compute the integral. (L)
∫
t∈(0,∞)

1
(1+t2)

dt =

(L)
∫
t∈[0,∞)

1
(1+t2)

dt = (L) limc→∞
∫
t∈[0,c]

1
(1+t2)

dt by monotone convergence theorem. And∫
t∈[0,c]

1
(1+t2)

dt is Riemann integral. So we find

(R) lim
c→∞

∫
t∈[0,c]

1

(1 + t2)
dt =

π

2
.
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Next, (L)
∫
y∈(0,∞)

1
(1+y)

√
y
dy = (L) limc1→+0,c2→∞

∫
y∈[c1,c2]

1
(1+y)

√
y
dy by monotone con-

vergece theorem. Similarly,
∫
y∈[c1,c2]

1
(1+y)

√
y
dy is Riemann integral so we find

(R) lim
c1→+0,c2→∞

∫
y∈[c1,c2]

1

(1 + y)
√
y
dy

∗
= (R) lim

c1→+0,c2→∞

∫
z∈[
√
c1,
√
c2]

2

(1 + z2)
dz = π

• (∗) Let z =
√
y and change variable.

Therefore the integral is π2

2
.

STEP 3. ∫
(x,y)∈(0,∞)×(0,∞)

1

(1 + y)(1 + x2y)
dxdy

∗5
=

∫
x∈(0,∞)

(∫
y∈(0,∞)

1

(1 + y)(1 + x2y)
dy

)
dx

∗6
=

∫
x∈(0,∞)

(
lim
c→∞

∫
y∈[0,c]

1

(1 + y)(1 + x2y)
dy

)
dx

=

∫
x∈(0,∞)

(
lim
c→∞

∫
y∈[0,c]

1

1− x2

(
1

1 + y
− x2

1 + x2y

)
dy

)
dx

∗7
=

∫
x∈(0,∞)

(
(R) lim

c→∞

∫
y∈[0,c]

1

1− x2

(
1

1 + y
− x2

1 + x2y

)
dy

)
dx

=

∫
x∈(0,∞)

(
lim
c→∞

1

1− x2
ln

(
1 + c

1 + cx2

))
dx

=

∫
x∈(0,∞)

(
1

1− x2
ln

(
1

x2

))
dx

=

∫
x∈(0,∞)

(
2 ln(x)

x2 − 1

)
dx
∗8
=
π2

2

• (∗5) Tonelli’s Theorem.

• (∗6) monotone convergence theorem

• (∗7) 1
1−x2

(
1

1+y
− x2

1+x2y

)
is Riemann integrable on y ∈ [0, c]. So we find the integral

as Riemann integral.

• (∗8) by the result of Step 2.
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141 (Exercise 31) f(x) is a non-negative measurable function. (So we can apply
Tonell’s Theorem). ∫

R
F (x)dx =

∫
R

∫
E

f(x− t)dtdx

=

∫
R

∫
R
f(x− t) · χE(t) dt dx

∗1
=

∫
R

∫
R
f(x− t) · χE(t) dx dt

=

∫
R
χE(t) ·

∫
R
f(x− t) dx dt

∗2
=

∫
R
χE(t) ·

∫
R
f(x) dx dt

=

∫
R
χE(t) dt ·

∫
R
f(x) dx

= m(E) ·
∫
R
f(x) dx <∞

• (∗1) Tonell’s Theorem.

• (∗2) Translation does not change the value of integral. See Theorem 4.13.

Since m(E) > 0,
∫
R f(x) dx <∞. Now the proof is complete.

142 (Exercise 32) We show that both
∫∞

0
F (x)dx and

∫ 0

−∞ F (x)dx are finite.

STEP 1. Since xf(x) ∈ L(R),
∫∞

0
xf(x)dx is finite.∫ ∞

0

xf(x)dx =

∫ ∞
0

∫ x

0

f(x)dtdx

∗1
=

∫ ∞
0

∫ ∞
t

f(x)dxdt

∗2
=

∫ ∞
0

(
−
∫ t

−∞
f(x)dx

)
dt

=

∫ ∞
0

−F (t) dt ∈ R

• (∗1) Fubini’s Theorem.

• (∗2) By assumption
∫∞
−∞ f(x)dx = 0 so

∫ t
−∞ f(x)dx+

∫∞
t
f(x)dx = 0.

So
∫∞

0
F (t)dt =

∫∞
0

(−xf(x))dx ∈ R.
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STEP 2. Repeat a similar argument on
∫ 0

−∞−xf(x)dx.∫ 0

−∞
−xf(x)dx =

∫ 0

−∞

∫ 0

x

f(x)dtdx

∗3
=

∫ 0

−∞

∫ t

−∞
f(x)dxdt

=

∫ 0

−∞
F (t)dt ∈ R

• (∗3) Fubini’s Theorem.

By merging these two conclusions, we have
∫∞
−∞(−xf(x))dx =

∫∞
−∞ F (t)dt ∈ R.

143 (Exercise 33) We apply Lebesgue Dominated Convergence Theorem.

|cosx arctannx| 5 π

2
cosx ∈ L([0,

π

2
]).

So

lim
n→∞

∫ π
2

0

cosx arctan(nx)dx =

∫ π
2

0

lim
n→∞

cosx arctan(nx)dx

∗
=

∫ π
2

0

cosx · π
2
dx

=
π

2
(R)

∫ π
2

0

cosxdx =
π

2

• (∗) if x ∈ (0, π
2
], arctannx→ π

2
. So arctannx→ π

2
a.e x ∈ [0, π

2
]

144 (Exercise 34)

STEP 1. (g ∈ L(I))∫ a

0

|g(x)| dx =

∫ a

0

∣∣∣∣∫ a

x

f(t)

t
dt

∣∣∣∣ dx
∗1
5

∫ a

0

∫ a

x

∣∣∣∣f(t)

t

∣∣∣∣ dt dx
∗2
=

∫ a

0

∫ t

0

|f(t)|
t

dx dt

=

∫ a

0

|f(t)|
t
· t dt

=

∫ a

0

|f(t)|dt <∞
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• (∗1) triangular inequality

• (∗2) Tonelli’s Theorem

STEP 2. (
∫
I
g =

∫
I
f)∫ a

0

g(x) dx =

∫ a

0

∫ a

x

f(t)

t
dt dx

∗3
=

∫ a

0

∫ t

0

f(t)

t
dx dt

=

∫ a

0

∫ t

0

f(t)

t
· t dt

=

∫ a

0

f(t) dt

• (∗3) Fubini’s Theorem. We already know that g(x) ∈ L(I), so we can swap dt and
dx.
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CHAPTER 5

Solutions

§ 5.1

1 (Definition 5.1) For all x ∈ E and for all ε > 0, there exists I ∈ Γ s.t x ∈ I
and diam(I) < ε, then we say that Γ is a Vitalli cover of E.

• Until now, | · | is defined for open intervals. (i.e if I =
∏d

j=1(ai, bi), then |I| def
=∏d

j=1(bi − ai).) However, we extend the definition of | · | to closed intervals and
half-open intervals.

• Note that diam(I) = |I| when E ⊂ R1.

2 (Example 1) Let {rm}m=1
def
= Q∩ [a, b]. Let Γ

def
= {Im,n}m∈N,n∈N where Im,n

def
=

[rm− 1
n
, rm + 1

n
]. We claim that Γ is a Vitalli cover of [a, b]. We pick n ∈ N s.t 2

n
< ε. For

every x ∈ [a, b] we can find rm ∈ Q∩ [a, b] s.t |x− rm| < 1
n
. (Q is dense.) So x ∈ Im,n and

diam(Im,n) = 2
n
< ε.

3 (Theorem 5.1 Vitalli’s Covering Lemma) We pick G ∈ O1 (an open set) s.t
E ⊂ G with m(G) < ∞. (We can find such G because m∗(E) < ∞. Let us consider

{Jn}n=1 s.t E ⊂
⋃∞
n=1 Jn with

∑∞
n=1 |Jn| < m∗(E) + 1 <∞. Let G

def
=
⋃∞
n=1 Jn.)

We may suppose that ∀I ∈ Γ, I ⊂ G without loss of generality. Let x ∈ E. Then
x ∈ G. There exists δ > 0 s.t B(x, δ) ⊂ G. Since Γ is a Vitalli cover, we can find I ∈ Γ
s.t x ∈ I and diam(I) < δ. Then I ⊂ G. So we suppose that every I ∈ Γ is contained in
G.

STEP 1. We pick an arbitrary interval from I1 ∈ Γ. Now suppose that we have
chosen {I1, · · · , Ik} ⊂ Γ (k = 1). If E ⊂

⋃k
j=1 Ij, then the statement holds obviously, and

we do not have to prove anymore. So we we suppose E 6⊂
⋃k
j=1 Ij for all k = 1. Let us

define
δk

def
= sup {|I| | I ∈ Γ with I ∩ Ij = ∅ for all j = 1, · · · , k} .
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Note that δk <∞ because I ⊂ G for all I ∈ Γ by our assumption. We can find Ik+1 ∈ Γ
s.t

|Ik+1| >
1

2
δk and Ik+1 ∩ Ij = ∅ for all j = 1, · · · , k.

Since {In}n=1 are disjoint with each other and
⋃∞
n=1 In ⊂ G, we have

m

(
∞⋃
n=1

In

)
∗1
=

∞∑
n=1

|In|

5 m(G) <∞

• (∗1) m(In) = |In|. (See §2.1). So m (
⋃∞
n=1 In) =

∑∞
n=1m(In) =

∑∞
n=1 |In|.

Since
∑n

j=1 |In| →
∑∞

n=1 |In| <∞ as n→∞, we can find sufficiently large n ∈ N s.t.

∞∑
j=n+1

|Ij| <
ε

5
.

Let

S
def
= E \

n⋃
j=1

Ij.

Our goal is to prove that
m∗(S) < ε.

STEP 2. Let I∗j (j = 1, 2, · · · ) be the interval which has the common center with
Ij and whose edge length is 5 times Ij. It is enough for us to prove that

S ⊂
∞⋃

j=n+1

I∗j ,

because

m∗(S) 5
∞∑

j=n+1

m(I∗j ) =
∞∑

j=n+1

|I∗j | = 5
∞∑

j=n+1

|Ij| < 5 · ε
5

= ε,

and so the proof is complete.

STEP 3. We prove that S ⊂
⋃∞
j=n+1 I

∗
j . We pick an arbitrary point x ∈ S and

show that there always exists sufficiently large n0 ∈ N s.t x ∈ I∗n0
. By our assumption

that {Ij}j=1 are closed intervals, F
def
=
⋃n
j=1 Ij is a closed set. Let us recall that δx

def
=

dist(x, F ) = |x − y| for some y ∈ F by Theorem 1.24. Since x /∈ F , dist(x, F ) > 0
(otherwise |x − y| = 0 ⇔ x = y for some y ∈ F ), δx > 0. Since Γ is a Vitalli cover, we
can find Ix ∈ Γ with diam(Ix) < δx. Then Ix and F =

⋃n
j=1 Ij are disjoint. So Ix ∩ Ij = ∅

for all j = 1, · · · , n.
We claim that there exists sufficiently large n0 > n s.t Ix ∩ In0 6= ∅. To prove this,

suppose that Ix ∩ Ij = ∅ for all j = 1, 2, · · · . Note that |Ij| = diam(Ij) → 0 as j → ∞
because

∑∞
j=1 |Ij| <∞. So we can find sufficiently large j0 ∈ N s.t

|Ij0+1| <
1

2
|Ix|. (∗2)
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Let us recall that

δj0
def
= sup{|I| | I ∩ Ij = ∅ for all j = 1, · · · , j0}.

Since we suppose that Ix∩Ij for all j = 1, 2, · · · , (so |Ix| ∈ {|I| | I ∈ Γ with I∩Ij for all j =
1, · · · , j0}), we have

|Ix| 5 δj0 . (∗3)

By merging these two results (∗2, 3), we obtain

|Ij0+1| <
1

2
|Ix| 5

1

2
δj0 . (∗4)

However we chose {Ij}j=1 so that

|Ij0+1| >
1

2
δj0 (∗5)

in STEP 1. And (∗4) and (∗5) contradicts to each other. So we conclude that there exists
n0 > n s.t Ix ∩ In0 6= ∅.

STEP 4. We suppose that n0 is the smallest index s.t Ix ∩ In0 6= ∅. So Ix ∩ Ij = ∅
for j = 1, · · · , n0 − 1. Therefore

|Ix| 5 δn0−1
def
= sup{|I| | I ∈ Γ with I ∩ Ij = ∅ for all j = 1, · · · , n0 − 1}.

Let us recall that we chose {Ij}j=1 s.t

|In0 | >
1

2
δn0−1.

By merging these two results we have,

|Ix| < 2|In0 |.

Since x ∈ Ix, Ix∩In0 6= ∅ (not disjoint) and diam(Ix) = |Ix| is less than twice diam(In0) =
|In0|,

x ∈ Ix ⊂ I∗n0
,

where I∗n0
is the interval which has the common center with In0 and whose edge length is

5 times In0 . (You may draw a figure to see this fact.) In conclusion, ∀x ∈ S, there exists
n0 > n s.t x ∈ I∗n0

. Therefore

S ⊂
∞⋃

j=n+1

I∗j .

Now the proof is complete.
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4 (Definition 5.2)

D+f(x0)
def
= lim sup

h→+0

f(x0 + h)− f(x0)

h

= lim
h→+0

sup
k∈(0,h)

f(x0 + k)− f(x0)

k

D+f(x0)
def
= lim inf

h→+0

f(x0 + h)− f(x0)

h

= lim
h→+0

inf
k∈(0,h)

f(x0 + k)− f(x0)

k

D−f(x0)
def
= lim sup

h→−0

f(x0 + h)− f(x0)

h

= lim
h→−0

sup
k∈(h,0)

f(x0 + k)− f(x0)

k

D−f(x0)
def
= lim inf

h→−0

f(x0 + h)− f(x0)

h

= lim
h→−0

inf
k∈(h,0)

f(x0 + k)− f(x0)

k

If D+f(x0) = D+f(x0) = D−f(x0) = D−f(x0), then we say that f(x) is differentiable at
x = x0. Note that

D+f(x0) = D+f(x0),

and
D−f(x0) = D−f(x0)

always holds.

5 (Theorem 5.2 Lebesgue’s Theorem)

(1) We show that

D+f(x) = D+f(x) = D−f(x) = D−f(x) a.e x ∈ [a, b].

Let

E1
def
= {x ∈ [a, b] | D+f(x) > D−f(x)}

E2
def
= {x ∈ [a, b] | D−f(x) > D+f(x)}.

We show that
m(E1) = m(E2) = 0.

Then it follows that

D+f(x) 5 D−f(x)
∗1
5 D−f(x) 5 D+f(x)

∗2
5 D+f(x) a.e x ∈ [a, b].
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• (∗1, 2) These inequality always hold by definition. lim inf 5 lim sup.

And we have the desired conclusion. Let g(x) = −f(x). Then g(x) is a monotone
decreasing function on [a, b], and

E2 = {x ∈ [a, b] | D+g(x) > D−g(x)},

because
D+g = D+(−f) = −D+f and D−g = D−(−f) = −D−f.

And the proofs of m(E1) = 0 and m(E2) = 0 are quite similar. (monotone increasing vs
monotone decreasing) It is sufficient for us to show that m(E1).

Let Q+ def
= Q ∩ (0,∞). Note that

E1 =
⋃

r,s∈Q+

{x ∈ [a, b] | D+f(x) > r > s > D−f(x)}.

Note that D−f(x) = 0 because f(x) is monotone increasing. So it is sufficient to pick
r > s ∈ Q+ (but not Q) in the equality above. Let

Ar,s
def
= {x ∈ [a, b] | D+f(x) > r > s > D−f(x)}.

It is sufficient for us to show that
m(Ar,s) = 0,

for each (r, s) ∈ Q+ ×Q+ (r > s) because

m(E1) 5
∑
r,s∈Q+

m(Ar,s).

Now we fix r, s ∈ Q+ and let

A
def
= Ar,s.

STEP 1. Let ε > 0 be an arbitrary positiver number. Let G be an open set with
G ⊃ A and

m(G) < (1 + ε)m∗(A). (∗a)

Actually A ∈M , however we can derive the result without the assumption that A ∈M .
So we use m∗(A) instead of m(A). For every x ∈ A, since

D−f(x) = lim inf
h→−0

f(x+ h)− f(x)

h

= lim inf
h→+0

f(x− h)− f(x)

−h

= lim
k→+0

inf
h∈(0,k)

f(x− h)− f(x)

−h
< s,

we have

inf
h∈(0,k)

f(x− h)− f(x)

−h
< s,
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for every k > 0 (especially for arbitrarily small k > 0). And we can find h ∈ (0, k) s.t

f(x− h)− f(x)

−h
< s.

Since x ∈ A ⊂ G and G is an open set, when h > 0 is sufficiently small,

[x− h, x] ⊂ G.

In conclusion, for every x ∈ A and for every δ > 0, we can find h ∈ (0, δ)

f(x− h)− f(x)

−h
< s and [x− h, x] ⊂ G

Therefore such {[x − h, x]} is a Vitalli cover of A. By Theorem 5.1 Vitalli’s Covering
Theorem, there exist disjoint closed intervals {[xj − hj, xj]}pj=1 s.t

m∗

(
A \

p⋃
j=1

[xj − hj, xj]

)
< ε. (∗b)

Note that
⋃p
j=1[xj − hj, hj] is a Lebesgue measurable set. By definition of Lebesgue

measurability, for all A ⊂ R we have

m∗(A) = m∗

(
A ∩

p⋃
j=1

[xj − hj, xj]

)
+m∗

(
A \

p⋃
j=1

[xj − hj, xj]

)
. (∗c)

By (∗b) and (∗c), we have

m∗

(
A ∩

p⋃
j=1

[xj − hj, xj]

)
> m∗(A)− ε.

STEP 2. Note that

f(xj − hi)− f(xj)

−hj
< s (⇔ f(xj)− f(xj − hj) < shj).

So we have
p∑
j=1

(f(xj)− f(xj − hj)) < s

p∑
j=1

hj
∗2.1
< s(1 + ε)m∗(A).

We explain (∗2.1).

p∑
j=1

hj
∗2.2
= m

(
p⋃
j=1

[xj − hj, xj]

)
∗2.3
5 m(G)

∗2.4
< (1 + ε)m∗(A).

• (∗2.2) {[xj − hj, xj]}pj=1 are disjoint.

• (∗2.3)
⋃p
j=1[xj − hj, xj] ⊂ G.

• (∗2.4) See (∗a)
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STEP 3. Let

B
def
= A ∩

p⋃
j=1

(xj − hj, xj).

We repeat a similar argument. For every y ∈ B, D+f(y) > r. Note that

D+f(y) = lim sup
h→+0

f(y + h)− f(y)

h

= lim
h→+0

sup
k∈(0,h)

f(y + k)− f(y)

k
> r.

So for every h > 0 (especially for arbitrarily small h > 0),

sup
k∈(0,h)

f(y + k)− f(y)

k
> r,

hence we can find k ∈ (0, h) s.t

f(y + k)− f(y)

k
> r.

By taking sufficiently small k > 0, we can satisfy

[y, y + k] ⊂ (xj − hj, xj) for some j = 1, · · · , p,

because y ∈ B ⊂
⋃p
j=1(xj−hj, xj), and each (xj−hj, xj) is open. In conclusion, for every

y ∈ B and for every δ > 0, we can find k ∈ (0, δ) s.t

f(y + k)− f(y)

k
> r and [y, y + k] ⊂ (xj − hj, xj) for some j = 1, · · · , p.

Therefore, such {[y, y + k]}y,k is a Vitalli cover. By Theorem 5.1 Vitalli’s Covering The-
orem, we can find disjoint closed intervals {[yi, yi + ki]}qi=1 s.t

m∗

(
B \

q⋃
i=1

[yi, yi + ki]

)
< ε.
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Therefore

q∑
i=1

ki =

q∑
i=1

m([yi, yi + ki])

∗3.1
= m

(
q⋃
i=1

[yi, yi + ki]

)

= m∗

(
B ∩

q⋃
i=1

[yi, yi + ki]

)
∗3.2
= m∗(B)−m∗

(
B \

q⋃
i=1

[yi, yi + ki]

)
> m∗(B)− ε

= m∗

(
A ∩

p⋃
j=1

(xj − hj, xj)

)
− ε

∗3.3
= m∗

(
A ∩

p⋃
j=1

[xj − hj, xj]

)
− ε

∗3.4
> m∗(A)− ε− ε

• (∗3.1) {[yi, yi + ki]}qi=1 are disjoint.

• (∗3.2) Since
⋃q
i=1[yi, yi + ki] ∈ M , we have m∗(B) = m∗ (B ∩

⋃q
i=1[yi, yi + ki]) +

m∗ (B \
⋃q
i=1[yi, yi + ki]).

• (∗3.3) Use sub-additivity of Lebesgue measure. Then recall that a countable set is
a measure zero set.

m∗

(
A ∩

p⋃
j=1

(xj − hj, xj)

)
5 m∗

(
A ∩

p⋃
j=1

[xj − hj, xj]

)

5 m∗

(
A ∩

p⋃
j=1

(xj − hj, xj)

)
+m∗

(
A ∩

p⋃
j=1

{xj − hj, xj}

)

5 m∗

(
A ∩

p⋃
j=1

(xj − hj, xj)

)
+m∗

(
p⋃
j=1

{xj − hj, xj}

)

• (∗3.4) By the conclusion of STEP1.

Furthermore, for each i = 1, · · · , q, we have

f(yi + k + i)− f(yi)

ki
> r (⇔ f(yi + ki)− f(yi) > rki).

So
q∑
i=1

(f(yi + ki)− f(yi)) > r

q∑
i=1

ki > r(m∗(A)− 2ε)
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STEP 4. Let us recall that for each i = 1, · · · , q, there exists j s.t [yi, yi + ki] ⊂
(xj − hj, xj). Furthermore, f(x) is a monotone increasing function on [a, b]. These facts
imply that

q∑
i=1

f(yi + ki)− f(yi) 5
p∑
j=1

f(xj)− f(xj − hj)

By the conclusion of STEP2 and STEP3, we have

r(m∗(A)− 2ε) < s(1 + ε)m∗(A).

By taking ε→ +0, we have
rm∗(A) 5 sm∗(A).

Since r > s, we conclude that
m∗(A) = 0.

Now the proof is complete.

(2) Let

fn(x)
def
= n

(
fn

(
x+

1

n

)
− f(x)

)
.

Note that fn(x) is a non-negative measurable function define on [a, b]. We may suppose
that

f(x) = f(b) (if x > b).

Since limh→0
f(x+h)−f(x)

h
exists a.e x ∈ [a, b], limn→∞ fn(x) exists a.e x ∈ [a, b]. And we

define

f ′(x)
def
=

{
limh→∞

f(x+h)−f(x)
h

if exists

0 otherwise
.

Since limh→∞
f(x+h)−f(x)

h
does not always exist, we modify the definition of f ′(x) so that

f ′(x) becomes a measurable function defined everywhere on [a, b]. (Note that the mod-
ification is only done on a measure zero set, so it does not have an influence on the
integral.) However, some people do not implement the modification above, and directly

treat f ′(x)
def
= limh→∞

f(x+h)−f(x)
h

as a measurable function defined a.e x ∈ [a, b].
Anyway now f ′(x) is a measurable function, and f ′(x) = 0 because f(x) is monotone

increasing on [a, b]. Furthermore, limn→∞ fn(x) = f ′(x) a.e x ∈ [a, b]. By applying Fatou’s

322



5.1.

lemma to {fn(x)}n=1, we have∫
[a,b]

f ′(x)dx
∗1
=

∫
[a,b]

lim inf
n→∞

fn(x)dx

∗2
5 lim inf

n→∞

∫
[a,b]

fn(x)dx

∗3
= lim inf

n→∞

∫
[a,b]

n

(
f

(
x+

1

n

)
− f(x)

)
dx

∗4
= lim inf

n→∞

(∫
[a,b]

nf

(
x+

1

n

)
dx−

∫
[a,b]

nf(x)dx

)
∗5
= lim inf

n→∞

(
n

∫
[a,b]

f

(
x+

1

n

)
dx− n

∫
[a,b]

f(x)dx

)
∗6
= lim inf

n→∞

(
n

∫
[a+1/n,b+1/n]

f (x) dx− n
∫

[a,b]

f(x)dx

)
∗7
= lim inf

n→∞

(
n

∫
[b,b+1/n]

f (x) dx− n
∫

[a,a+1/n]

f(x)dx

)
∗8
= lim inf

n→∞

(
n

∫
[b,b+1/n]

f(b)dx− n
∫

[a,a+1/n]

f(x)dx

)
∗9
5 lim inf

n→∞

(
n

∫
[b,b+1/n]

f(b)dx− n
∫

[a,a+1/n]

f(a)dx

)
= lim inf

n→∞
(f(b)− f(a))

• (∗1) f ′(x) = lim infn→∞ fn(x) a.e x ∈ [a, b].

• (∗2) Fatou’s lemma.

• (∗3) By definition.

• (∗4) Note that f(x) is intregrable on [a, b]. Note that |f(x)| 5 max{|f(a)|, |f(b)|} <
∞ (f(x) is a real-valued function), and [a, b] is bounded.

• (∗5) Put n outside the integral. (Theorem 4.10)

• (∗6) Rewrite
∫
R f(x+ 1

n
)χ[a,b](x)dx. Then apply Theorem 4.13.

• (∗7) Simple rearrangement.

• (∗8) f(x) = b when x > b.

• (∗9) f(x) is monotone increasing, so f(x) = f(a).
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6 (Theorem 5.3) Let

S(x)
def
=

∞∑
n=1

fn(x), Sn(x)
def
=

n∑
k=1

fk(x), Rn(x)
def
=

∞∑
k=n+1

fk(x).

Since S(x) converges (is well-defined and is finite), R(x) also converges. By assumption,
each fn(x) is monotone increasing on [a, b], so f ′n(x) exists a.e x ∈ [a, b]. (Theorem 5.2)

Let An be a measure zero set where f ′n(x) exists x ∈ [a, b] \ An. Since A
def
=
⋃∞
n=1An

is also a measure zero set, we can say that f ′n(x) exists for all n ∈ N a.e x ∈ [a, b].
Note that S(x), Sn(x), Rn(x) are also monotone increasing function on [a, b]. Simiarly,
S ′(x), S ′n(x), R′n(x) exists for all n ∈ N a.e x ∈ [a, b].

STEP 1. Note that
S(x) = Sn(x) +Rn(x),

because

S(x) = lim
k→∞

Sk(x)

= lim
k→∞

(
n∑
k=1

fk(x) +
k∑

j=n+1

fj(x)

)

= Sn(x) + lim
k→∞

k∑
j=n+1

fj(x)

= Sn(x) +Rn(x).

From the previous discussion, S ′(x), S ′n(x), R′n(x) exists a.e x ∈ [a, b]. So we have

S ′(x) = S ′n(x) +R′n(x) a.e x ∈ [a, b].

for each n ∈ N. Note that

S ′n(x) =
d

dx
S(x) =

d

dx

n∑
k=1

fk(x)
∗1
=

n∑
k=1

d

dx
fk(x) a.e x ∈ [a, b].

• (∗1) Recall that (f + g)′ = f ′ + g′ if f ′, g′ exists. (For a sum of a finite number
of differentiable functions, we can swap

∑
and d

dx
. In this theorem, we prove that

we can swap
∑

and d
dx

for a sum of a countably infinite number of differentiable
functions.)

So we have

S ′(x) =
n∑
k=1

f ′k(x) +R′n(x) a.e x ∈ [a, b],

for each n ∈ N. All we have to do is to prove that

lim
n→∞

R′n(x) = 0 a.e x ∈ [a, b],
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STEP 2. Note that

Rn(x) = fn+1(x) +Rn+1(x),

because

Rn(x) = lim
k→∞

(
k∑

j=n+2

fj(x) + fn+1(x)

)
=

∞∑
j=n+2

fj(x) + fn+1(x).

Recall that R′n(x), f ′n(x) exist for all n ∈ N a.e x ∈ [a, b]. So we have

R′n(x) = f ′n+1(x) +R′n+1(x) a.e x ∈ [a, b].

Since f ′n+1(x) = 0 (if exists), we have

R′n(x) = R′n+1(x) a.e x ∈ [a, b].

So R′n(x) exists a.e x ∈ [a, b] and {R′n(x)} is a decreasing sequence with respect to n ∈ N.
This implies that

lim
n→∞

R′n(x) exists a.e x ∈ [a, b].

We define

R∗(x)
def
=

{
limn→∞R

′
n(x) if exists

0 otherwise
.

Note that R′n(x) = 0 (if exists), so R∗(x) = 0. Therefore R∗(x) is a non-negative measur-
able function define on [a, b].

STEP 3. By Fatou’s lemma (we apply to Rn(x)) and Theorem 5.2∫
[a,b]

R∗(x)dx
∗2
=

∫
[a,b]

lim inf
n→∞

R′n(x)dx

∗3
5 lim inf

n→∞

∫
[a,b]

R′n(x)dx

∗4
5 lim inf

n→∞
(Rn(b)−Rn(a))

∗5
= 0.

• (∗2) Since limn→∞R
′
n(x) exists a.e x ∈ [a, b], R∗(x) = lim infn→∞R

′
n(x) a.e x ∈ [a, b].

• (∗3) Fatou’s lemma.

• (∗4) Theorem 5.2.

• (∗5) Recall that Rn(a) =
∑∞

k=n+1 fk(a) converges. (exists and is finite) So when
n→∞, Rn(a)→ 0. (Basic calculus) Similarly Rn(b)→ 0 as n→∞.

This implies that R∗(x) = 0 a.e x ∈ [a, b]. Therefore if limn→∞R
′
n(x) exists, then

limn→∞R
′
n(x) = 0 a.e x ∈ [a, b]. (So we can say that limn→∞R

′
n(x) = 0 a.e x ∈ [a, b].)

Now the proof is complete.
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7 (Exercise 1) Suppose that F (x) is a real-valued primitive function of f(x).
Since F ′(x) = f(x) = 0 (f(x) is non-negative by assumption), F (x) is monotone-
increasing. By Theorem 5.2, we have∫

[a,b]

f(x)dx =

∫
[a,b]

F ′(x)dx 5 F (b)− F (a) ∈ [0,∞).

So f(x) is integrable on [a, b]. This contradicts to the assumption. Now the proof is
compelte.

8 (Exercise 2)

STEP 1. Since limn→∞ fn(x) = 1 a.e x ∈ (0, 1), we can pick bk ↗ 1 s.t

lim
n→∞

fn(bk) = 1 for all k = 1, 2, · · · .

Otherwise, there exists some b ∈ (0, 1) s.t ∀x ∈ [b, 1) limn→∞ fn(x) 6= 1. Similarly, we can
pick ak ↘ 0 s.t

lim
n→∞

fn(ak) = 1 for all k = 1, 2, · · · .

STEP 2. By Theorem 5.2, f ′n(x) exists a.e x ∈ (0, 1) and f ′n(x) = 0 if exists.
Virtually we can regard f ′n(x) as a non-negative measurable function. (If f ′n(x) does not
exist, then we assume f ′n(x) = 0. ) By applying Fatou’s Lemma and Theorem 5.2, we
have

0 5
∫

[ak,bk]

lim inf
n→∞

f ′n(x)dx
∗1
5 lim inf

n→∞

∫
[ak,bk]

f ′n(x)dx

∗2
5 lim inf

n→∞
(fn(bk)− fn(ak))

∗3
= 1− 1 = 0.

• (∗1) Fatou’s Lemma.

• (∗2) Theorem 5.2.

• (∗3) limn→∞ fn(ak) = 1 and limn→∞ fn(bk) = 1.

So for every k ∈ N, ∫
[ak,bk]

lim inf
n→∞

f ′n(x)dx = 0.

By Theorem 4.4 Monotone Convergence Theorem (∗4),

0 = lim
k→∞

∫
[ak,bk]

lim inf
n→∞

f ′n(x)dx = lim
k→∞

∫
(0,1)

(lim inf
n→∞

f ′n(x)) · χ[ak,bk](x)dx

∗4
=

∫
(0,1)

lim
k→∞

(lim inf
n→∞

f ′n(x)) · χ[ak,bk](x)dx

=

∫
(0,1)

lim inf
n→∞

f ′n(x)dx.
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So we have ∫
(0,1)

lim inf
n→∞

f ′n(x)dx = 0.

Since lim infn→∞ f
′
n(x) is non-negative, the above integral implies that lim infn→∞ f

′
n(x) =

0 a.e x ∈ (0, 1). (Review the properties derived from Definition 4.2.) Now the proof is
complete.

9 (Exercise 3) Similar to Theorem 5.1 Vitali’s Covering Theorem, we may sup-
pose that every I ∈ Γ is a closed inteval. Because if we obtain a countable disjoint closed
intervals {Ij}∞j=1 with m(E \

⋃∞
j=1 Ij) = 0, then {I̊j} are countable disjoint open intervals

and m(E \
⋃∞
j=1 I̊j) = 0. (Note that edge points are measure zero sets.)

STEP 1. By Vitali’s Covering Theorem, we can find a finite number of closed
intervals {I1,k}K1

k=1 s.t

m∗

(
E \

K1⋃
k=1

I1,k

)
< 1.

STEP 2. Let F1
def
=
⋃K1

k=1 I1,k. Since E \ F1 ⊂ E and Γ is a Vitali cover of E,
so Γ is also a Vitali cover of E \ F1. Suppose that we have picked an arbitrary point
x ∈ E \ F1. We pick Ix,δ ∈ Γ with x ∈ Ix,δ and diam(Ix,δ) < δ. If we choose sufficiently
small δ > 0, then Ix,δ ∩ F1 = ∅ because F1 is closed. (Otherwise, we can find a sequence
{xn} ⊂ Ix,δ ∩ F1 ⊂ F1 with xn → x by taking δ → 0. Then x ∈ F1 because F1 is closed.
This contradicts to the assumption that x ∈ E \ F1.)

Therefore, Γ1
def
= {I ∈ Γ | I ∩ F1 = ∅} is a Vitali cover of E \ F1. By Vitali’s Covering

Theorem, we can find a finite number of closed intervals {I2,k}K2
k=1 ⊂ Γ1 s.t

m∗

(
(E \ F1) \

K1⋃
k=1

I2,k

)
<

1

2
.

STEP 3. We continue the procedure in the similar way. Then we obtain disjoint
closed intervals {Ij,k} s.t

m∗

E \ n⋃
j=1

Kj⋃
k=1

Ij,k

 <
1

n
.

for every n ∈ N. Therefore

m∗

(
E \

∞⋃
n=1

Kn⋃
k=1

In,k

)
= 0.

Now the proof is complete.
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10 (Exercise 4) Let

F (x)
def
= f(x)− kx,

then F (x) is also continuous on [a, b]. Note that

F (b) = F (a) ∈ R,

so F (x) take the maximum value or the minimum value at some x = x0 ∈ (a, b). If x = x0

is the maximizer of F , then

D+F (x0) 5 0 5 D−F (x0).

If x = x0 is the minimizer of F , then

D−F (x0) 5 0 5 D+F (x0).

And then we have the desired conclusion.

11 (Exercise 5)

STEP 1. We can find an open set Gn ∈ O1 with E ⊂ Gn ⊂ [a, b] with m(Gn) < 1
2n

.
(Consider {In,k} with E ⊂

⋃∞
k=1 In,k with m∗(E) 5

∑∞
k=1 |In,k| < m∗(E) + εn where

εn = 1
2n

. Let Gn
def
=
⋃∞
k=1 In,k. Review Chapter 2.) Let

fn(x)
def
= m([a, x] ∩Gn).

Obviously, 0 5 fn(x) 5 m(Gn) < 1
2n

and each fn(x) is a monotone increasing function on
[a, b]. Furtheremore,

fn(x+ h)− fn(x) = m([a, x+ h] ∩Gn)−m([a, x] ∩Gn)

= m((x, x+ h] ∩Gn) 5 m((x, x+ h]) = h,

so each fn(x) is a continuous function.

STEP 2. Let us consider

S(x) =
∞∑
n=1

fn(x), Sn(x)
def
=

n∑
k=1

fk(x).

Obviously S(x) is non-negative and monotone increasing. Since Sn(x) is continuous (be-
cause it is a sum of a finite number of continuous functions) and Sn(x)

u−→ S(x) converges
uniformly on x ∈ [a, b] (see below), S(x) is continuous. (Recall that a sequence of contin-
uous functions uniformly converges to a function, then the function is also continous.)

|S(x)− Sn(x)| = S(x)− Sn(x)

= lim
k→∞

(Sk(x)− Sn(x))

= lim
k→∞

k∑
j=n+1

fj(x)

5 lim
k→∞

k∑
j=n+1

1

2j
=

1

2n
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So

lim
n→∞

sup
x∈[a,b]

|S(x)− Sn(x)| = 0.

In conclusion, S(x) is a non-negative continuous and monotone increasing function.

STEP 3. We show that S ′(x) = ∞ if x ∈ E. Since E ⊂ Gn, for every x ∈ E,

x ∈ Gn. Since Gn is an open set, we can find hn > 0 s.t [x, x + hn] ⊂ Gn. Let h
def
=

min{h1, · · · , hk}. Then [x, x+ h] ⊂ G1, · · ·Gk. Note that for n = 1, 2, · · · , k,

fn(x+ h)− fn(x)

h
=
m((x, x+ h] ∩Gn)

h
=
m((x, x+ h])

h
= 1,

so
k∑

n=1

fn(x+ h)− fn(x)

h
= k.

Therefore

S(x+ h)− S(x)

h
= lim

m→∞

Sm(x+ h)− Sm(x)

h

= lim
m→∞

m∑
n=1

fn(x+ h)− fn(x)

h

=
k∑

n=1

fn(x+ h)− fn(x)

h
= k.

This implies that

lim inf
h→+0

S(x+ h)− S(x)

h
= k.

Since k is an arbitrary natural number, by taking k →∞, we have

lim
h→+0

S(x+ h)− S(x)

h
=∞

By the similar argument above, we have

lim
h→+0

S(x)− S(x− h)

h
=∞

(Consider [x− h, x] ⊂ Gn for n = 1, · · · , k.) Now the proof is complete.

12 (Exercise 6) Let {rn}n=1
def
= (0, 1) ∩Q and let

fn(x)
def
=

{
0 x ∈ [0, rn)
1

2n
x ∈ [rn, 1]

.
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We claim that

S(x)
def
=

∞∑
n=1

fn(x)

is the desired function. Note that S(x) converges for all x ∈ [0, 1]. This is because

0 5 S(x) 5
∑∞

n=1
1

2n
= 1 < ∞, and let Sn(x)

def
=
∑n

k=1 fk(x), then Sn(x) 5 Sn+1(x) so
S(x) = limn→∞ Sn(x) exists.

STEP 1. First, we show that S(x) is strictly monotone increasing. Since each
fn(x) is monotone increasing, so S(x) is monotone increasing. Let x1 < x2 ∈ [0, 1]. There
exists r ∈ (x1, x2) ∩ Q ⊂ (0, 1) ∩ Q. This implies that there exists rn s.t x1 /∈ [rn, 1] but
x2 ∈ [rn, 1], hence fn(x1) = 0 but fn(x2) = 1

2n
. So S(x1) < S(x2). It follows that S(x) is

strictly monotone increasing.

STEP 2. Next, we show that S ′(x) = 0 a.e x ∈ [a, b]. Recall that each fn(x) is
monotone increasing and S(x) converges. So we can apply Theorem 5.3. Also note that
f ′n(x) = 0 a.e x ∈ [0, 1], so f ′n(x) = 0 for all n ∈ N a.e x ∈ [0, 1]. By Theorem 5.3,

S ′(x) =
∞∑
n=1

f ′n(x) = 0 a.e x ∈ [0, 1].

Now the proof is complete.

13 (Exercise 7)
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